当前位置:文档之家› 1离散型随机变量的均值(数学期望)

1离散型随机变量的均值(数学期望)

1离散型随机变量的均值(数学期望)
1离散型随机变量的均值(数学期望)

1离散型随机变量的均值(数学期望)

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

离散型随机变量的均值

一、概念:

1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示

2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量

3. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…,

ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表

ξ

x 1 x 2 … x i … P

P 1 P 2

P i

为随机变量ξ的概率分布,简称ξ的分布列

4. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)

5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是

k n k k

n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).

于是得到随机变量ξ的概率分布如下:

ξ

0 1

… k …

n

P

n n q p C 00 111-n n q p C … k n k k n q p C - …

q p C n n n

称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并

记k

n k k n

q p C -=b (k ;n ,p ). 二、数学期望:

根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下

ξ

4

5 6 7 8 9 10 P

0.02 0.04 0.06 0.09 0.28 0.29 0.22

在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望

根据射手射击所得环数ξ的分布列,

我们可以估计,在n 次射击中,预计大约有

n n P 02.0)4(=?=ξ 次得4环;

n n P 04.0)5(=?=ξ 次得5环;

…………

n n P 22.0)10(=?=ξ 次得10环.

故在n 次射击的总环数大约为

+??n 02.04++?? n 04.05n ??22.010

+?=02.04(++? 04.05n ??)22.010,

从而,预计n 次射击的平均环数约为

+?02.04++? 04.0532.822.010=?.

这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.

对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i =0,1,2,…,10),我们可以同样预计他任意n 次射击的平均环数:

+=?)0(0ξP +=?)1(1ξP …)10(10=?+ξP .

1. 均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为

则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平

3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令

=1p =2p …n p =,则有=1p =2p …n p n 1=

=,=ξE +1(x +2x …n

x n 1

)?+,所以ξ的数学期望又称为平均数、均值

三、讲解范例:

例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望

解:因为3.0)0(,7.0)1(====ξξP P , 所以7.03.007.01=?+?=ξE

例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随

机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望

解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是ηξ,,则ξ~ B (20,0.9),)25.0,20(~B η,

525.020,189.020=?==?=∴ηξE E 由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5ξ和5η 所

以,他们在测验中的成绩的期望分别是:

2555)(5)5(,90185)(5)5(=?===?==ηηξξE E E E

例3.随机抛掷一枚骰子,求所得骰子点数ξ的期望

解:∵6,,2,1,6/1)(???===i i P ξ,

6/166/126/11?+???+?+?=∴ξE =3.5

例4.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数ξ的期望(结果保留三个有效数字)

解:抽查次数ξ取1ξ≤≤10的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前1-k 次取出正品而第k 次(k =1,2,…,10)取出次品的概率:

15.085.0)(1?==-k k P ξ(k =1,2, (10)

需要抽查10次即前9次取出的都是正品的概率:985.0)10(==ξP 由此可得ξ的

概率分布如下:

ξ 1 2 3 4 5 6 7 8 9 10 P 0.15 0.1275 0.1084 0.092 0.0783 0.0666 0.0566 0.0481 0.0409 0.2316 根据以上的概率分布,可得ξ的期望

35.52316.0101275.0215.01=?+???+?+?=ξE

例5.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望. 解:抛掷骰子所得点数ξ的概率分布为

ξ 1 2 3 4 5 6 P

61 61 61 61 61 6

1 所以

=ξE 1×

61+2×61+3×61+4×61+5×61+6×6

1 =(1+2+3+4+5+6)×6

1

=3.5.

抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.

例6、((2014四川理17).一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐

则扣除200分(即获得200-分)。设每次击鼓出现音乐的概率为1

2

,且各次击鼓出现音乐相互独立。

(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?

(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。请运用概率统计的相关知识分析分数减少的原因。

解:(1)X 可能取值有200-,10,20,100

0033111(200)()(1)228P X C =-=-=,11

23113(10)()(1)228P X C ==-=,

2213113(20)()(1)228P X C ==-=,33

03111(100)()(1)228

P X C ==-=

故分布列为

(2)由(1)知:每盘游戏出现音乐的概率是8888

p =++=

则玩三盘游戏,至少有一盘出现音乐的概率是0031377511

1()(1)88512

p C =--=

(3)由(1)知,每盘游戏获得的分数为X 的数学期望是

133110

()(200)102010088888

E X =-?+?+?+?=-分

这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,与最初的分数相比,分数没有增加反而会减少。

四、课堂练习:

1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出球的最大号码,则E ξ=( )

A .4;

B .5;

C .4.5;

D .4.75

答案:C

离散型随机变量的期望

离散型随机变量的 苴日也 教学要求: 使学生了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.

对于离散型随机变量,确定了它的分布列,就掌握了随机变量取值的统计规律。 在实际问题中,我们还常常希望通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差。 引例: 某射手射击所得环数E的分布列如下: 根据这个射手射击所得环数E的分布列,在n次射击中,预计有大约 0.02n次的4环.. 类似地,对任一射手,若已知其射击所得环数E的分布列,即已知各个P (^i)(i=O,1,2,3,...10),则可预计他任意n次射击的平均环数是

Eg二XP ( §二0) + 1 XP ( 5=1)+.. + XP ( ^=10) 称Eg为此射手射击所得环数g的期望,它刻划了随机变量g所取的平均值,从一个方面反映了射手的射击水平。 1、期望 若离散型随机变量E的概率分布为 则称Eg二XP+X2P尹…+XnPn+…为§的数学期望或平均数、均值,又称期望。 问:若E为上述离散型随机变量,贝怕二ag+b的分布列怎样?Er]呢? 因为P ( r]=a Xj+b) =P ( g二片),i=1, 2, 3... 所以,n的分布图为

于是E r|= (ax〔+b)Pi+ (a x2+b)p2+...+ (a x n+b)p n+ ... =a ( x1 p1+ x2p2+ ---+ x n p n+ ...) +b(P1+P2+…+p门+…) =a E g+b 2、例题 例1篮球运动员在比赛中每次罚球命中得1分,罚不中得0

分。已知某运动员罚球命中的概率为0.7,求他罚球1次的得分g的期望。 例2随机抛掷一个骰子,求所得骰子的点数§的期望。

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

离散型随机变量的期望与方差

开锁次数的数学期望和方差 例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差. 分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般. 解:ξ的可能取值为1,2,3,…,n . Λ;12112121)111()11()3(;111111)11()2(,1)1(n n n n n n n n n P n n n n n n P n P =-?--?-=-?--?-===-?-=-?-====ξξξ n k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-?+-+---?--?-=+-?+----?--?-==ΛΛξ;所以ξ的分布列为: 2 31211=?++?+?+?=n n n n n E Λξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+- =ΛΛξ ?? ?????+++++++-++++=n n n n n n 22222)21()321)(1()321(1ΛΛ 1214)1(2)1()12)(1(611222-=?? ????+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键. 次品个数的期望

选修2-3教案2.3.1离散型随机变量的均值

§2.3.1 离散型随机变量的均值 教学目标 (1)通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; (2)能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点,难点:取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学过程 一.问题情境 1.情景: 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不 合格品数分别用12,X X 表示,12,X X 的概率分布如下. 2.问题: 如何比较甲、乙两个工人的技术? 二.学生活动 1. 直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率 比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2. 学生联想到“平均数”,,如何计算甲和乙出的废品的“平均数”? 3. 引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三.建构数学 1.定义 在《数学3(必修)》“统计”一章中,我们曾用公式1122...n n x p x p x p +++计算样本的平均值,其中i p 为取值为i x 的频率值.

其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ. 2.性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 四.数学运用 1.例题: 例1.高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X ,求X 的数学期望. 分析:从口袋中摸出5个球相当于抽取5n =个产品,随机变量X 为5个球中的红球的 个数,则X 服从超几何分布(5,10,30)H . 从而 2584807585503800700425 ()012345 1.66672375123751237512375123751237513 E X =? +?+?+?+?+?=≈ 答:X 的数学期望约为1.6667. 说明:一般地,根据超几何分布的定义,可以得到0 ()r n r n M N M n r N r C C M E X n C N --===∑ . 例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品 率为0.05,随机变量X 表示这10件产品中不合格品数,求随机变量X 的数学期望 ()E X . 解:由于批量较大,可以认为随机变量~(10,0.05)X B , 1010()(1),0,1,2, (10) k k k P X k p C p p k -===-=

随机变量的数学期望教案

随机变量的数学期望教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

教 案:数学期望 试讲人 郑丽霞 教材来源:《概率论与数理统计》 袁荫棠 授课题目:数学期望 第三章第一节 教学目标:会计算数学期望;通过数学期望的学习了解数学期望的实际应用及统计意义 教学重点:数学期望的计算 教学难点:如何将实际问题转化为数学问题 教学过程: 1. 引入课题 引例:在一次射击比赛中,每个人射击10次,甲选手射了4个1分,1个2分,5个3分,问甲选手的平均得分是多少? 1.210 5 31012104110531241=?+?+?=?+?+? 则其“均值”应为11 1k k i i i i i i n n x x n n ===∑∑. 所以上面的均值是以i n n 频率为权重的加权平均。

我们前面学了随机变量,那我用随机变量ξ来表示甲射击得分情况,求ξ的分布? 平均得分=1×0.4+2×0.1+3×0.5=2.1 大体上讲,数学期望(或均值)就是随机变量的平均取值 2. 概念讲解 (一)离散型随机变量的数学期望 定义3.1 设离散型随机变量ξ的分布列为 (),1,2, ,,.i i p P x i n ξ=== 如果 1 ||.i i i x p +∞ =<+∞∑ 则称 1 ()i i i E x p ξ+∞ ==∑ 为随机变量ξ的数学期望,简称期望或均值。若级数1 ||()i i i x p x +∞=∑不收 敛,则称ξ的数学期望不存在。 例1 投掷一颗均匀的骰子,以ξ表示掷的点数,求ξ的数学期望。 解:6 1 17 ()62i E i ξ==?=∑

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

离散型随机变量的期望

2.3.1离散型随机变量的期望 教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望. 过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟 练地应用它们求相应的离散型随机变量的均值或期望。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 教学重点:离散型随机变量的均值或期望的概念 教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量并且不改变其属性(离 散型、连续型) 5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…, ξ取每一个值x i(i=1,2,…)的概率为,则称表 ξx1x2…x i… P P1P2…P i… 为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质:⑴P i≥0,i=1,2,...;⑵P1+P2+ (1) 7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是 ,(k=0,1,2,…,n,). 于是得到随机变量ξ的概率分布如下: ξ0 1 …k …n

离散型随机变量的均值

2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值 1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点) 2.掌握两点分布、二项分布的均值.(重点) 3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点) [基础·初探] 教材整理1离散型随机变量的均值 阅读教材P60~P61例1,完成下列问题. 1.定义:若离散型随机变量X的分布列为: 则称E(=x1p1+x2p2+…+x i p i+…+x n p n为随机变量 2.意义:它反映了离散型随机变量取值的平均水平. 3.性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b. 1.下列说法正确的有________.(填序号) ①随机变量X的数学期望E(X)是个变量,其随X的变化而变化; ②随机变量的均值反映样本的平均水平;

③若随机变量X 的数学期望E (X )=2,则E (2X )=4; ④随机变量X 的均值E (X )= x 1+x 2+…+x n n . 【解析】 ①错误,随机变量的数学期望E (X )是个常量,是随机变量X 本身固有的一个数字特征.②错误,随机变量的均值反映随机变量取值的平均水平.③正确,由均值的性质可知.④错误,因为E (X )=x 1p 1+x 2p 2+…+x n p n . 【答案】 ③ 2.已知离散型随机变量X 的分布列为: 则X 的数学期望E (【解析】 E (X )=1×35+2×310+3×110=3 2. 【答案】 3 2 3.设E (X )=10,则E (3X +5)=________. 【解析】 E (3X +5)=3E (X )+5=3×10+5=35. 【答案】 35 教材整理2 两点分布与二项分布的均值 阅读教材P 62~P 63,完成下列问题. 1.两点分布和二项分布的均值 (1)若X 服从两点分布,则E (X )=p ; (2)若X ~B (n ,p ),则E (X )=np . 2.随机变量的均值与样本平均值的关系 随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值. 1.若随机变量X 服从二项分布B ? ? ???4,13,则E (X )的值为________. 【导学号:29472067】

随机变量的数学期望与方差

限时作业62 随机变量的数学期望与方差 一、选择题 1.下列说法中,正确的是( ) A.离散型随机变量的均值E(X)反映了X取值的概率平均值 B.离散型随机变量的方差D(X)反映了X取值的平均水平 C.离散型随机变量的均值E(X)反映了X取值的平均水平 D.离散型随机变量的方差D(X)反映了X取值的概率平均值 解析:离散型随机变量X的均值反映了离散型随机变量×取值的平均水平,随机变量的方差反映了随机变量取值偏离于均值的平均程度. 答案:C 则D(X)等于( ) A.0 B.0.8 C.2 D.1 解析:根据方差的计算公式,易求V(X)=0.8. 答案:B 3.若随机变量X服从两点分布,且成功的概率p=0.5,则E(X)和D(X)分别为( ) A.0.5和0.25 B.0.5和0.75 C.1和0.25 D.1和0.75 解析:∵X服从两点分布, ∴X的概率分布为 D(X)=0.52×0.5+(1-0.5)2×0.5=0.25. 答案:A 4.离散型随机变量X的分布列为P(X=k)=p k q1-k(k=0,1,p+q=1),则EX与DX依次为( ) A.0和1 B.p和p2 C.p和1-p D.p和p(1-p) 解析:根据题意,EX=0×q+1×p=p,DX=(0-p)2q+(1-p)2p=p(1-p)或可以判断随机变量X 满足两点分布,所以EX与DX依次为p和p(1-p),选D. 答案:D 5.已知X~B(n,p),EX=8,DX=1.6,则n与p的值分别是( ) A.100,0.08 B.20,0.4 C.10,0.2 D.10,0.8 解析:由于X~B(n,p),EX=8,DX=1.6,即np=8,np(1-p)=1.6, 可解得p=0.8,n=10,应选D. 答案:D 二、填空题 6.①连续不断地射击,首次击中目标所需要的射击次数为X;②南京长江大桥一天经过的车辆数为X;③某型号彩电的寿命为X;④连续抛掷两枚骰子,所得点数之和为X;⑤某种水管的外径与内径之差X. 其中是离散型随机变量的是____________.(请将正确的序号填在横线上) 解析:②④中X的取值有限,故均为离散型随机变量;①中X的取值依次为1,2,3,…,虽然无限,但可按从小到大顺序列举,故为离散型随机变量;而③⑤中X的取值不能按次序一一列举,故均不是离散型随机变量.

离散型随机变量的期望值和方差

12.2
离散型随机变量的期望值和方差
一、知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ 由ξ 的分布列唯一确定. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差.
D?
叫标准差,反
映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)二项分布的期望与方差:若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). Dξ 表示ξ 对 Eξ 的平均偏离程度,Dξ 越大表示平均偏离程度越大,说明ξ 的取值越分 散. 二、例题剖析 【例 1】 设ξ 是一个离散型随机变量,其分布列如下表,试求 Eξ 、Dξ .
ξ P -1
1 2
0 1-2q
1 q2
拓展提高
既要会由分布列求 Eξ 、Dξ ,也要会由 Eξ 、Dξ 求分布列,进行逆向思维.如:若ξ 是 离散型随机变量,P(ξ =x1)=
3 5 2 5 7 5
,P(ξ =x2)=
,且 x1,Dξ =
6 25
.求ξ
的分布列. 解:依题意ξ 只取 2 个值 x1 与 x2,于是有 Eξ = Dξ =
3 5 3 5
x1+
2 5
x2=
2 5
7 5

6 25
x12+
x22-Eξ 2=
.
从而得方程组 ?
?3 x1 ? 2 x 2 ? 7 , ? ?3 x1 ?
2
? 2x2
2
? 11 .
【例 2】 人寿保险中(某一年龄段) 在一年的保险期内, , 每个被保险人需交纳保费 a 元, 被保险人意外死亡则保险公司赔付 3 万元,出现非意外死亡则赔付 1 万元.经统计此年龄段一 年内意外死亡的概率是 p1,非意外死亡的概率为 p2,则 a 需满足什么条件,保险公司才可能 盈利? 【例 3】 把 4 个球随机地投入 4 个盒子中去,设ξ 表示空盒子的个数,求 Eξ 、Dξ .
特别提示
求投球的方法数时,要把每个球看成不一样的.ξ =2 时,此时有两种情况:①有 2 个空盒 子,每个盒子投 2 个球;②1 个盒子投 3 个球,另 1 个盒子投 1 个球. 【例 4】 若随机变量 A 在一次试验中发生的概率为 p(02D? ? 1 E?
的最大值.
【例 5】 袋中装有一些大小相同的球,其中有号数为 1 的球 1 个,号数为 2 的球 2 个, 号数为 3 的球 3 个,…,号数为 n 的球 n 个.从袋中任取一球,其号数作为随机变量ξ ,求ξ
1

离散型随机变量的均值教案

关于《离散型随机变量的均值》的说课稿 银川二中(西校区)黄海霞 说课内容:普通高中人教A版(数学选修2-3)第二章第3节第一课时─《离散型随机变量的均值》. 下面,我将分别从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计等六个方面对本节课的设计进行说明. 一、背景分析: 1、学习任务分析 《离散型随机变量的均值》是《随机变量及其分布》第三节第一小节的内容,本节课是第一课时. 本节课主要的学习任务是从平均的角度引入离散型随机变量均值的概念,引导学生通过实际问题建立取有限值的离散型随机变量均值的概念,然后推导出离散型随机变量均值的线性性质()()b E+ aX +. = X aE b 取有限值的离散型随机变量的均值是在学生学习完离散型随机变量及其分布列的概念基础上,进一步研究离散型随机变量取值特征的一个方面.学习本节课的内容既是随机变量分布的内容的深化,又是后续内容离散型随机变量方差的基础,所以学好本节课是进一步学习离散型随机变量取值特征的其它方面的基础.离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点. 在实际问题中,离散型随机变量的均值具有广泛的应用性.因此我以为本节课的重点是:取有限值的离散型随机变量均值的概念. 2、学生情况分析 本节课之前,学生已有平均值、概率、离散型随机变量及其分布列,二项分布及其应用等基础知识,具备了学习本节知识的知识储备.本节课是一节概念新授课,教材从学生熟悉的平均值出发,从身边的实际问题中抽象出了取有限值的离散型随机变量均值的概念,这需要一定的概括和抽象能力.鉴于学生的概括、抽象能力不是太强,因此学生对概念的形成和理解会有一定的困难. 基于以上认识,我以为本节课的教学难点是:离散型随机变量均值概念的形成和理解。

离散型随机变量的数学期望教案

离散型随机变量的数学期望教案 教学目标:1使学生理解和掌握离散型随机变量的数学期望的定义, 2会掌握和应用数学期望的性质。 教学工具:多媒体。 一.复习 1.一般地,设离散型随机变量ξ可能取的值为 x1,x2,……,xi ,…, X 取每一个值xi(i =1,2,…)的概率P(X =xi)=pi ,则称下表 一般地,设离散型随机变量ξ可能取的值为 x1,x2,……,xi ,…, 为随机变量X 的概率分布, 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)pi ≥0,i =1,2,...; (2)p1+p2+ (1) 2、什么叫n 次独立重复试验? 一般地,由n 次试验构成,且每次试验互相独立完成,每次试验的结果仅有两种对立的状态,即A 与 ,每次试验中P(A )=p >0。称这样的试验为n 次独立重复试验,也称伯努利试验。 3、什么叫二项分布? 若X ~B (n ,p) Cnk p k q n-k 二.引例,新课 1.全年级同学的平均身高是产u= n 1(11n x +22n x +….+ m m n x ) P=p(X=i x )= n n i ,i=1,2….n

把全年级的平均身高u 定义成X 的均值,记作E(X) E(X)= (11n x +22n x +….+ m m n x )/n EX=x1p1+x2p2+…+xipi+…+xnpn 2.数学期望的定义 则称: E(X)=x1p1+x2p2+…+xipi+…+xnpn 为随机变量X 的均值或数学期望。 它反映了离散型随机变量取值的平均水平。 3,举例 解:该随机变量X 服从两点分布: P(X=1)=0.7、P(X=0)=0.3 所以:EX=1×P(X=1)+0×P(X=0)=0.7 三、数学期望的性质 得到结论(1) ? 在篮球比赛中,如果某运动员罚球命中的概率为0.7,那么他罚球一次得分设为X ,X 的均值是多少?

离散型随机变量的教学设计

“离散型随机变量”的教学设计 一、内容和内容解析 “随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。 “离散型随机变量”是这一章的开门课。因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。于是,本节课的第一个教学任务就是要做好章头图的教学。教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。 对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。 二、目标和目标解析 1.了解本章学习的内容和意义。具体要求为: (1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识; (2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关; (3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。这样不仅阐述了本章的主要内容,而且激发了学生的学习兴趣,使他们明确本章的学习目标以及研究本章内容的数学思想方法。 2.理解随机变量和离散型随机变量的描述性定义,以及随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变量。具体要求是: (1)在对具体问题的分析过程中,帮助学生理解用随机变量表示随机试验结果的意义和作用:为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量,掌握随机变量的描述性概念,了解随机变量与函数的关系,构造随机变量应当注意的问题(如随机变量应该有实际意义、应该尽量简单,以便于研究),以及用随机变量表示随机事件的方法等;

1离散型随机变量的均值(数学期望)

离散型随机变量的均值 一、概念: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 ξ x 1 x 2 … x i … P P 1 P 2 … P i … 为随机变量的概率分布,简称的分布列 4. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 0 1 … k … n P n n q p C 00 1 11-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记 k n k k n q p C -=b (k ;n ,p ). 二、数学期望: 根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下 ξ4 5 6 7 8 9 10 P 在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数ξ的分布列, 我们可以估计,在n 次射击中,预计大约有 n n P 02.0)4(=?=ξ 次得4环; n n P 04.0)5(=?=ξ 次得5环; ………… n n P 22.0)10(=?=ξ 次得10环. 故在n 次射击的总环数大约为 +??n 02.04++?? n 04.05n ??22.010

随机变量的数学期望教案

教 案:数学期望 试讲人 郑丽霞 教材来源:《概率论与数理统计》 袁荫棠 授课题目:数学期望 第三章第一节 教学目标:会计算数学期望;通过数学期望的学习了解数学期望的实际应用及统计意义 教学重点:数学期望的计算 教学难点:如何将实际问题转化为数学问题 教学过程: 1. 引入课题 引例:在一次射击比赛中,每个人射击10次,甲选手射了4个1分,1个2分,5个3分,问甲选手的平均得分是多少? 1.210 5 31012104110531241=?+?+?=?+?+? 则其“均值”应为11 1k k i i i i i i n n x x n n ===∑∑. 所以上面的均值是以i n n 频率为权重的加权平均。

我们前面学了随机变量,那我用随机变量ξ来表示甲射击得分情况,求ξ的分布? 平均得分=1×0.4+2×0.1+3×0.5=2.1 大体上讲,数学期望(或均值)就是随机变量的平均取值 2. 概念讲解 (一)离散型随机变量的数学期望 定义3.1 设离散型随机变量ξ的分布列为 (),1,2, ,, .i i p P x i n ξ=== 如果 1 ||.i i i x p +∞ =<+∞∑ 则称 1 ()i i i E x p ξ+∞ ==∑ 为随机变量ξ的数学期望,简称期望或均值。若级数1 ||()i i i x p x +∞ =∑不收 敛,则称ξ的数学期望不存在。 例1 投掷一颗均匀的骰子,以ξ表示掷的点数,求ξ的数学期望。 解:6 117 ()62 i E i ξ==? =∑ 例题2 设盒中有5个球,其中有2个白球,3个黑球,从中随机抽

取3个球,记ξ为抽取到的白球数,求)(ξE . (二)连续型随机变量的数学期望 当遇到随机变量为无限不可数的情形,如连续型随机变量,该如何定义该随机变量的数学期望。 设ξ是连续型随机变量,其密度函数为()p x ,在数轴上取得很密的点 012,x x x <<< ,则ξ落在小区间1[,)i i x x +的概率是 1 1()()()()i i x i i i i i x p x dx p x x x p x x ++≈-=?? 由于i x 与i x 很接近,所以区间1[,)i i x x +中的值可用i x 来近似地替代, 因此,ξ与以概率()i i p x x ?取值i x 的离散型随机变量近似。该离散型随机变量的数学期望是1()i i i i x p x x +∞ =?∑,这正是()xp x dx +∞ -∞?的渐近和式。 从该启示出发,我们引进如下定义: 定义3.2 设连续性随机变量ξ的密度函数为()p x ,如果 ||().x p x dx +∞ -∞ <+∞?

相关主题
文本预览
相关文档 最新文档