当前位置:文档之家› 不同氮源对2种微藻生长及总脂含量的影响

不同氮源对2种微藻生长及总脂含量的影响

不同氮源对2种微藻生长及总脂含量的影响
不同氮源对2种微藻生长及总脂含量的影响

不同氮源对柠檬酸发酵的影响

2009年第3期 试验研究 麦麸 棉柏玉米粉蛋白质含量15~20% 35~40% 8~12% 不同氮源对柠檬酸发酵的影响 石河子长运生化有限责任公司(832000)夏胜洁 摘要本研究立足于以玉米粉为原料,利用黑曲霉生产柠檬酸,对添加不同的氮源进行研究,以提高糖酸转化率和缩短发酵周期为目的。 关键词 氮源;糖酸转化率;发酵周期;周期 中图分类号:Q 946.81+8.6 文献标识码:B 文章编号:1008-0899(2009)06-0001-02 在正常生产情况下,柠檬酸在黑曲霉细胞内不会积累,而且柠檬酸是黑曲霉的良好碳源。柠檬酸积累是菌体代谢失调的结果。柠檬酸发酵需要的条件:磷酸盐浓度低;氮源用NH 4+盐;PH 值低(低于2.0);溶氧量高。 黑曲霉柠檬酸生产菌的PFK 酶是酵解途径中第一个调节酶,也是决定EM P 途径代谢流量的最重要的关键酶。此酶受正常的生理浓度范围的柠檬酸和ATP 的抑制,为AM P 、Pi 、NH 4+所激活,NH 4+还能有效地解除柠檬酸和ATP 对PFK 酶的抑制。NH 4+在细胞内的生理浓度水平下,PFK ,酶对柠檬酸不敏感,考察柠檬酸发酵时,PFK 酶的这些效应物在细胞内的浓度表明,NH 4+浓度与柠檬酸生产率有密切的关系,并且显示在锰缺乏和充足条件下显著差别,可以认为,锰的效应是通过铵离子浓度升高而减弱了柠檬酸对PFK 酶的抑制[1] 。能作为氮源的原料很多在考虑氮源用量时,应考虑原料中的含氮量和培养基的碳氮比以控制霉菌的长势。氮源不足长菌弱,发酵期延长,且易染杂菌。而氮源过足则曲霉长势过旺,产酸率显著下降。 从生长角度看,黑曲霉可以利用很多无机和有机氮源,尤其偏好于无机氮源,并且在发酵柠檬酸中途添加NH 4+盐也有优越性[2]。从NH 4+的代谢调节作用考虑,NH 4+在发酵过程中,尤其在产酸阶段不应受限[3]。 国内玉米粉发酵生产柠檬酸工艺也在不断的探索不断的完善,工艺已日趋成熟。国内各柠檬酸厂由于地域的不同在柠檬酸发酵中添加的氮源也不同,究竟哪种氮源最适合黑曲霉柠檬酸发酵,达到柠檬酸生产的最好经济效益,可以提高糖酸转化率和缩短发酵周期。针对添加不同的氮源对柠檬酸生产的影响进行了研究。 氮源分有机氮源和无机氮源,本文分别选取具有代表性的有机氮源麦麸、棉柏、玉米液化液,和无机氮源硫酸铵、硫酸氢铵,将其加入柠檬酸发酵的生产培养基内,研究这些氮 源是否能促进产酸。针对以上问题分别作了500ml 摇瓶实验和5m 3小试验罐实验。1 500ml 摇瓶实验材料和方法1.1实验材料 菌种:黑曲霉,Co827。 分离:斜面、培养基。5°BX 土豆汁(加蔗糖)+琼脂粉20g/l PH 自然。 玉米粉,α-淀粉酶,麦麸、棉柏,硫酸铵、硫酸氢铵氨1.2实验仪器 500ml 三角瓶、150ml 三角瓶、250ml 三角瓶、100ml 定容瓶、500ml 定容瓶、2000ml 烧杯、玻璃棒、50ml 碱式滴定管。1.3实验设备 不锈钢电热恒温水浴锅, DZ 型恒速无级调速搅拌器,GB4027.1-83手提式压力蒸汽消毒器,P270型普通摇床,XSP-2C 显微镜。1.3实验方法 玉米清夜的制备。采用间接液化法,将本厂自磨玉米粉与洁净水按17%~20%浓度在2000ml 烧杯内调浆,将2000ml 烧杯放入水浴锅内升温,升温到玉米淀粉将糊化温度时,按比例加入α-淀粉酶。当碘试合格后将2000ml 烧杯从水浴锅内取出,留小部分液化液待用,将剩余液化液的清夜与玉米渣分离,留玉米清夜备用。 摇瓶培养基的制备。将玉米清液分别和麦麸、棉柏、液化液、 硫酸铵、硫酸氢铵按合适碳氮比添加每瓶摇瓶装量50ml (麦麸、棉柏、玉米粉的蛋白质含量如附表1),分装入洁净的500ml 三角瓶,并用干净四层纱布封口并扎上牛皮纸,在蒸汽灭菌锅内灭菌,121℃30分钟,冷却待用。测定摇瓶培养基的总糖和还原糖、蛋白质含量。1.4实验步骤 表11--

生物量碳氮测定方法(熏蒸提取法)

一、土壤微生物生物量碳测定方法(熏蒸提取-碳自动仪器法) 1、试剂配制 去乙醇氯仿制备:普通氯仿试剂一般含有少量乙醇作为稳定剂,使用前需除去。将氯仿试剂按1 : 2(v : v)的比例与去离子水或蒸馏水一起放入分液漏斗中,充分摇动1min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于暗色试剂瓶中,在低温(4℃)、黑暗状态下保存(Williamss等,1995)。注意氯仿具有致癌作用,必须在通风橱中进行操作。 硫酸钾提取剂[c(K2SO4)= 0.5mol L-1]:87.12分析纯硫酸钾,溶于1L去离子水。 六偏磷酸钠溶液[ρ( NaPO3)6 = 5g 100ml-1,pH2.0]:50.0g分析纯六偏磷酸钠缓慢加入盛有800ml 去离子水的烧杯中(注意:六偏磷酸钠溶解速度很慢,且易粘于烧杯底部结块,加热易使烧杯破裂),缓慢加热(或置于超声波水浴器中)至完全溶化,用分析纯浓磷酸调节至pH2.0,冷却后定容至1L。 过硫酸钾溶液[ρ(K2S2O8)= 2g 100ml-1]:20.0g分析纯过硫酸钾溶于去离子水,定容至1L,避光存放,使用期最多为7d。 磷酸溶液[ρ(H3PO4)= 21 g 100ml-1]:37ml 85%分析纯浓磷酸(H3PO4,ρ= 1.70g ml-1)与188ml 去离子水混合。 邻苯二甲酸氢钾标准溶液[ρ(C6H4CO2HCO2K)= 1000mg C L-1]:2.1254g分析纯邻苯二甲酸氢钾(称量前105℃烘2~3h),溶于去离子水,定容至1L。 2、仪器设备 土壤筛(孔经2mm)、真空干燥器(直径22cm)、水泵抽真空装置(图6–1)或无油真空泵、pH–自动滴定仪、塑料桶(带螺旋盖可密封,体积50L)、可密封螺纹广口塑料瓶(容积1.1L)、高温真空绝缘酯(MIST–3)、烧杯(25、50、80ml)。碳–自动分析仪(Phoenix 8000)、容量瓶(100ml)、样品瓶(40ml)。 1–真空干燥器,2–装土壤烧杯,3–装氯仿烧杯4–磨口三通活塞5–真空表 6–缓冲瓶7–抽真空管8–增压泵9–控制开关10–进水口11–出水口 (图6–1 土壤熏蒸抽真空装置) 3、操作步骤 (1)土样前处理 新鲜土样应立即进行前处理或保存于4℃冰箱中。测定前先仔细除去土样中可见的植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2mm)并混匀。如土样过湿,应在室内适当风干至土样含水量约为田间持水量(Water-holding capacity,WHC)的40%(以手感湿润疏松但不

不同氮源对作物的影响

铵态氮与硝态氮的差异 铵态氮肥:氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。 例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。 硝态氮肥:氮肥中氮素的形态是硝酸根(NO3-)。如硝酸钠、硝酸钾、硝酸钙。硝、铵态氮肥:氮肥中含有铵离子和硝酸离子两种形态的氮。如硝酸铵、硝酸铵钙、硫硝酸铵。酰胺态氮肥:主要有尿素植物可以大量吸收的氮,是铵态氮和硝态氮,也可吸收少量有机态氮,如尿素和结构比较简单的氨基酸。铵态氮是还原态,为阳离子;硝态氮是氧化态,为阴离子。它们所带的电荷不用,在土壤中的行为以及对植物的营养特点也不一样。不能简单地说哪种形态好,哪种形态不好。它们的好坏与施用条件和作物种类等有关。铵态氮在带阴离子的土壤胶体中容易被吸附,而硝态氮则不能被吸附,具有更大的移动性。硝态氮被植物吸收后,要经过硝酸还原酶和亚硝酸还原酶还原成铵态氮后,才能进一步合成氨基酸。不同作物施用两种形态氮的反应往往不一。水稻施用铵态氮的效果比硝态氮好。因为水稻幼苗根中缺少硝酸还原酶,对硝态氮不能很好利用。除水稻本身原因外,水田中施用硝态氮易于流失,而且在淹水条件下的反硝化作用也是氮素损失的原因。因此,在水稻田施用硝态氮肥,有资料认为其肥效只有铵态氮肥的60%—70%。而与此相反的是烟草和蔬菜,它们是喜硝态氮的作物。硝态氮肥极易溶解,在土壤中活动性大,能迅速提供作物氮素营养,同时,又易于流失,肥效较短。这种特性符合烟草的要求,叶片要生长快,在适当时候又能落黄“成熟”。而且硝态氮有利于烟草体内形成柠檬酸、苹果酸等有机酸,烤出的烟叶品质好,燃烧性好。蔬菜施用硝态氮产量高,如硝态氮低于肥料全氮的50%,产量明显下降。因此,生产烟草、蔬菜专用肥时,氮肥中要有一定比例的硝态氮。但由于在土壤水分、温度、通气条件适宜时,铵态氮可经硝化作用,氧化成硝态氮。所以,烟草、蔬菜也不是绝对不能施用含铵态氮的肥料。另外,施用硫酸铵等生理酸性肥料作物生长不好,往往不是由于铵态氮肥不宜,而是由于生理酸性造成的。尿素施入土壤后一般要经过脲酶水解,转化成铵态氮肥,才能被植物大量吸收利用。

微生物碳氮的测定方法——熏蒸提取法

二、土壤微生物量碳、氮的测定方法—熏蒸提取法 1.主题内容与适用范围 本方法采用氯仿熏蒸—提取测定土壤微生物量碳、氮,适用范围广,既适用于中性和微碱性土壤,也适用于强酸性土壤,并且适用于滞水土壤(如水稻土)和新施有机肥土壤。 2.方法提要 土样经氯仿熏蒸和未熏蒸两种不同处理后,用K 2SO 4 溶液浸提,提取液一部分用K 2 CrO 7 (重络酸钾)氧化法测定微生物量碳,另一部分用浓H 2SO 4 消煮、碱化蒸馏法测定微生 物量氮。 3.提取液的制备 3.1仪器、设备:抽气皿(真空干燥器)、无醇氯仿、抽气机、大铝盒、分析天平(感量: 0.01g)、小烧杯(50ml)、大塑料瓶(250ml)、大三角瓶(150ml)、40C的 冰箱、定量滤纸(15cm)、漏斗、保鲜膜 3.2试剂的制备:0.5 M K 2SO 4 溶液(化学纯)、 无醇氯仿(提纯方法:用1N H 2SO 4 溶液与氯仿(CHCl 3 三氯甲烷)按体积比2:1 于分液漏斗中振荡混匀,净置分离,共做3次;再用水代替硫酸与氯仿2:1 混匀,振荡分离,共5次,将提纯的氯仿放入到棕色试剂瓶中,加一勺无 水硫酸钠,保存) 3.3分析步骤: 3.3.1 称取12.50g鲜土(取土要准确、均匀,不要夹入有机残体)于大铝盒中。在抽气皿中放入盛有25ml无醇氯仿的小烧杯,小烧杯中放几张小纸片以便于观察沸腾。放入装土的大铝盒,连上抽气机,抽真空使氯仿沸腾5分钟,关紧活塞,关闭抽气机。包上黑布,置于阴暗处(250C)熏蒸24小时。到时间后,取出小烧杯后反复抽真空2~3次(每次5分钟),排除氯仿。 另称取一批同等重量的土放入大塑料瓶中,不做熏蒸处理,同样包上黑布,置于阴暗处24小时。 3.3.2 将步骤(3.1.1)中的两批土样转移到离心管中(红壤适宜离心管)。用注射器注入每 瓶50ml 0.5M K 2SO 4 溶液,盖紧瓶塞,振荡30分钟,离心5分钟后取出,用15ml定量滤纸 过滤到150ml大三角瓶中,应立即测定。如不立即测定,用保鲜膜封口(防止污染和挥发),保存在40C的冰箱中。 4.生物量碳的测定—K 2CrO 7 氧化法 4.1仪器、设备:DOC测定仪(冷凝装置4套、配套沸瓶装16个)、玻璃沸珠、1500W电炉两 个、变压器两个、滴定管(25ml) 4.2试剂的制备:蒸馏水、混合酸(浓硫酸:浓磷酸=2:1,分析纯) 、0.1000N K 2CrO 7 标准溶 液 邻菲罗啉指示剂、66.7mM(0.4 N)K 2CrO 7 溶液(19.6125g/L,分析纯) 0.02M (NH 4) 2 Fe(SO 4 ) 2 溶液:取15.69g/L溶于蒸馏水,用20ml浓硫酸(98%, 分析纯)酸化,而后定容至1L、4.3分析步骤: 4.3.1吸取2ml 0.4 N K 2CrO 7 溶液放入沸瓶,再吸15ml 混酸放入沸瓶,混合,加入等量的 玻璃球(约一小药匙,10个)。吸取步骤(3.2.2)中的过滤液8~10ml(根据含碳量多少而

氮磷肥对黑土玉米农田生态系统土壤微生物量碳_氮的影响

第18卷第1期2004年2月 水土保持学报 Journal of So il and W ater Conservati on V o l.18N o.1 Feb.,2004   氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响Ξ 王继红1,2,刘景双1,于君宝1,王金达1 (1.中国科学院东北地理与农业生态研究所,长春130021;2.吉林农业大学,长春130118) 摘要:通过田间氮磷肥配施试验研究了氮磷配施对黑土玉米农田生态系统玉米不同生育时期微生物量碳、氮的 影响。微生物量随玉米不同生育期的动态变化表明,氮磷肥对微生物量碳和微生物量氮的动态影响并不同步,微 生物量碳和微生物量氮变化最显著的时期均是授粉期,但此时微生物量碳是最低的谷值,而微生物量氮是最高的 峰值。不同氮磷配比对微生物量碳影响的回归分析表明,氮肥是影响微生物量碳的主导因素,无论是适量施用还 是过量施用都是氮肥对微生物量碳的影响较大。不同氮磷配比对微生物量氮影响的回归分析表明,过量氮肥的施 用减少了土壤微生物量氮的含量。磷肥无论高量和低量均能增加微生物量氮的含量,但随着施用量的增加对微生 物量氮的正效应减小。氮磷配合施用可增加土壤的微生物量氮,由此可见无论单施氮肥还是单施磷肥,过量施用 对微生物量氮的增加都是不利的,只有氮磷配合施用才是增加土壤微生物量氮的有效途径。 关键词:玉米; 黑土; 农田生态系统; 氮磷肥; 土壤微生物量 中图分类号:S154.3;S143.1;S143.2 文献标识码:A 文章编号:100922242(2004)0120035204 Effect of Fertil iz i ng N and P on So il M icrob i a l B ioma ss Carbon and N itrogen of Black So il Corn Agroecosystem W AN G J i2hong1,2,L I U J ing2shuang1,YU Jun2bao1,W AN G J in2da1 (1.Institu te of N ortheast Geog rap hy and A g ricu ltu re E cology,Ch inese A cad e m y of S ciences,Chang chun130021; 2.J ilin A g ricu ltu ral U niversity,Chang chun130118) Abstract:A field experi m en t w as conducted to study the effects by m atch fertilizer N and P on m icrob ial b i om ass C and N of b lack so il agroeco system.T he resu lt of the variati on of m icrob ial b i om ass in differen t grow th p eri ods show s that the effects of fertilizer N and P on m icrob ial b i om ass C is no t sam e as on m icrob ial b i om ass N,incubati on peri od is the m o st obvi ou sly varied peri od of m icrob ial b i om ass C and N,the m icrob ial b i om ass C is at its low est bu t m icrob ial b i om ass N is at its h ighest.T he regressi on analysis indicated that fer2 tilizer N is the m ain facto r in affecting the m icrob ial b i om ass C,It show ed that the excessive u se of fertilizer N decrease the con ten t of m icrob ial b i om ass N,and fertilizer P can increase the con ten t of m icrob ial b i om ass N though it w as app lied p rop erty o r excessive,the effect decrease fo llow the increase of u se the fertilizer P. T he m atch of fertilize N and P can increase the m icrob ial b i om ass N,so w e can say that it is no t a effective w ay in increase the quan tity of m icrob ial b i om ass N by app lying fertilizer N o r fertilizer P singly,the effec2 tive w ay to increase so il m icrob ial b i om ass N is by m atch app lying of N and P Key words:co rn; b lack so il; agroeco system; fertilizer N and P; so il m icrob ial b i om ass 土壤施入化学肥料后,土壤微生物与植物之间存在既相互依存又相互制约的关系。微生物不但能把有机养分矿化为植物可利用的无机养分,还可通过同化作用保存一部分养分。与此同时微生物不仅在矿化同化过程中造成养分的损失,有时还存在着与植物争夺有效的无机养分。土壤微生物是土壤有机质和土壤养分转化循环的动力,而土壤微生物量C、N是土壤碳素和氮素养分转化和循环研究中的重要参数,它们较为直观地反映了土壤微生物和土壤肥力状况。因此土壤微生物量对了解土壤养分转化、循环具有重要的意义[1]。同时由于微生物生长繁殖所需的最适温度、湿度及养分条件与植物相似,故可以综合反映土壤的肥力和环境质量状况[2]。因此土壤微生物量的研究近年来已经成为养分循环和生态环境保护方面研究的热点[3~6]。 本文研究了不同氮磷配比条件下玉米不同生育期、微生物量C、N的变化,了解氮磷肥向农田生态系统的输入对碳、氮循环以及环境后果的作用,为寻求适合的氮磷肥配比和用量,使作物既有较高的产量又能保持较好的土壤环境质量。 Ξ收稿日期:2003211220 基金项目:国家重大基础规划项目(1999011804-05)和吉林省科技厅资助项目(20020666) 作者简介:王继红,女,生于1966年,副教授,在读博士。主要从事土壤环境生态方面的研究工作。

碳源、氮源是什么

什么是碳源、氮源? 碳源 碳源是微生物生长一类营养物,是含碳化合物。常用的碳源有糖类、油脂、有机酸及有机酸酯和小分子醇。根据微生物所能产生的酶系不同,不同的微生物可利用不同的碳源。 碳源对微生物生长代谢的作用主要为提供细胞的碳架,提供细胞生命活动所需的能量,提供合成产物的碳架。 氮源 作为构成生物体的蛋白质、核酸及其他氮素化合物的材料。把从外界吸入的氮素化合物或氮气,称为该生物的氮源。能把氮气作为氮源的只限于固氮菌、某些放线菌和藻类等。高等植物和霉菌以及一部分细菌,仅能以无机氮素化合物为氮源。动物和一部分细菌,不用有机氮化合物作为氮源就不能生长。 作为植物的氮源最重要的是无机化合物的硝酸盐和氨盐。硝酸盐一般需还原成氨盐后才能进入有机体中,但由于生物的性质和环境条件的不同,作为氮源来说,有时氨盐适宜,有时硝酸盐适宜。如浓度适宜,亚硝酸盐、羟胺等也可作为氮源。作为氮源的有机化合物有氨基酸、酰胺和胺等。特殊的细菌,也有时需要以极其特殊的氮素化合物作为唯一的氮源来进行培养。 碳源和氮源的合理性 合理的碳源和氮源,直接影响作物的生长,碳源含量高,作物生长受到抑制,根系生长比较快,茎叶收到缓慢,可能直接降低作物的茎秆高度等。氮源含量,作物发生旺长,叶片茎秆生长有劲,可能提高作物之身的高。碳源和氮源合理,作物生长平稳,根系和果实、叶片都处在健康状态。 碳氮比一般在25:1比较合理,因此,合理补充土壤中的碳源、氮源比较关键,部分碳源由作物腐烂的茎叶和根系来补充,氮源由植物吸收空气的中的氮作物补充。但是,碳源来源不稳定,根据作物的收货的目的,碳源一般比较缺乏,补充碳源可以选择标美力克肥业有限公司“碳神奇”作为碳源补充剂,提高土壤中碳源的含量,增加土壤团粒结构。

土壤微生物量碳氮测定方法

1.23.1 土壤微生物碳的测定——TOC-V CPH有机碳分析仪 一、方法原理 土壤有机碳的测量方法主要有两种,即氯仿熏蒸培养法和氯仿熏蒸—直接浸提法。 1.氯仿熏蒸培养法[1]:土壤经氯仿熏蒸后再进行培养,测定培养时间内熏蒸与未熏蒸处理所释放CO2之差来计算土壤生物量碳。 2.氯仿熏蒸直接浸提法[2]:土壤经氯仿熏蒸后直接浸提进行,测定浸提液中的碳含量,以熏蒸和不熏蒸土壤中总碳的差值为基础计算土壤微生物含碳量。 直接提取法与氯仿熏蒸培养法相比,直接提取法具有简单、快速、测定结果的重复性较好等优点。直接提取法测定土壤微生物量的碳的方法日趋成熟。现在氯仿熏蒸—K2SO4提取法已成为国内外最常用的测定土壤微生物碳的方法。本实验以氯仿熏蒸直接浸提法为例介绍土壤微生物量碳氮的浸提与测定。 二、主要仪器 振荡机、真空干燥器、真空泵、TOC-V CPH有机碳分析仪。 二、试剂 1.氯仿(去乙醇):普通氯仿一般含有乙醇作为稳定剂,使用前要去除乙醇。将氯仿按照1︰2(v/v)的比例与蒸馏水一起放入分液漏斗中,充分振动,慢慢放出底部氯仿,重复3次。得到的无乙醇氯仿加入无水CaCl2,以除去氯仿中的水分。 2.0.5 mol·L-1 K2SO4浸提液:43.57g分析纯K2SO4定溶至1L。 四、操作步骤 称取过2mm筛的新鲜土样12.5g六份,置于小烧杯中。将其中三份小烧杯放入真空干燥器中,干燥器底部放3个烧杯,其中一个放氯仿,烧杯内放少许玻璃珠(防爆),另一个放水(保持湿度),再放一杯稀NaOH。抽真空时,使氯仿剧烈沸腾3-5 min,关掉真空干燥器阀门,在暗室放置24 h。熏蒸结束后,打开干燥器阀门,取出氯仿,在通风厨中使氯仿全部散尽。另三份土壤放入另一干燥器中,但不放氯仿。 将熏蒸的土样全部转移至150 mL三角瓶中,加入50mL 0.5 mol·L-1 K2SO4 (土水比为1:4),振荡30min,过滤。未熏蒸土样操作相同,同时做空白。 五、结果计算 土壤微生物量碳 =(熏蒸土壤有机碳-未熏蒸土壤有机碳)/0.45 式中:0.45——将熏蒸提取法提取液的有机碳增量换算成土壤微生物生物量碳所采用的转换系数(kEc)。 一般量容法采用的kEc值为0.38,仪器分析法kEc 取值0.45。 六、注意事项 1.氯仿致癌,操作时应在通风厨中进行。 2.打开真空干燥器时,要听声音,如没空气进去的声音,试验需重做。 3.应注意试剂的厂家,有些厂家的K2SO4试剂不宜浸提土壤微生物量碳。 4.浸提液应立即用TOC-V CPH有机碳分析仪测定或在-18℃下保存。 1.23.2土壤微生物量氮的测定 一、方法原理 土壤微生物态氮是土样在CHCl3熏蒸后直接浸提氮含量,并进行测定,以熏蒸和不熏蒸

不同光强对作物生长影响的研究综述

不同光强对作物生长影响的研究综述 时向东,文志强,刘艳芳,王卫武 (河南农业大学国家烟草栽培生理生化研究基地,河南郑州450002) 摘要 综述了不同光强对作物的形态学、光合作用、内源激素、矿质营养、叶片结构和化学成分的影响。 关键词 光强;形态学;内源激素;矿质营养;叶片结构;化学成分 中图分类号 Q945.3 文献标识码 A 文章编号 0517-6611(2006)17-4216-03 Research on the Effect of Different Lig ht Stresses on C ro p Grow th SHI X iang do ng et al (Nati on al Cen ter of Physiol ogy and B io che mistry of Tobacco Cultivation,Henan Agricultu re Universi ty,Zhengzhou,Henan 450002) Abstract It was s um marized that m orphologic,p hotosynthesis,end ogenous horm one mineral nutrien t,structure of leaf and che mistry in gredien t were ef fected by the di fferen t light stresses in crop growth. Key w ords Light stress;Morphologic;Photos yn thesis;End ogenous hormone;Mineral nu trient;Structu re of leaf;Chemis try i ngredient 在作物的生命活动中,光是重要的影响因子之一,目前在作物上已有广泛的研究,范围涉及到生长发育、形态建成、生理代谢、产量和品质等方面。尤其是近些年来,一些经济作物需要遮阴条件才能满足市场对品质的要求,这变相促进了光强对作物生命活动的研究,并且取得了显著的经济效益,同时也可以为叶片喷施和育种提供一些依据。 1 不同光强对作物形态特征的影响 作物的根系、叶片和茎秆等外观形态特征对遮阴的响应十分敏感,国际上自20世纪40年代以来,不同学者通过人工遮阴就不同光强对作物生长发育的影响进行了大量的研究,尽管所用的材料和控制的条件不同,但得出来许多相似或相同的结论:适度遮阴对作物的营养生长有很大的促进作用,表现为生长加快、根冠比增加、根系发达、枝大叶茂、茎秆变粗、叶绿素含量和生物学产量增加[1-5]。另外,不同作物叶表面特征对遮阴的响应差别较大,如北京丁香在全光照条件下叶片表面基本无毛,而在遮阴条件下则有短微毛。 2 不同光强对作物光合作用的影响 光强影响作物的光饱和点(LSP)和光补偿点(LCP)。随着光强的增加,作物的光饱和点和光补偿点都有所下降,下降幅度因作物种类的不同而有所差别。Thimijan等[6]研究指出:烟草的光饱和点大概在600mmol/m2P AR,光强减弱,光饱和点下降。曹珂等[2]在遮阴对桃幼树光合特性影响的研究中指出:在中度遮阴下,朝晖光补偿点下降24.37%,在重度遮阴条件下,其光补偿点下降59.79%。 光强影响作物的光合速率。光饱和点以下,光合速率随光强的增加而增加,增加的幅度受温度、CO2浓度、相对速度等因素的影响。另有报道指出:光强对光合速率的影响在品种间差异较大[7],如水稻是适应广幅光强的品种,在强、弱光条件下,其光合速率下降的幅度均较少。采利尼克尔[8]经过研究发现:在一定幅度的光照条件下,作物的干物质积累即净光合速率相对稳定,他认为这种干物质积累的稳定性乃是光-光合作用曲线不稳定性的结果,并且首先表现在遮阳情况下光合曲线弯曲部分的光合强度提高。眭晓蕾等[9]在弱 基金项目 国家烟草专卖局 优质雪茄外包皮烟开发及应用研究项目(110200201012)。 作者简介 时向东(1966-),男,河南南阳人,博士,副研究员,从事烟草栽培生理及烟草发育生物学研究。 收稿日期 2006 05 29光对甜椒不同品种光合特性影响的研究中指出:作物在弱光下,光合速率降低,呼吸速率也降低,但干物质积累能保持相对稳定。 近些年研究表明:作物对外界高、低光强适应是依靠调节光合酶和光系统组分实现的。 2.1 RUBP羧化酶 R UB PCa se初始活性与光合速率密切相关,在很多情况下是光合过程中一个重要的限速因子。随光强减弱,单位叶面积可溶性蛋白的含量降低,R UBP羧化酶的活性急剧下降,并且其活性下降的速率远远大于可溶性蛋白的降解速率。Ha tc h[10]观察玉米C2循环中几个酶对不同光强的反应时发现RUBP羧化酶活性却不受光强的影响。在高光强下,烯醇式磷酸丙酮酸脱氢酶及磷酸激酶的活性提高了5~10倍,磷酸甘油醛脱氢酶、腺苷激酶、焦磷酸酶的活性变化不大,仅比对照提高2倍。 2.2 光组分的调节 光组分的调节主要反映在叶片的荧光部分,叶片低温荧光光谱686和740nm附近有2个主要发射峰,相对荧光产量分别用F686和F740表示,而F686/F740比值可以反映激发能在光系统之间的分配情况。眭晓蕾[9]在弱光对不同品种甜椒光合特性影响的研究中指出:随着光强减弱,甜椒的F686/F740比值先下降后上升,分析原因,这可能与弱光下PSII的捕光色素蛋白复合体含量增加,扩大了PSI I的光吸收截面有关。戈巧英等[11]研究认为:作物对弱光的适应性是以消耗更多结构物质用于扩大光能接受面积,增加光系统组分的含量,增加原初光能转化效率等方式获得。 在不同的光强下,蛋白质含量存在着显著差别,其中所含的捕光蛋白L HCP含量和D1蛋白含量也存在着差别,这是限定作物光合传递电子速率的内在因素。 3 不同光强对作物内源激素的影响 光强能影响IA A的运输方向,引起IA A的不对称分布。最近研究表明,I AA含量和IA A运输系统对于遮阳作物的伸长生长起重要作用。光敏素调控茎的伸长是通过调节I AA 水平而起作用的[12]。富含远红光成分的光能使I AA运输方向改变,I AA运输方向的改变是通过特定的I AA载体蛋白或IA A载体蛋白调控因子的激活而实现的。遮阳条件下苗下胚轴I AA横向运输增加,致使在维管系统中运输减少,因而运到根的I AA减少,侧根形成的少,主根生长慢。I AA分布的改变也抑制子叶的生长和叶片的扩展[13]。赤霉素主要对 安徽农业科学,Jou rnal of Anh ui Agri.S ci.2006,34(17):4216-4218 责任编辑 孙红忠 责任校对 孙红忠

微生物碳氮磷测定

土壤微生物量碳氮磷测定方法 一、试剂配制 微生物量碳试剂: 1 硫酸钾溶液[c(K2SO4)=0.5mol·L-1]:称取硫酸钾(K2SO4,化学纯)87.10g,先溶于 300ml去离子水中,加热,转移溶液至容器中,再加少量去离子水溶解余下的部分,转移溶液至同一容器中,如此反复多次。最后定容至1L;(需大量配制) 2 生物量C氧化剂:1.2800g在130℃下烘干两个小时的K2Cr2O7与400mlH2O,2L的优级纯浓硫酸混合,配成2.4L的混合氧化剂溶液,在室温,棕色瓶中保存; 3 葡萄糖标准储备液(100mg/L):准确称取0.2502g的无水葡萄糖溶于1000mL的容量瓶中,存放在4℃冰箱,使用时稀释为所需标准溶液; 微生物量氮试剂: 4 醋酸锂溶液:称取氢氧化锂(LiOH·H2O)168g,加入冰乙酸(优级纯)279mL,,加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH 至5.2; 5 茚三酮试剂:23g分析纯水合茚三酮溶解于750ml二甲基亚砜,加入250ml醋酸锂缓冲液,混合30min,使氧气和氮气排出;(注意此试剂在使用前一天配置,室温下密封保存) 6 氢氧化钠溶液(10mol/L):400g分析纯氢氧化钠溶于去离子水,稀释至1L; 7 柠檬酸缓冲液:42.0g分析纯柠檬酸和16.0g氢氧化钠,溶于900ml去离子水,用10mol/L 氢氧化钠调节Ph至5.0,再用水稀释至1L; 8 乙醇溶液:95%分析纯乙醇与去离子水按体积比1:1比例混合; 9 1mg/ml的硫酸铵标准储存液:称取4.7167g分析纯硫酸铵(称前105℃烘2h)溶于0.5moL/L硫酸钾溶液中,并用硫酸钾溶液定容至1000mL,摇匀,于4℃冰箱中保存。 10 0.1mg/ml的硫酸铵[(NH4)2SO4]标准液:吸取10mL1mol/L的硫酸铵标准储存液于100mL容量瓶中,用0.5mol/L硫酸钾溶液定容至100mL.摇匀。此溶液最好现配现用。 11 工作曲线的制备:分别吸取0.00mL、0 .50mL、1.00mL、2.00mL、3.00mL、4.00mL、 5.00mL 0.1mg/ml的硫酸铵标准液于1000mL容量瓶中,用0.5moL/L硫酸钾溶液定容至 100mL,摇匀。然后取1.5ml,按照样液的步骤进行显色和比色。 微生物量磷试剂: 12 1mol L-1 HCl溶液:用8.33 mL的浓盐酸用蒸馏水定容至100 mL。 13 碳酸氢钠浸提液[c(NaHCO3)= 0.5mol L-1,pH 8.5]:42.0g分析纯碳酸氢钠溶于800ml 蒸馏水,用1mol L-1 NaOH溶液缓慢调节pH至8.5,再用蒸馏水定容至1L。注意该浸提液放置时期过长时,因CO2释放使溶液pH升高。

微生物碳氮磷测定

微生物碳氮磷测定 It was last revised on January 2, 2021

土壤微生物量碳氮磷测定方法 一、试剂配制 二、微生物量碳试剂: 1 硫酸钾溶液[c(K2SO4)=·L-1]:称取硫酸钾(K2SO4,化学纯),先溶于300ml去离子水中,加热,转移溶液至容器中,再加少量去离子水溶解余下的部分,转移溶液至同一容器中,如此反复多次。最后定容至1L;(需大量配制) 2 生物量C氧化剂:在130℃下烘干两个小时的K2Cr2O7与400mlH2O,2L的优级纯浓硫酸混合,配成的混合氧化剂溶液,在室温,棕色瓶中保存; 3 葡萄糖标准储备液(100mg/L):准确称取的无水葡萄糖溶于1000mL的容量瓶中,存放在4℃冰箱,使用时稀释为所需标准溶液; 微生物量氮试剂: 4 醋酸锂溶液:称取氢氧化锂(LiOH·H2O)168g,加入冰乙酸(优级纯)279mL,,加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH 至; 5 茚三酮试剂:23g分析纯水合茚三酮溶解于750ml二甲基亚砜,加入250ml醋酸锂缓冲液,混合30min,使氧气和氮气排出;(注意此试剂在使用前一天配置,室温下密封保存) 6 氢氧化钠溶液(10mol/L):400g分析纯氢氧化钠溶于去离子水,稀释至1L; 7 柠檬酸缓冲液:分析纯柠檬酸和氢氧化钠,溶于900ml去离子水,用10mol/L氢氧化钠调节Ph 至,再用水稀释至1L; 8 乙醇溶液:95%分析纯乙醇与去离子水按体积比1:1比例混合; 9 1mg/ml的硫酸铵标准储存液:称取分析纯硫酸铵(称前105℃烘2h)溶于L硫酸钾溶液中,并用硫酸钾溶液定容至1000mL,摇匀,于4℃冰箱中保存。 10 ml的硫酸铵[(NH4)2SO4]标准液:吸取10mL1mol/L的硫酸铵标准储存液于100mL容量瓶中,用L硫酸钾溶液定容至100mL.摇匀。此溶液最好现配现用。 11 工作曲线的制备:分别吸取、0 .50mL、、、、、 ml的硫酸铵标准液于1000mL容量瓶中,用/L 硫酸钾溶液定容至100mL,摇匀。然后取,按照样液的步骤进行显色和比色。 微生物量磷试剂: 12 1mol L-1 HCl溶液:用 mL的浓盐酸用蒸馏水定容至100 mL。 13 碳酸氢钠浸提液 [c(NaHCO3)= L-1,pH ]:分析纯碳酸氢钠溶于800ml蒸馏水,用1mol L-1 NaOH溶液缓慢调节pH至,再用蒸馏水定容至1L。注意该浸提液放置时期过长时,因CO2释放使溶液pH升高。 14 硫酸溶液[c(H2SO4)= L-1]:分析纯浓硫酸(H2SO4,ρ= ml-1),用蒸馏水稀释定容至500ml。

微生物量碳氮

微生物量碳 方法一 每个土样称取相当于 20g 烘干土重的 6 份新鲜湿土于100ml 烧杯中,其中三份作为对照,直接用 100ml 0.5 mol·L -1 K 2SO 4(87.13g 定容到1L )浸提。另三份放入干燥器中熏蒸,干燥器底部放适量水(保湿)和三个 50ml 小烧杯,一个烧杯盛 25ml 1% NaOH 溶液(1g NaOH 加入99ml 水),另两个各盛 25ml 无醇氯仿(投入少量沸石)。盖严干燥器盖,将干燥器置于通风橱内,抽真空,直至氯仿沸腾约 2min ,而后置于25℃暗室中 24h ,取出盛氯仿的小烧杯,盖严干燥器盖,反复抽真空以除去残余的氯仿。采用灭菌-提取法,从干燥器中取出土样,同对照一样放入150ml 三角瓶中,分别加入100ml 0.5 mol·L -1 K 2SO 4溶液,25℃下在往复式震荡机上振荡30min ,过滤。滤液用德国产TOC 仪测定土壤提取液全碳含量,以熏蒸和未熏蒸土壤提取液全碳含量的差值Fc 乘以系数2.64得到土壤微生物碳的含量,计算公式为: mic C F K F 2.64=?=?C C F K F 2.64=?=? 方法二 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4溶液可提取成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数KEC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(0.5 mol?L -1):取871.25 g 分析纯硫酸钾溶解于蒸馏水中,定溶至10 L 。 (2)0.2 mol?L -1(1/6 K 2Cr 2O 7)标准溶液:称取130℃烘2-3小时的K 2Cr 2O 7(分析纯) 9.806 g 于1 L 大烧杯中,加去离子水使其溶解,定溶至1 L 。K 2Cr 2O 7较难溶解,可加热加快其溶解。 (3)0.1000 mol?L -1(1/6 K 2Cr 2O 7)标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾 4.903 g ,用蒸馏水溶解并定溶至1 L 。 (4)邻啡罗啉指示剂:取邻啡罗啉指 1.490 g 溶于含有0.700 g 分析纯硫酸亚铁(FeSO 4?7H 2O )的100 ml 蒸馏水中,此溶液易变质,应密闭保存于棕色瓶中。 (5)硫酸亚铁标准溶液(0.05 mol?L -1):称取13.9 g 分析纯硫酸亚铁(FeSO 4?7H 2O ),溶于800 ml 蒸馏水中,慢慢加浓硫酸5 ml (防止水解),定溶至1 L ,保存于棕色瓶中。此溶液易被空气氧化,每次使用时必须标定其准确浓度。 硫酸亚铁溶液标定方法:吸取0.1000 mol?L -1(1/6 K 2Cr 2O 7)标准溶液5.0 ml (浓度为0.05 mol?L -1,1/6 K 2Cr 2O 7),放入150 ml 的三角瓶中,加浓硫酸5 ml 和邻啡罗啉指示剂2滴,用硫酸亚铁溶液滴定,滴至溶液由蓝绿色变为棕红色即为终点。根据滴到终点消耗的硫酸亚铁溶液量计算其准确浓度,即C 2=(C 1*V 1)/V 2。 式中:C 1——重铬酸钾标准溶液浓度(0.1000 mol?L -1) C 2——硫酸亚铁标准溶液浓度(mol?L -1) V 1——吸取的重铬酸钾标准溶液体积(5 ml ) V 2——滴到终点时消耗硫酸亚铁溶液体积(ml ) (6)去乙醇氯仿制备:在通风橱中,将分析纯氯仿与蒸馏水按1:2(V:V )加入分液漏斗中,充分摇动1分钟,慢慢放出底层氯仿于烧杯中。如此洗3次。得到的纯氯仿用无水氯化钙出去氯仿中的水分,于试剂瓶中在低温(4℃)黑暗状态可保存几周(Williamss 等,1995)

土壤微生物量碳氮的测定

土壤微生物量的测定 一、土壤微生物生物量碳(氯仿熏蒸-K2SO4提取-碳自动分析法) 1、试剂配制 (1)去乙醇氯仿制备:市售氯仿一般含有少量乙醇作为稳定剂,所以,使用前必须将其中的乙醇去掉。方法是量取适量的分析纯氯仿,按1 2(v : v)的比例与蒸馏水或去离子水一起放入分液漏斗中,充分摇动1min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿中加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于暗色试剂瓶中,在低温(4℃)、黑暗状态下保存。注意:氯仿具有致癌作用,所有操作必须在通风橱中进行。 (2)氢氧化钠溶液[c(NaOH)= 1mol L-1] (3)硫酸钾浸提剂[c(K2SO4)= 0.5mol L-1]:取1742.6 g分析纯硫酸钾,用研钵磨成粉末装,倒于25L塑料桶中,加蒸馏水至20L,盖紧螺旋盖置于摇床(150 r min-1),溶解24 h。 (4)六偏磷酸钠溶液(5%,pH2.0):50.0g分析纯六偏磷酸钠溶于800ml双蒸水,用分析纯浓磷酸调节至pH2.0,再用双蒸水定容至1L。注意:六偏磷酸钠溶解速度很慢应提前配制,且由于其易粘于烧杯底部,加热时常因受热不均使烧杯破裂。 (5)过硫酸钾溶液(2%):20.0g分析纯过硫酸钾溶于双蒸水,定容至1L。注意:过硫酸钾溶液易被氧化,应避光存放,使用期最多为7d。 (6)磷酸溶液(21%):37ml 85%分析纯浓磷酸与188ml双蒸水混合。 (7)邻苯二甲酸氢钾标准溶液[ρ(C6H4CO2HCO2K)= 1000mg C L-1]:2.1254g分析纯邻苯二甲酸氢钾(称量前先经105℃烘2~3h),溶于双蒸水,定容至1L。 2、仪器设备 碳–自动分析仪(Phoenix 8000)、真空干燥器(直径22cm)、水泵抽真空装置(图6–1)或无油真空泵、pH–自动滴定仪、塑料桶(带螺旋盖可密封,体积50L)、可密封螺纹广口塑料瓶(容积1.1L)、高温真空绝缘酯(MIST–3)、烧杯(25、50、80ml)。 3、操作步骤 (1)土壤前处理 新鲜土壤应立即处理或保存于4℃冰箱中,测定前先仔细除去土壤中可见植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2mm)并混匀。如果土壤过湿,应在室内适当风干,并经常翻动,以避免局部干燥,至土壤含水量约为田间持水量(Water-holding capacity,WHC)的40%(以手感湿润疏松但不结块为宜)。如果土壤过于干燥,用蒸馏水调节含水量至田间持水量的40%。将土壤置于密封的塑料桶内,在25℃下预培养7~15d,桶内有适量水以保持相对湿度为100%,并在桶内放一小杯1mol L-1 NaOH溶液以吸收土壤呼吸产生的CO2。这些过程是为了消除土壤水分限制对微生物的影响,以及植物残体对测定的干扰。经预培养的土壤应立即分析,否则,应置于4℃下保存,但分析前需在上述条件下至少再培养24h。 (2)熏蒸

微生物量碳氮测定方法

微生物量碳氮测定(赵宁宁版) 氯仿熏蒸提取法CFE(Chloroform fumigations extractions-Method)Literature: Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: Arapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry 17: 837-842. 试剂处理: 1.氯仿必须是除去乙醇的,乙醇除去方法是先加入约200l的氯仿至1L的分液漏斗中,然 后用5% v/v H2SO4溶液20ml洗涤两次,每次手摇动2-3min左右。之后在用蒸馏水洗涤2-3次,然后加入5g左右的无水硫酸镁或者无水氯化钙干燥,最后使用旋转蒸发仪蒸馏。 2.沸石处理:玻璃珠事先用丙酮洗净,然后在105度下烘干。使用清洗烘干后的玻璃珠, 否则氯仿有可能不会沸腾。 上述处理均在通风橱里操作。 3.检查真空干燥器的气密性,事先使用真空泵抽取真空,待一天后轻微打开干燥器的开关, 听到是否有呲呲的声音。若是气密性不好,使用少些凡士林密封。 步骤: 1.鲜土样过2mm筛子后,在40C冷藏室贮藏。 2.在熏蒸提取之前,测定土壤重量含水量,之后用蒸馏水调节土壤水分含量至统一(一般 是调节到土壤的最大持水量或者调节至土壤样品中含水量最高值),这是为了保证熏蒸效果一致。 3.称取15g新鲜土样到50ml的小烧杯中(标签要用铅笔记录)。 4.将氯仿,真空干燥器事先放入通风橱中(氯仿有毒),在真空干燥器底部放入平底100ml 或者200ml烧杯,烧杯中加入用丙酮洗净烘干的玻璃珠至小半杯即可,然后加入处理完毕的氯仿至2/3左右。 5.使用瓷板将底部放有氯仿的烧杯与样品隔开,放入土壤样品后,盖上真空干燥器的盖子 然后使用泵抽取真空,氯仿应该是持续出现小气泡即可。注意:防止氯仿爆沸,最好使用可以调节吸力的泵。使用泵抽取至少10分钟,后面几分钟不会小气泡,为正常情况。 最后在关上真空干燥器,然后放在室温下熏蒸至少一天以上。简单来说,土壤含有越高的土壤粘质,熏蒸时间越长,最好在3-4天左右。 6.熏蒸完成后,在通风橱中取出底部的氯仿烧杯,之后再将土壤放入真空干燥器内,用泵 抽取3次,每次30min,除去土壤中残留的氯仿。 7.熏蒸完全后的前一天,提取未熏蒸的土壤微生物量碳氮,浸提步骤如下面熏蒸浸提步骤。 熏蒸的土壤尽可能全部的转移到100ml的速率瓶中;或者50ml的离心管中。(在德国是使用离心管,因为需要先离心,然后在用滤纸过滤,滤纸为50um的孔径。先用30ml 的0.5M的K2SO4提取,然后震荡1h,在4000rpm下离心15min,然后过滤,上清液必须清澈。再加入20ml的0.5M的K2SO4溶液,事先摇开离心管的土壤,之后震荡,离心,过滤。最后得到45ml左右的提取液)。

相关主题
文本预览
相关文档 最新文档