当前位置:文档之家› 知识讲解离散型随机变量的均值和方差(理)(基础)

知识讲解离散型随机变量的均值和方差(理)(基础)

知识讲解离散型随机变量的均值和方差(理)(基础)
知识讲解离散型随机变量的均值和方差(理)(基础)

离散型随机变量的均值与方差

【学习目标】

1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题;

2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】

要点一、离散型随机变量的期望 1.定义:

一般地,若离散型随机变量ξ的概率分布为

则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释:

(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …

n p n 1=

=,=ξE +1(x +2x …n

x n 1

)?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质:

①()E E E ξηξη+=+;

②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(;

b aE b a E +=+ξξ)(的推导过程如下::

η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++…

=+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。

要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念:

已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数

[1

2n

S =

21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差:

一般地,若离散型随机变量ξ的概率分布为

则称ξD =121)(p E x ?-ξ+22

2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中

的ξE 是随机变量ξ的期望.

ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.

要点诠释:

⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;

⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值).

⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

22()()D E E ξξξ=-

4.方差的性质:

若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2

()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布:

若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ=

方差(1).D p p ξ=-

证明:∵(0)P q ξ==,(1)P p ξ==,01p <<,1p q += ∴01E q p p ξ=?+?=

22(0)(1)(1).D p q p p p p ξ=-?+-?=-

2、二项分布:

若离散型随机变量ξ服从参数为,n p 的二项分布,即~(),B n P ξ,则 期望E nP ξ= 方差(1-)D np p ξ= 期望公式证明:

∵k

n k k n k n k k n q p C p p C k P --=-==)

1()(ξ, ∴001112220

012......n n n k k n k n n n n n n n E C p q C p q C p q k C p q n C p q ξ---=?+?+?++?++?,

又∵1

1)]!

1()1[()!1()!1()!(!!--=-----?=-?

=k n k

n nC k n k n n k n k n k kC ,

∴=ξE (np 0011n n C p q --+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0

111q p C n n n ---

np q p np n =+=-1)(.

3、几何分布:

独立重复试验中,若事件A 在每一次试验中发生的概率都为p ,事件A 第一次发生时所做的试验次数

ξ是随机变量,且1()(1)k P k p p -ξ==-,0,1,2,3,,,k n =L L ,称离散型随机变量ξ服从几何分布,记

作:~()()P k k P ξξ==g ,。

若离散型随机变量ξ服从几何分布,且~()()P k k P ξξ==g ,,则 期望1

.E p ξ=

方差2

1-p

D p ξ=

要点诠释:随机变量是否服从二项分布或者几何分布,要从取值和相应概率两个角度去验证。 4、超几何分布:

若离散型随机变量ξ服从参数为,,N M n 的超几何分布,则 期望()nM

E N

ξ=

要点四:离散型随机变量的期望与方差的求法及应用 1、求离散型随机变量ξ的期望、方差、标准差的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;

③根据分布列,由期望、方差的定义求出E ξ、D ξ、σξ:

1122n n E x p x p x p ξ=++++L L

()()()222

1122n n D x E p x E p x E p ξ=-ξ+-ξ++-ξ+L L

σξ=.

注意:常见分布列的期望和方差,不必写出分布列,直接用公式计算即可. 2.离散型随机变量的期望与方差的实际意义及应用

① 离散型随机变量的期望,反映了随机变量取值的平均水平;

② 随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。方差越大数据波动越大。

③对于两个随机变量1ξ和2ξ,当需要了解他们的平均水平时,可比较1ξE 和2ξE 的大小。

④1ξE 和2ξE 相等或很接近,当需要进一步了解他们的稳定性或者集中程度时,比较1ξD 和2ξD ,方差值大时,则表明ξ比较离散,反之,则表明ξ比较集中.品种的优劣、仪器的好坏、预报的准确与否、武器的性能等很多指标都与这两个特征数(数学期望、方差)有关. 【典型例题】

类型一、离散型随机变量的期望

例1.某射手射击所得环数ξ的分布列如下:

已知ξ的期望Eξ=8.9,则y 的值为________.

【思路点拨】分布列中含有字母x 、y,应先根据分布列的性质,求出x 、y 的值,再利用期望的定义求解; 【解析】x +0.1+0.3+y =1,即x +y =0.6.①

又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.② 由①②联立解得x =0.2,y =0.4.

【总结升华】求期望的关键是求出分布列,只要随机变量的分布列求出,就可以套用期望的公式求解, 举一反三:

【变式1】某一离散型随机变量ξ的概率分布如下,且E (ξ)=1.5,则a -b 为( ).

A .-0.1

B .0

C .0.1

D .0.2 【答案】B

由分布列的性质知:0.1+a+b+0.1=1,

∴a+b=0.8.又E (ξ)=0×0.1+1×a+2×b+3×0.1=1.5,即a+2b=1.2. 解得a=0.4,b=0.4,∴a -b=0. 【变式2】随机变量ξ的分布列为

,则E(5ξ+4)等于( )

A .13

B .11

C .2.2

D .2.3 【答案】A 由已知得:

E(ξ)=0×0.4+2×0.3+4×0.3=1.8, ∴E(5ξ+4)=5E(ξ)+4=5×1.8+4=13.

【变式3】节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节后卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量服从如下表所示的分布,若进这种鲜花500束,则期望利润是

A.706元 C .754元 D .720元

【答案】A

节日期间预售的量:

Eξ=200×0.2+300×0.35+400×0.3+500×0.15=40+105+120+75=340(束), 则期望的利润:

η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450, ∴Eη=3.4Eξ-450=3.4×340-450=706. ∴期望利润为706元.

【变式4】设离散型随机变量ξ的可能取值为1,2,3,4,且()P k ak b ξ==+(1,2,3,4k =),3E ξ=,则a b += ;

【答案】0.1;

由分布列的概率和为1,有()(2)(3)(4)1a b a b a b a b +++++++=, 又3E ξ=,即1()2(2)3(3)4(4)3a b a b a b a b ?++?++?++?+=, 解得0.1a =,0b =,故0.1a b +=。

例2. 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (1)求这名同学回答这三个问题的总得分X 的概率分布和数学期望; (2)求这名同学总得分不为负分(即X≥0)的概率.

【思路点拨】本题显然为独立重复试验的问题,因此求各个情况的概率直接用公式即可。

(1)求X 的可能取值,即求得分,答对0道题得-300分,答对1道题得100-200=-100分,答对2道题得2×100-100=100分,答对3道题得300分;(2)总分不为负分包括100分和300分两种情况. 【解析】

(1)X 的可能取值为-300,-100,100,300. P (X=-300)=0.23=0.008。 P (X=-100)=1

3C ×0.22×0.8=0.096, P (X=100)=23C ×0.2×0.82=0.384, P (X=300)=0.83=0.512. 所以X 的概率分布为

∴E (X )=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180. (2)这名同学总得分不为负分的概率为

P (X≥0)=P (X=100)+P (X=300)=0.384+0.512=0.896. 【总结升华】求离散型随机变量均值的关键在于列出概率分布表. 举一反三:

【变式1】 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望

【答案】因为3.0)0(,7.0)1(====ξξP P , 所以.03.007.01=?+?=ξE

【变式2】一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.

【答案】

设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当0ξ=时,即第一次取得正品,试验停止,则

93(0)124

p ξ==

= 当1ξ=时,即第一次取出次品,第二次取得正品,试验停止,则

(1)p ξ==

44

9

119123=

? 当2ξ=时,即第一、二次取出次品,第三次取得正品,试验停止,则

(2)p ξ==

220

9

109112123=

?? 当3ξ=时,即第一、二、三次取出次品,第四次取得正品,试验停止,则

(3)p ξ==

220

1

99101112123=

??? ∴ξ分布列为

∴3012344422022010

E ξ=?+?+?+?=

【变式3】

某城市出租汽车的起步价为10元,行驶路程不超出4km 时租车费为10元,若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足lkm 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η

(Ⅰ)求租车费η关于行车路程ξ的关系式; (Ⅱ)若随机变量ξ的分布列为

求所收租车费η的数学期望.

(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?

【答案】

(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2; (Ⅱ)=ξE 4.161.0183.0175.0161.015=?+?+?+? ∵ η=2ξ+2

∴ =ηE 2E ξ+2=34.8 (元) 故所收租车费η的数学期望为34.8元. (Ⅲ)由38=2ξ+2,得ξ=18,5?(18-15)=15 所以出租车在途中因故停车累计最多15分钟

例3.若某批产品共100件,其中有20件二等品,从中有放回地抽取3件,求取出二等品的件数的期望、方差。

【思路点拨】3次有放回的抽取就是3次独立重复试验,取出二等品的件数这一随机变量服从二项分布。

【解析】由题知一次取出二等品的概率为0.2,有放回地抽取3件,可以看作3次独立重复试验, 即取出二等品的件数~(3,0.2)B ξ, 所以30.20.6E np ξ==?=,

(1)30.2(10.2)0.48D np p ξ=-=??-=.

【总结升华】 在确定随机变量服从特殊分布以后,可直接运用公式求其均值. 举一反三:

【变式1】 英语考试有100道选择题,每个题有4个选项,选对得1分,否则得0分,学生甲会其中的20道,学生乙会其中的80道,不会的均随机选择,求甲、乙在这次测验中得分的数学期望. 【答案】

设甲、乙不会的题的得分分别为随机变量X 和Y ,由题意知X ~B (80,0.25),Y ~B (20,0.25), ∴E (X )=80×0.25=20,E (Y )=20×0.25=5.

故甲、乙的数学期望成绩分别为40分和85分.

【变式2】 甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为2

3

,记甲击中目标的次数为X ,乙击中目标的次数为Y , (1)求X 的概率分布; (2)求X 和Y 的数学期望.

【答案】 甲、乙击中目标的次数均服从二项分布.

(1)3

03

11

(0)28

P X C ??=== ???,

3

13

13

(1)28

P X C ??=== ???,

3

2313

(2)28P X C ??=== ???,

3

33

11

(3)28

P X C ??=== ???。

所以X 的概率分布如下表:

(2)由(1)知()0123 1.58888

E X =?+?+?+?=,

或由题意13,2X B ?? ???:,23,3Y B ?? ???

:。 ∴1()3 1.52E X =?

=,2

()323

E Y =?=。 【变式3】 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为

0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望

【答案】设学生甲和乙在这次英语测验中正确答案的选择题个数分别是ηξ,,则(20,0.9)B ξ:,

)25.0,20(~B η,

525.020,189.020=?==?=∴ηξE E

由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5ξ和5η 所以,他们在测验中

的成绩的期望分别是:

2555)(5)5(,90185)(5)5(=?===?==ηηξξE E E E

类型二、离散型随机变量的方差

例4. 设X 是一个离散型随机变量,其概率分布如下表,试求E (X )和D (X ).

【思路点拨】 由概率分布的性质求出q 的值后,再计算E (X ),D (X ). 【解析】 由概率分布的性质,得:

2

21(12)120121

01

q q q q ?+-+=??≤-≤??≤≤??

,得12q =-。

∴13()101)1122E X ?=-?

+?+?-= ?

22213()(2(11)122D X ?=-+?+-?+?-= ?。

【总结升华】求随机变量的方差,应先明确随机变量的概率分布。然后利用均值与方差的定义列式计算. 举一反三:

【变式1】 设随机变量X 的概率分布为

求D(X )。

【答案】 本题考查方差的求法.可由分布列先求出X 的期望E (X ),再利用方差的定义求之.也可直接利用公式D (X )=E (X 2)-[E (X )]2来解.

解法一:

1111

()12(12)E X n n n n n n

=?+?++?=+++?L L

(1)11

22

n n n n ++=?=

, ∴D 2

2

2

111111()12222n n n V X n n n n

+++??????=-?+-?++-? ? ? ???????L

2222

1(1)(12)(1)(12)4n n n n n n ??+=+++-+?++++?????L L 2112n -。

解法二:由解法一可求得1

()2

n E X +=

。 又2222

111()12E X n n n n

=?+?++?L

2221(12)n n =++L (1)(21)6

n n ++=, ∴D 222

2

(1)(21)(1)1

()()[()]6412

n n n n V X E X E X +++-=-=-=。

【变式2】

1.已知随机变量ξ的分布列如下表:

(1)求E (ξ),D (ξ),η; (2)设η=2ξ+3,求E (η),D (η). 【答案】(1)1122331111

()(1)012363

E x p x p x p ξ=++=-?

+?+?=-;

2221122335

()[()][()][()]9

D x

E p x E p x E p ξξξξ=-?+-?+-?=

,σ==。

(2)7()2()33E E ηξ=+=

,20

()4()9

D D ηξ==。 例5. 设某运动员投篮投中的概率为p=0.6.

(1)求一次投篮时,投中次数X 的数学期望和方差; (2)求重复5次投篮时,投中次数Y 的数学期望和方差.

【思路点拨】(1)投篮一次可能中,也可能不中,投中次数X 服从两点分布;(2)重复投篮5次的投中次

数Y 服从二项分布.

【解析】(1)X 服从两点分布,其分布列如下:

所以E (X )=p=0.6,D (X )=p (1-p )=0.24. (2)由题设,Y ~B (5,0.6). 所以E (Y )=np=5×0.6=3,

D (Y )=np (1-p )=5×0.6×0.4=1.2.

【总结升华】对于两点分布、二项分布,可直接运用公式计算. 举一反三:

【变式1】篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球三次得分ξ的期望和方差。

【答案】罚球三次可以看作3次独立重复试验,即罚球三次得分~(3,0.7)B ξ, 所以30.7 2.1E np ξ==?=

(1)30.7(10.7)0.63D np p ξ=-=??-=.

【变式2】有10件产品,其中3件是次品.从中任取2件,若抽到的次品数为X ,求X 的分布列,期望和方差.

【答案】

类型三、离散型随机变量的期望和方差的应用

例6. 甲、乙两名射手在一次射击中的得分是两个随机变量,分别记为X1和X2,它们的概率分布分别为X1012X2012

P0.1a0.4p0.20.2b

(1)求a,b的值;

(2)计算X1和X2的数学期望和方差,并以此分析甲、乙两射手的技术状况.

【思路点拨】

本题考查分布列的性质、期望与方差的求法及对期望与方差的理解.(1)可直接由分布列的性质列式求解.(2)利用定义求期望与方差.

【解析】(1)由分布列的性质知,

0.1+a+0.4=1,0.2+0.2+b=1,

即a=0.5,b=0.6。

(2)E(X1)=0×0.1+1×0.5+2×0.4=1.3,

E(X2)=0×0.2+1×0.2+2×0.6=1.4,

D(X1)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41,

D(X2)=(0-1.4)2×0.2+(1-1.4)2×0.2+(2-1.4)2×0.6=0.64。

由上述计算的结果可知,乙的平均水平较甲好一点,但乙的稳定性不如甲.

【总结升华】离散型随机变量的期望与方差分别反映了随机变量的取值的平均水平和波动大小(或离散程度).

举一反三:

【变式1】A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:问哪一台机床加工质量较好.

A机床B机床

次品数ξ1 0 1 2 3 次品数ξ1 0 1 2 3 概率P

0.7

0.2

0.06

0.04

概率P

0.8

0.06

0.04

0.10

【答案】 E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,

E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44. 它们的期望相同,再比较它们的方差.

D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064, D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.9264. ∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好.

【变式2】有甲乙两个单位都愿意聘用你,而你能获得如下信息:

甲单位不同职位月工资X 1/元 1 200 1 400 1 600 1 800 获得相应职位的概率P 1

0.4

0.3

0.2

0.1

乙单位不同职位月工资X 2/元 1 000 1 400 1 800 2 200 获得相应职位的概率P 2

0.4

0.3

0.2

0.1

根据工资待遇的差异情况,你愿意选择哪家单位? 【答案】根据月工资的分布列,利用计算器可算得

E(X 1)=1 200×0.4+1 400×0.3+1 600×0.2+1 800×0.1=1 400,

D(X 1)=(1 200-1 400)2×0.4+(1 400-1 400)2×0.3+(1 600-1 400)2×0.2+(1 800-1 400)2×0.1=40 000; E(X 2)=1 000×0.4+1 400×0.3+1 800×0.2+2 200×0.1=1 400,

D(X 2)=(1 000-1 400)2×0.4+(1 400-1 400)2×0.3+(1 800-1 400)2×0.2+(2 200-1 400)2×0.1=160 000. 因为E(X 1)=E(X 2),D(X 1)

【变式3】 某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一

年内发生此种事故的概率分别为19,1

10,111

,且各车是否发生事故相互独立,求一年内该单位在此保险

中:

(1)获赔的概率;(2)获赔金额X 的分布列与期望.

【答案】设k A 表示第k 辆车在一年内发生此种事故,3,2,1 k .

由题意知321,,A A A 独立,且11

1)(,101)(,91)(321===

A P A P A P . (Ⅰ)该单位一年内获赔的概率为

11

3

1110109981)()()(1)(1321321=??-=-=-A P A P A P A A A P .

(Ⅱ)ξ的所有可能值为27000,18000,9000,0. 11

8111010998)()()()()0(321321=??=

===A P A P A P A A A P P ξ, )()()()9000(321321321A A A P A A A P A A A P P ++==ξ )()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=

11110998111010198111010991??+??+??=

45

11

990242==

, )()()()18000(321321321A A A P A A A P A A A P P ++==ξ )()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=

1111019811110991111010191??+??+??=

110

3

99027=

=, )()()()()27000(321321A P A P A P A A A P P ===ξ990

1

11110191=??=.

综上知,ξ的分布列为

求ξ的期望有两种解法: 解法一:由ξ的分布列得

990127000110318000451190001180?+?+?+?

=E ξ18.271811

29900≈=(元) 解法二:设k ξ表示第k 辆车一年内的获赔金额,3,2,1=k ,

则1ξ有分布列

故10009

90001=?

=E ξ.

同理得18.81811

1

9000,900101900032≈?=E =?=E ξξ. 综上有

18.271818.8189001000321=++≈E +E +E =E ξξξξ(元).

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

选修2-3教案2.3.1离散型随机变量的均值

§2.3.1 离散型随机变量的均值 教学目标 (1)通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; (2)能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点,难点:取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学过程 一.问题情境 1.情景: 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不 合格品数分别用12,X X 表示,12,X X 的概率分布如下. 2.问题: 如何比较甲、乙两个工人的技术? 二.学生活动 1. 直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率 比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2. 学生联想到“平均数”,,如何计算甲和乙出的废品的“平均数”? 3. 引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三.建构数学 1.定义 在《数学3(必修)》“统计”一章中,我们曾用公式1122...n n x p x p x p +++计算样本的平均值,其中i p 为取值为i x 的频率值.

其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ. 2.性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 四.数学运用 1.例题: 例1.高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X ,求X 的数学期望. 分析:从口袋中摸出5个球相当于抽取5n =个产品,随机变量X 为5个球中的红球的 个数,则X 服从超几何分布(5,10,30)H . 从而 2584807585503800700425 ()012345 1.66672375123751237512375123751237513 E X =? +?+?+?+?+?=≈ 答:X 的数学期望约为1.6667. 说明:一般地,根据超几何分布的定义,可以得到0 ()r n r n M N M n r N r C C M E X n C N --===∑ . 例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品 率为0.05,随机变量X 表示这10件产品中不合格品数,求随机变量X 的数学期望 ()E X . 解:由于批量较大,可以认为随机变量~(10,0.05)X B , 1010()(1),0,1,2, (10) k k k P X k p C p p k -===-=

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

离散型随机变量的方差教案教学内容

精品文档 精品文档 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 则(x i -EX)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 DX 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。 (三)、基础训练 求DX 和 解:00.110.220.430.240.12EX =?+?+?+?+?= 104332221111+++++++++=X 2101 4102310321041=?+?+?+?=] )()()[(122212x x x x x x n s n i -++-++-=ΛΛ1 ])24()23()23()22()22()22()21()21()21()21[(10 1 22222222222=-+-+-+-+-+-+-+-+-+-=s 2 2222)24(101)23(102)22(103)21(104-?+-?+-?+-?=s ∑=-=n i i i p EX x 1 2)(DX

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量的均值

2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值 1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点) 2.掌握两点分布、二项分布的均值.(重点) 3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点) [基础·初探] 教材整理1离散型随机变量的均值 阅读教材P60~P61例1,完成下列问题. 1.定义:若离散型随机变量X的分布列为: 则称E(=x1p1+x2p2+…+x i p i+…+x n p n为随机变量 2.意义:它反映了离散型随机变量取值的平均水平. 3.性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b. 1.下列说法正确的有________.(填序号) ①随机变量X的数学期望E(X)是个变量,其随X的变化而变化; ②随机变量的均值反映样本的平均水平;

③若随机变量X 的数学期望E (X )=2,则E (2X )=4; ④随机变量X 的均值E (X )= x 1+x 2+…+x n n . 【解析】 ①错误,随机变量的数学期望E (X )是个常量,是随机变量X 本身固有的一个数字特征.②错误,随机变量的均值反映随机变量取值的平均水平.③正确,由均值的性质可知.④错误,因为E (X )=x 1p 1+x 2p 2+…+x n p n . 【答案】 ③ 2.已知离散型随机变量X 的分布列为: 则X 的数学期望E (【解析】 E (X )=1×35+2×310+3×110=3 2. 【答案】 3 2 3.设E (X )=10,则E (3X +5)=________. 【解析】 E (3X +5)=3E (X )+5=3×10+5=35. 【答案】 35 教材整理2 两点分布与二项分布的均值 阅读教材P 62~P 63,完成下列问题. 1.两点分布和二项分布的均值 (1)若X 服从两点分布,则E (X )=p ; (2)若X ~B (n ,p ),则E (X )=np . 2.随机变量的均值与样本平均值的关系 随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值. 1.若随机变量X 服从二项分布B ? ? ???4,13,则E (X )的值为________. 【导学号:29472067】

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

离散型随机变量的均值教案

关于《离散型随机变量的均值》的说课稿 银川二中(西校区)黄海霞 说课内容:普通高中人教A版(数学选修2-3)第二章第3节第一课时─《离散型随机变量的均值》. 下面,我将分别从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计等六个方面对本节课的设计进行说明. 一、背景分析: 1、学习任务分析 《离散型随机变量的均值》是《随机变量及其分布》第三节第一小节的内容,本节课是第一课时. 本节课主要的学习任务是从平均的角度引入离散型随机变量均值的概念,引导学生通过实际问题建立取有限值的离散型随机变量均值的概念,然后推导出离散型随机变量均值的线性性质()()b E+ aX +. = X aE b 取有限值的离散型随机变量的均值是在学生学习完离散型随机变量及其分布列的概念基础上,进一步研究离散型随机变量取值特征的一个方面.学习本节课的内容既是随机变量分布的内容的深化,又是后续内容离散型随机变量方差的基础,所以学好本节课是进一步学习离散型随机变量取值特征的其它方面的基础.离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点. 在实际问题中,离散型随机变量的均值具有广泛的应用性.因此我以为本节课的重点是:取有限值的离散型随机变量均值的概念. 2、学生情况分析 本节课之前,学生已有平均值、概率、离散型随机变量及其分布列,二项分布及其应用等基础知识,具备了学习本节知识的知识储备.本节课是一节概念新授课,教材从学生熟悉的平均值出发,从身边的实际问题中抽象出了取有限值的离散型随机变量均值的概念,这需要一定的概括和抽象能力.鉴于学生的概括、抽象能力不是太强,因此学生对概念的形成和理解会有一定的困难. 基于以上认识,我以为本节课的教学难点是:离散型随机变量均值概念的形成和理解。

离散型随机变量的教学设计

“离散型随机变量”的教学设计 一、内容和内容解析 “随机变量及其分布”一章的主要内容就是要通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的概型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念。 “离散型随机变量”是这一章的开门课。因此,在本节课中,让学生了解本章的主要内容及其研究该内容所用的数学思想方法,对学生明确学习目标和学习任务,提高他们的求知欲望,激发他们的学习兴趣非常重要。于是,本节课的第一个教学任务就是要做好章头图的教学。教材的章头图从实例和图形两个方面展示了本章要学习的内容,一个是离散型随机变量的产生背景和分布列的条形图,另一个是正态分布的背景和正态分布密度曲线。教学时要充分地运用章头图的这两个背景,通过问题的形式,帮助学生明确本章要学习的主要内容和意义。 对于一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率。对于随机试验,只要了解了它可能出现的结果,以及每一个结果发生的概率,也就基本把握了它的统计规律。为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量。随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中。而高中阶段主要研究的是有限的离散型的随机变量,因此,本节课的第二个教学任务就是通过具体实例,帮助学生掌握随机变量和离散型随机变量的概念,理解它们的意义和作用,能对一个随机试验的结果,用一个随机变量表示,并能确定其取值范围。 二、目标和目标解析 1.了解本章学习的内容和意义。具体要求为: (1)通过章头图中给出的射击运动的情景,帮会学生了解,在射击运动中,每次射击的成绩是一个非常典型的随机事件。在这个离散型的随机事件中,如何刻画每个运用员射击的技术水平与特点?如何比较两个运动员的射击水平?如何选拔运动员参加比赛获胜的概率大?这些问题的解决需要离散型随机变量的概率分布、均值、方差等有关知识; (2)通过章头图中给出的高尔顿板游戏情景,帮助学生了解在这样一个连续型的随机事件的游戏活动中,小球落在哪个槽中的可能性更大?槽中的小球最后会堆积成什么形状?这些问题与本章将要学习的正态分布有关; (3)在上述两个情景的基础上,通过问题的形式,帮助学生提出本章要研究的问题和基本思想:随机事件形形色色,随机现象表现各异,但如果舍弃具体背景,它们就会呈现出一些共性;如果把随机试验的结果数量化,用随机变量表示试验结果,就可以用数学工具来研究这些随机现象。这样不仅阐述了本章的主要内容,而且激发了学生的学习兴趣,使他们明确本章的学习目标以及研究本章内容的数学思想方法。 2.理解随机变量和离散型随机变量的描述性定义,以及随机变量与函数的关系,能够把一个随机试验的结果用随机变量表示,能够根据所关心的问题定义一个随机变量。具体要求是: (1)在对具体问题的分析过程中,帮助学生理解用随机变量表示随机试验结果的意义和作用:为了使用数学工具研究随机现象,需要用数字描述随机现象,建立起连接数和随机现象的桥梁——随机变量,掌握随机变量的描述性概念,了解随机变量与函数的关系,构造随机变量应当注意的问题(如随机变量应该有实际意义、应该尽量简单,以便于研究),以及用随机变量表示随机事件的方法等;

随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明 姜堰市励才实验学校 姜近芳 组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。 预备知识: 1. ()()()()11!!1!1! !!--=-?--?=-??=k n k n nC k n k n n k n k n k kC 2. k k n C 2=()1111111-------+=k n k n k n C k n nC nkC =()22111-----+k n k n C n n nC 3.N 个球中有M 个红色的,其余均为白色的,从中取出n 个球,不同的取法有: n N l n M N l M n M N M n M N M n M N M C C C C C C C C C =++++------- 22110 ()()M n l ,m i n =. 公式证明: 1.X ~()p n B , ()()X E 1.np =()()X V 2().1p np -= 证明:()n n p x p x p x p x X E ++++= 332211 ()()()n n n n n n n n n p nC p p C p p C p p C ++-+-+-?=-- 222110012110 ()()[] n n n n n n n p C p p C p p C n 11221110111------++-+-= ()[] 11-+-=n p p np .np = ()()()()n n p x p x p x X V 2 222121μμμ-++-+-= n n p x p x p x p x 2323222121++++= ()n n p x p x p x p x ++++- 3322112μ ()n p p p p +++++ 3212μ ()() 2222222112121μμ+-++-+-=--n n n n n n n p C n p p C p p C ()()[]11121110111-------++-+-=n n n n n n n p C p p C p C np ()()()[] 22223122022111μ-++-+--+-------n n n n n n n p C p p C p C p n n

离散型随机变量的方差

2.3.2离散型随机变量的方差 整体设计 教材分析 本课仍是一节概念新授课,方差与均值都是概率论和数理统计的重要概念,是反映随机变量取值分布的特征数.离散型随机变量的均值与方差涉及的试题背景有:产品检验问题、射击、投篮问题、选题、选课、做题、考试问题、试验、游戏、竞赛、研究性问题、旅游、交通问题、摸球问题、取卡片、数字和入座问题、信息、投资、路线等问题.从近几年高考试题看,离散型随机变量的均值与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识,主要考查能力. 课时分配 1课时 教学目标 知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差. 过程与方法 了解方差公式“D(aX+b)=a2D(X)”,以及“若X~B(n,p),则D(X)=np(1-p)”,并会应用上述公式计算有关随机变量的方差. 情感、态度与价值观 承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值. 重点难点 教学重点:离散型随机变量的方差、标准差. 教学难点:比较两个随机变量的均值与方差的大小,从而解决实际问题. 教学过程 复习旧知 1 则称Eξ=x1p1+x2p2+…+x i p i+…+x n p n为ξ的数学期望. 2.数学期望的一个性质:E(aξ+b)=aEξ+b. 3.若ξ~B(n,p),则Eξ=np. 教师指出:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.探究新知 已知甲、乙两名射手在同一条件下射击,所得环数ξ1、ξ2的分布列如下:

-离散型随机变量讲课教案

-离散型随机变量

§2.1.1离散型随机变量 教材分析 本节内容是数学2-3 第二章随机变量及其分布列的起始课,对后续内容的学习起着奠基的作用.是在学习了数学3第二章统计和第三章概率的知识后,对概率与统计内容的再学习,可以看作是对前面学习过的两章内容的应用和加深.要求能够理解随机变量及离散型随机变量的含义.本课题的重难点是随机变量、离散型随机变量的含义通过大量举出身边的实例,可以很好地帮助学生理解分随机变量、离散型随机变量的含义,要求学生有意识地运用概率与统计的视角,观察生活中的有关现象,为后续内容的学习作好积累上的准备. 课时分配 本节内容用1课时的时间完成,主要讲随机变量、离散型随机变量的含义. 教学目标 重点: 随机变量、离散型随机变量的含义 难点:随机变量、离散型随机变量的含义 知识点: 1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 能力点:发展抽象、概括能力,提高实际解决问题的能力.. 教育点:学会合作探讨,体验成功,提高学习数学的兴趣. 自主探究点:如何运用离散型随机变量的概念解释生活中的有关现象. 考试点:随机变量、离散型随机变量的含义. 易错易混点:随机变量与函数的区别. 拓展点:离散型随机变量的取值及其相应概率的特点. 教具准备多媒体、实物投影仪 课堂模式学案导学

一、引入新课 思考:掷一枚骰子,出现正面向上的点数共有几种不同的数字?能否用这些数值表示相应结果呢? 答:共有6中,可以用1 , 2 ,3,4,5,6来表示相应结果 思考:那么掷一枚硬币的结果是否也可以用数字来表示呢? 答:掷一枚硬币,可能出现正面向上、反面向上两种结果 虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上: 正面向上——1; 反面向上——0 师总结:在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示在这个对应关系下,数字随着试验结果的变化而变化这种随着试验结果的变化而变化的变量我们称为随机变量——引出随机变量的定义: 二、探究新知 (一)随机变量 随机变量的定义:随着试验结果变化而变化的变量称为随机变量(random variable ) 随机变量常用字母 X , Y,ξ,η,…表示 师举例:例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 生举例:1; 2;

相关主题
文本预览
相关文档 最新文档