当前位置:文档之家› 概率、期望与方差的计算

概率、期望与方差的计算

概率、期望与方差的计算

特征量一:平均数(数学期望) 计算公式一:1231()n x x x x x n

=++++; 计算公式二:1

()n

x i i k E x P x x ==?=∑;

计算公式三:(若随机变量x 是连续型随机变量,且函数()f x 是它的密度函数) ()Ex xf x dx +∞

-∞=?

特征量四:方差

方差反映一组数或者一个统计变量的稳定程度,方差越小数值越稳定,方差越大则数值波动越大。 计算公式一:21

1[()]n x k k D x x n ==-∑; 计算公式二:21

1[()()]n x k k x k D P x x x E n ===?-∑; 计算公式三:22()x D Ex Ex =-;

期望和方差的性质:

性质1:()E c c =;

性质2:()E ax b aEx b +=+;

性质3:1212()n n E x x x Ex Ex Ex +++=+++;

性质4:若,x y 相互独立,则:()()()E x y Ex Ey ?=?;

性质5:222()(())()(())D x E x E x E x E x =-=-;

性质6:()0D c =;

性质7:2()()D ax b a D x +=;

性质8:若,x y 为两个随机变量则:()()()2[(())(())]D x y D x D y x E x y E y +=+--?-; 性质9:若12,,,n x x x 是相互独立的随机变量,则:

1212()()()()n n D x x x D x D x D x +++=+++;

概率与数理统计第8章 假设检验与方差分析

第8章假设检验与方差分析 【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至83.12元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以28.45元报收后停牌。2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至20.16元。此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。有关数据如表8.1所示: 上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”?为什么说这个结论表示乙肝新疫苗无效?什么叫“在统计意义上无差异”?如何根据样本数据作出统计意义上有无差异的判断?解答这些问题就需要本章所要介绍的假设检验。 现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。这些分析研究都离不开假设检验或方差分析。假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。本教材介绍假设检验与方差分析的基本原理和一些基本方法。但通过本章的学习,理解了有关概念和基本思想,对更为复杂的检验结果也不难作出基本的判断和解读。 本章小结 1.假设检验是基于小概率原理的一种统计推断方法,针对待检验的原假设和备择假设,检验统计量及其分布是检验的理论基础,检验统计量的观测值及P值是作出检验结论的依据。检验结论可能犯的错误有两类,它们的概率α和β此消彼长。 2.参数的假设检验主要包括总体均值、总体方差和总体比例的检验。本章所介绍的检验

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

高中数学离散型随机变量的期望与方差练习(含答案)

离散型随机变量均值与方差专题练习 一、单选题(共16题;共32分) 1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是() A. , B. , C. , D. , 2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=() A. 0.683 B. 0.853 C. 0.954 D. 0.977 3.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=() A. B. C. D. 4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=() A. 0.6826 B. 0.3413 C. 0.4603 D. 0.9207 5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是() A. B. C. D. 6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是() A. B. C. D. 7.下面说法中正确的是() A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值 B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平 C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平 D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值 8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为() A. B. C. D. 9.已知随机变量,则() A. B. C. D. 10.设随机变量的分布列为,,则等于() A. B. C. D. 11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()

第十章统计与概率10-9离散型随机变量的期望、方差与正态分布(理

第10章 第9节 一、选择题 1.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 [答案] B [解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B. 2.设随机变量ξ的分布列如下: ξ -1 0 1 P a b c 其中a ,b ,c 成等差数列,若E (ξ)=1 3,则D (ξ)=( ) A.49 B .-19 C.23 D.59 [答案] D [解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×? ???-1-132+13????0-132+12????1-132=59. 3.某区于2010年元月对全区高三理科1400名学生进行了一次调研抽测,经统计发现5科总分ξ(0<ξ<750)大致服从正态分布N (450,1302),若ξ在(0,280)内取值的概率为0.107,则该区1400名考生中总分为620分以上的学生大约有(结果四舍五入)( ) A .100人 B .125人

C .150人 D .200人 [答案] C [解析] 由条件知,P (ξ>620)=P (ξ<280)=0.107,1400×0.107≈150. 4.(2010·山东济南模拟)下列判断错误的是( ) A .在1000个有机会中奖的号码(编号为000~999)中,有关部门按照随机抽取的方式确定后两位数字是09号码为中奖号码,这是用系统抽样方法确定中奖号码的; B .某单位有160名职工,其中业务人员120名,管理人员24名,后勤人员16名.要从中抽取容量为20的要本,用分层抽样的方法抽取样本; C .在正常条件下电子管的使用寿命、零件的尺寸,在一定条件下生长的小麦的株高、穗长、单位面积的产量等一般都服从正态分布; D .抛掷一枚硬币出现“正面向上”的概率为0.5,则某人抛掷10次硬币,一定有5次出现“正面向上”. [答案] D 5.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6 7 ,则口袋中白球的个数为( ) A .3 B .4 C .5 D .2 [答案] A [解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=(7-x )(6-x )42, P (ξ=1)=x ·(7-x )C 72=x (7-x ) 21, P (ξ=2)=C x 2C 72=x (x -1) 42 , ∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=6 7, ∴x =3. 6.一台机器生产某种产品,如果生产一件甲等品可获利50元,生产一件乙等品可获利30元,生产一件次品,要赔20元,已知这台机器生产甲等品、乙等品和次品的概率分别为

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

概率论和数理统计带答案

单选 题(共 40 分) 1、在假设检验问题中,犯第一类错误的概率α的意义是( ) (C) A、在H0不成立的条件下,经检验H0被拒绝的概率 B、在H0不成立的条件下,经检验H0被接受的概率 C、在H0成立的条件下,经检验H0被拒绝的概率 D、在H0成立的条件下,经检验H0被接受的概率 2、设,AB是两个事件,且P(A)≤P(A|B),则有 (C) A、P(A)=P(A|B) B、P(B)>0 C、P(A|B)≥P(B) D、设,AB是两个事件 3、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )(A) A、1/6. B、1/5. C、1/4. D、1/3. 4、设,,ABC是三个相互独立的事件,且0(B) A、AUB与c B、AC与C C、A-B与C D、AB与C 5、设随机事件A与B相互独立,P(A)=0.5,P(B)=0.6则P(A-B)= (D) A、1/2. B、1/5. C、1/4. D、1/12. 6、将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为 (A) A、4/7. B、4/9. C、5/11. D、6/7. 7、设事件,AB满足ABBB,则下列结论中肯定正确的是( )(D) A、AB互不相容 B、AB相容 C、互不相容 D、P(A-B)=P(A) 8、已知P(B)=0.3,P(AUB)=0.7,且A与B相互独立,则P(A)=(D) A、0.2 B、0.3 C、0.7 D、0.5 9、若事件A和事件B相互独立, P(A)==,P(B)=0.3,P(AB)=0.7,则则 (A) A、3/7. B、4/7. C、5/7. D、6/7. 10、,设X表示掷两颗骰子所得的点数,则EX =(D) A、2 B、3 C、4 D、7 ?多选 题(共 20 分) 1、甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(D) A、0.3 B、0.5 C、0.6 D、0.8

概率分布以及期望及方差.docx

概率分布以及期望和方差 上课时间 : 上课教师: 上课重点 : 掌握两点分布、超几何分布、二项分布、正态分布的概率分布 及其期望和方差 上课规划:解题技巧和方法 一两点分布 知识内容 ⑴两点分布 如果随机变量X 的分布列为 X10 P p q 其中 0 p 1 , q 1 p ,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为 1,不合格记为 0 ,已知产品的合格率为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布. X 10 P 0.80.2 两点分布又称 0 1分布,由于只有两个可能结果的随机试验叫做伯努利试 验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在 n 次二点分布试验中,离散型随机变量X 的期望取值为np . 典例分析 ,针尖向上; 1、在抛掷一枚图钉的随机试验中,令X1,如果针尖向上的 ,针尖向下 . 概率为 p ,试写出随机变量 X 的概率分布. 2、从装有 6 只白球和 4 只红球的口袋中任取一只球,用X 表示“取到的

,当取到白球时, 白球个数”,即 X ,当取到红球时, ,求随机变量 X 的概率分布. 3、若随机变量 X 的概率分布如下: X 1 P 2 3 8C 9C C 试求出 C ,并写出 X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 0,(当第一次向上一面的点 数不等于第二次向上一 面的点数 ) 1, (当第一次向上一面的点 数等于第二次向上一面 的点数 ) 试写出随机变量 的分布列. 4、篮球运动员比赛投篮,命中得 1 分,不中得 0 分,已知运动员甲投篮命 中率的概率为 P . ⑴ 记投篮 1次得分 X ,求方差 D ( X ) 的最大值; ⑵ 当⑴中 D ( X ) 取最大值时,甲投 3 次篮,求所得总分 Y 的分布列及 Y 的期望与方差. 二 超几何分布

常见分布的期望和方差

5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

《数学期望与方差》习题解答

概率论《数学期望与方差》 习题参考解答 1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为 ξ 0 1 P 1/3 2/3 因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3 2. 矩形土地的长与宽为随机变量ξ和η, 周长ζ=2ξ+2η, ξ与η的分布律如下表所示: 而求出的周长ζ的分布律如下表所示: 长的分布计算. 解: 由长和宽的分布率可以算得 E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9 E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×(29.9+20)=99.8 而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质. 4. 连续型随机变量ξ的概率密度为 ?? ?><<=其它 )0,(10)(a k x kx x a ? 又知E ξ=0.75, 求k 和a 的值。 解: 由性质?+∞ ∞ -=1)(dx x ? 得11 1 )(| 10 1 1 =+= += =++∞ ∞ -??a k x a k dx kx dx x a a ?

即k =a +1 (1) 又知 75.02 2 )(| 10 2 1 1 =+= += = = +++∞ ∞ -?? a k x a k dx kx dx x x E a a ?ξ 得k =0.75a +1.5 (2) 由(1)与(2)解得 0.25a =0.5, 即a =2, k =3 6. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较. 解 (90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为 (10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.17 7. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值(计算时以组中值为代表). E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=4959 8. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有 E ξi =10, D ξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此 ∑== 100 1 i i ξ ξ,则ξ的数学期望和标准差为

概率论与数理统计:方差的概念

方差 § 方差 数学期望是随机变量的一个重要数字特征,它表示了随机变量的平均水平,但有时仅用数学期望来描述随机变量是不够的,如:有两名射击选手,他们每次射击命中的环数分别为 21,X X ,对应的分布列为: 由于9)()(21==X E X E ,可见从数学期望这个角度无法分出两射击选手水平的高低,故还需考虑其它的因素,通常做法是:比较两选手射击技术的稳定性,研究随机变量和均值偏离程度.首先看)(X E X -,但这种偏差有正有负,可能出现正负抵消情况,常考虑 )(X E X -来描述随机变量的波动大小,但绝对值在数学上处理不方便,故改用 2)]([X E X -来消去符号,然后再求均值2)]([X E X E -来度量随机变量取值的波动大小. 此例中,4.0)]([211=-X E X E ,8.0)]([2 22=-X E X E ,由此可见第一名选手的技术更稳定一些. 本节将引进另一个数字特征--方差。用它来度量随机变量取值在其均值附近的平均偏离 程度。 4.2.1方差的概念 定义 4.3 设随机变量X ,若2 {[()]}E X E X -存在,则称其为X 的方差,记为()D X 或Var()X ,即 2Var()(){[()]}D X E E X X X ==-. X 的均方差或标准差,也记为()X σ. 4.2.2 方差的计算

由定义知,方差实际上是随机变量X 的函数2 ()[()]g X X E X =-的数学期望. 注 (1)方差是随机变量与其均值的离差平方的数学期望,仍是一种期望,它反映了随机变量取值与其均值的偏差程度; (2))(X D 越大,则随机变量X 的取值越分散;)(X D 越小,则随机变量X 的取值越集中; (3)既然方差是一种期望,且是随机变量函数2 )]([)(X E X X g -=的数学期望, 故:???????--=-=?∑∞+∞ -2 22 ,)()]([,)]([)]([)(为连续型随机变量为离散型随机变量 X dx x f X E x X p X E x X E X E X D i i i (4))(X E 可正可负,但0)(≥X D ; (5))(X E 存在时,)(X D 不一定存在;但当)(X D 存在时,)(X E 一定存在./ 另外,方差既然是期望,则利用期望的性质,有: })]([)(2{)]([)(222X E X XE X E X E X E X D +-=-= 2 2 22)] ([)()]([)()(2)(X E X E X E X E X E X E -=+-= 在计算方差时,除用定义法外有时也用2 2)]([)()(X E X E X D -=计算,应根据实际情况而定. 例4.24((0-1)分布)设随机变量X 服从参数为p 的(01)-分布,求()D X . 解 X 的分布律为 {1}P X p ==, (0)1P X p ==-. 由于()E X p =,且 222()10(1)E X p p p =?+?-=, 因而 222()()[()](1)D X E X E X p p p p =-=-=-. 例4.25 二项分布 ),(~p n B X

第十章 统计与概率10-9离散型随机变量的期望、方差与正态分布(理

第10章 第9节 一、选择题 1.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 [答案] B [解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B. 2.设随机变量ξ的分布列如下: 其中a ,b ,c 成等差数列,若E (ξ)=1 3,则D (ξ)=( ) A.49 B .-19 C.23 D.59 [答案] D [解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×????-1-132+13????0-132+12????1-132=5 9 . 3.某区于2010年元月对全区高三理科1400名学生进行了一次调研抽测,经统计发现5科总分ξ(0<ξ<750)大致服从正态分布N (450,1302),若ξ在(0,280)内取值的概率为0.107,则该区1400名考生中总分为620分以上的学生大约有(结果四舍五入)( ) A .100人 B .125人 C .150人

[答案] C [解析] 由条件知,P (ξ>620)=P (ξ<280)=0.107,1400×0.107≈150. 4.(2010·山东济南模拟)下列判断错误的是( ) A .在1000个有机会中奖的号码(编号为000~999)中,有关部门按照随机抽取的方式确定后两位数字是09号码为中奖号码,这是用系统抽样方法确定中奖号码的; B .某单位有160名职工,其中业务人员120名,管理人员24名,后勤人员16名.要从中抽取容量为20的要本,用分层抽样的方法抽取样本; C .在正常条件下电子管的使用寿命、零件的尺寸,在一定条件下生长的小麦的株高、穗长、单位面积的产量等一般都服从正态分布; D .抛掷一枚硬币出现“正面向上”的概率为0.5,则某人抛掷10次硬币,一定有5次出现“正面向上”. [答案] D 5.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6 7 ( ) A .3 B .4 C .5 D .2 [答案] A [解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2 C 72=(7-x )(6-x )42, P (ξ=1)=x ·(7-x )C 72=x (7-x ) 21, P (ξ=2)=C x 2C 72=x (x -1) 42, ∴0× (7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=6 7 , ∴x =3. 6.一台机器生产某种产品,如果生产一件甲等品可获利50元,生产一件乙等品可获利30元,生产一件次品,要赔20元,已知这台机器生产甲等品、乙等品和次品的概率分别为0.6、0.3和0.1,则这台机器每生产一件产品,平均预期可获利( ) A .39元 B .37元

期望与方差例题选讲有详解

概率统计(理)典型例题选讲 (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 典型例题分析 1.有10张卡片,其中8张标有数字2,有2张标有数字5.从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求Eξ与Dξ.

大学概率论与数理统计公式全集

大学概率论与数理统计公式全集 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ) )(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A A B += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 ) (1)(A P A P -= 加法公式 ) ()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 ) ()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相 应公式 ) ()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P

二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1 ,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==- 泊松分布)(λP ,2,1,0,! )(===-k k e k X P k λλ 几何分布)(p G ,2,1,0, )1()(1=-==-k p p k X P k 超几何分布),,(n M N H ) ,min(,,1,,)(M n l l k C C C k X P n N k n M N k M +== =-- 3、连续型随机变量 分布名称 密度函数 分布函数 均匀分布),(b a U ?? ???<<-=其他,0,1 )(b x a a b x f ?? ? ????≥<≤--<=b x b x a a b a x a x x F ,1,,0)( 指数分布)(λE ???? ?>=-其他, 00 ,)(x e x f x λλ ? ??≥-<=-0,10, 0)(x e x x F x λ 正态分布),(2σμN +∞<<∞-= -- x e x f x 2 2 2)(21)(σμσ π ?∞ --- = x t t e x F d 21 )(2 22)(σμσπ 标准正态分布)1,0(N +∞<<∞-=- x e x x 2 221)(π ? ?∞ --- = x t t e x F d 21)(2 22)(σμσπ

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

常见分布的期望和方差

常见分布的期望和方差

概率与数理统计重点摘要 1、正态分布的计算:()()()X F x P X x μ σ-=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞=??具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度:()(,)()(,)X Y f x f x y dy f y f x y dx +∞-∞ +∞-∞==? ? 边缘分布函数:()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞ -∞+∞-∞-∞=+∞==+∞=???? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差 知识点 一、离散型随机变量的数学期望 1.定义 一般地,如果离散型随机变量的分布列为 则称n n i i p x p x p x p x X E +++++=ΛΛ2211)(为随机变量X 的数学期望或均值。 2.意义:反映离散型随机变量取值的平均水平。 3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义 一般地,如果离散型随机变量的分布列为 则称∑=-= n i i i p X E x X D 1 2 )) (()(为随机变量的方差。 2.意义:反映离散型随机变量偏离均值的程度。 3.性质:)()(2 X D a b aX D =+ 三、二项分布的均值与方差 如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。

题型一离散型随机变量的均值 【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=() A.0.2 C.-0.2 D.0.4 【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为() A.0.6 B.1 C.3.5 D.2 【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________. 【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (1)求X的分布列; (2)若要求P(X≤n)≥0.5,确定n的最小值; (3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

相关主题
文本预览
相关文档 最新文档