当前位置:文档之家› 哈尔滨工业大学数学分析2007真题

哈尔滨工业大学数学分析2007真题

哈尔滨工业大学数学分析2007真题

1

哈工大数学系2012年硕士研究生复试名单

数学系2012年硕士研究生复试名单序号姓名报考专业毕业单位考试方式 1 朱婧妍概率论与数理统计哈尔滨学院全国统考 2 苗文强概率论与数理统计哈尔滨工业大学全国统考 3 赵鹏程概率论与数理统计山西大同大学全国统考 4 袁洪伟概率论与数理统计哈尔滨工业大学全国统考 5 崔蕊概率论与数理统计大庆师范学院全国统考 6 郭鹏妮概率论与数理统计山西大同大学全国统考 7 滕雅琦概率论与数理统计黑龙江大学全国统考 8 闫秀明概率论与数理统计黑龙江大学全国统考 9 李晓桐概率论与数理统计长春师范学院全国统考 10 魏巍概率论与数理统计哈尔滨师范大学全国统考 11 赵红丹概率论与数理统计哈尔滨师范大学全国统考 12 张蕊家概率论与数理统计德州学院全国统考 13 孙宇概率论与数理统计哈尔滨师范大学全国统考 14 许美玲概率论与数理统计哈尔滨师范大学全国统考 15 程雪概率论与数理统计哈尔滨师范大学全国统考 16 宋顺利概率论与数理统计黑龙江科技学院全国统考 17 赵银玲概率论与数理统计哈尔滨工业大学全国统考 18 丁川基础数学济宁学院全国统考 19 朱旭静基础数学河北师范大学全国统考 20 王俊基础数学河南科技大学全国统考 21 于梦楠基础数学哈尔滨师范大学全国统考 22 马子俊基础数学哈尔滨工业大学全国统考 23 李英志基础数学哈尔滨工业大学全国统考 24 余美林基础数学哈尔滨工业大学全国统考 25 车都计算数学GreenwichUniversity 全国统考 26 田宇计算数学哈尔滨师范大学全国统考 27 杜文贺计算数学黑龙江八一农垦大学全国统考 28 吴广熙计算数学河北科技师范学院全国统考 29 赵文娇计算数学牡丹江师范学院全国统考 30 闫雪微计算数学哈尔滨学院全国统考 31 张金凤计算数学黑龙江大学全国统考 32 金紫薇计算数学牡丹江师范学院全国统考

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析试题

(六)一年级《数学分析》考试题 一 判断题:(满分10分,每小题2分) 1、设数列{}n a 递增且a a n n =∞ →lim (有限),则有{}n a a sup =; ( ) 2、设数列)(x f 在点0x 的某领域)(0x U 内有定义,若对)(00x U x n ∈?,当0x x n →时, 数列{})(n x f 都收敛于同一极限,则函数)(x f 在带点0x 连续;( ) 3、设数列)(x f y =在点0x 的某领域内有定义,若存在实数A ,使0→?x 时,)()()(00x o x A x f x x f ?=?--?+,则)(0'x f 存在且A x f =)(0';( ) 4、若0)()(2'1'==x f x f ,)(0)(2''1''x f x f ,则有)()(21x f x f ;( ) 5、设?+=c x F dx x f )()(,?+=c x G dx x g )()(,则当)()(x G x F ≠时,有)()(x g x f ≠; ( ) 二 填空题:(满分15分,每小题3分) 1、∑+=+=1 61291n k n k n a , =∞ →n n a lim ; 2、函数3 ln 3)(--=x x x f 全部间断点是 ; 3、)1ln()(2x x f +=,已知56)2()(lim 000=--→h h x f x f h ,=0x ; 4、函数193)(23+--=x x x x f 的既递减又下凸的区间是 ; 5、?+=c x dx x f 2sin )(,?=dx x xf )(' ; 三 计算题:(满分36分,每小题6分) 1、111 1lim 30-+-+→x x x ; 2、求函数54 )15(4)(+-=x x x f 的极值; 3、?+12x x dx ; 4、?++dx x x )1ln(2 ;

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

哈工大数学系博士答辩流程

一、准备 1.毕业论文 2.找导师确定预答辩时间 3.系办:研究生系统开通答辩 4.研究生系统下载《博士学位论文预答辩情况表》 5.研究生系统录入信息之后,下载《发表论文清单》,需导师、系主任签字 6.《博士研究生已录用待发表文章情况确认表》,需导师签字;录用邮件需打印 二、预答辩 1.导师:经费卡;系办:领单子;行政楼2楼:答辩费3880元 2.毕业论文,不装订,五本 3.ppt,20分钟 4.将“准备”中需要签字的都签了 三、送审 1.电子版发送到邮箱 2.网上“SCI科学引文索引”打印检索结果页,图书馆406开具检索证明 3.填写打印《博士学位论文匿名评审交费单》,行政楼2楼收费处交980元,绿联留存4.行政楼318送审,需以下材料: (1)装订好匿名处理论文两本 (2)发表匿名处理文章一篇(双面打印两份) (3)签好字的《发表论文清单》(一、5) (4)签好字的附录用邮件的《博士研究生已录用待发表文章情况确认表》(一、6)(5)盖完章的已发表论文的检索证明(三、2) (6)按要求填写博士学位论文评审意见表(或者单面打印,或者第一页单面、后两页双面打印,两份) 四、答辩(提前一周公示) 1.取回论文评审意见(回来一份A,超过六周可以先答辩),按照评审意见修改论文 2.研究生系统中答辩委员会名单录入答辩秘书 3.答辩秘书登录研究生系统录入评审意见、学科推荐意见(注:保存错误时,有可能是输 入的文字太多,超过限制。可以尽量输入主要的内容。但是,打印的“答辩情况表”必须是完整的,可以从ftp上下载空表录入。) 4.研究生系统中录入对评审意见的回复导师登录研究生系统审查答辩资格,录入导师对论 文的评语及推荐意见(注:录入之后,学生系统的内容就不可以改了,但是答辩委员会成员、答辩日期地点等可以从答辩秘书系统登录修改) 5.确定答辩时间(要安排在一周后,因为公示期是一周)及答辩委员会成员(校内本学科 专家不能超过三人,即所在学科为基础数学的教授不能超过三名);答辩秘书登录研究生系统录入答辩时间和成员 6.确定答辩地点,如果格物楼503被占用,需要在网上下载“借用教室申请表”,填表之 后到数学系资料室盖章,再到研究生培养处办理。 7.研究生系统打印以下文件,为了稳妥起见,都打印了两份:(3)、(5)和(6)可以在第 6步之前就先找导师签字;(3)找学科负责人签字;(3)、(4)、(5)和(6)找系主任签字;注:(6)需要答辩秘书签字。 (1)有博士生本人签字的答辩申请书(2份); (2)有教学秘书、院系及研究生院盖章确认的课程成绩单(2份); (3)有导师、学科负责人、分委会主席签字同意的答辩资格审查表(2份); (4)有分委会主席签字同意的答辩委员会成员审批表(2份);

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

专升本数学分析精选三试卷及答案

《数学分析》――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

07数学分析(一)试题A及答案

2007 ~2008 学年第一学期 《数学分析(一)》课程考试试卷(A 卷) (闭卷) 院(系) _经济学院___专业班级__________学号_________ 姓名__________ 考试日期: 2008-1-17 考试时间: 19:00—21:30 一. 填空题(每小题3分,共30分) 1. =?dx x x 2sin C x x x ++-|sin |ln cot . 2. 曲线233x x y +-=的拐点是 (1,2). 3. ) 11(tan )cos 1(lim 4 2 2 20 -+-→x x x e x x =___2__. 4. 设x x y 44cos sin +=,则)(n y )(+∈N n =)2 4cos(4 1 πn x n + -. 5. 设1)(2++=x x x f ,在[0,2]上用Lagrange 中值定理,则中值ξ=_1__. 6. Riemann 函数在每个有理点都间断,在每个无理点都连续. 7. 设,021k b b b <<<< 则n n k n n n b b b +++∞ → 21lim =k b . 8. 设2 211x x x y -+=, 则=dy dx x x x y )121( 4 -+. 9. 函数x x x u sin 1tan 1)(--+=当0→x 时的无穷小主部是x .

10. 设)(x f 在+ R 内可微且4)]()(2[lim ='++∞ →x f x f x ,则=+∞ →)(lim x f x 2 二. 举例说明下列命题是错误的(每小题3分,共15分. 需要简单说明) 1.非常值周期函数必有最小正周期. Direchlet 函数. 因为任意正有理数都是它的周期. 2.设函数)(x f 在区间I 上有间断点,则)(x f 在I 上不存在原函数. ????? =≠-=0,00 ,1cos 21sin 2)(22x x x x x x x f ,在x=0处间断,但在任何区间)0(I I ∈上有原函数?? ???=≠=0,00,1sin )(22 x x x x x F . 3. 设函数)(x f 在),0[+∞上有定义,且在),0(+∞内有0)(>'x f ,则对一切的0>x ,有)0()(f x f >. 只要在x=0处不右连续的函数即可说明. 4. 若()f x 在(,)a b 内可导,且()()f a f b =,则必存在(,)a b ξ∈,使得 ()0f ξ'=. 函数)10(,)(<≤=x x x f ,0)1(=f . 5. 若数列}{n x 满足:,,0N ?>?ε 当N n >时有ε<-+||1n n x x ,则} {n x 为基本数列. 发散数列n x n 1 21 1+ ++= ,},1][,1max{,01-=>?-εεN 取 :N n >?则 ε<+= -+1 1 ||1n x x n n .

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

哈工大数学文化结课论文 - 从数学式看数学之美

从数学式看数学之美 【摘 要】在数学这门学科里,处处充满着等式、不等式、关系式等各式各样的式子,这些式子往往表达了几个相互关联的量之间的关系,本文通过介绍几个著名的数学式,从不同的角度去理解观察这些式子,加深对这些数学式的认识,从中挖掘数学文化的内涵和数学之美。 【关键字】数学文化 欧拉公式 勾股定理 牛顿-莱布尼兹公式 数学文化包含着数学的思想、精神、方法、观点、语言,以及它们的形成和发展,数学文化还包含数学家,数学史,数学美,数学教育。数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。 可见数学文化是一个非常广阔的命题,就更不用说数学了,毕达哥拉斯说万物皆数,数学是一个奇幻而美丽的学科,其中数不清的数学式就包含着一种数学独有的美,下面就让我们从数学式的角度去欣赏数学之美。 1. 欧拉公式 1748年,瑞士数学家、复变函数论的先驱者欧拉导入了一个重要的公式: θθθsin cos i i e += 这就是著名的欧拉公式.下面我们来分析欧拉公式中蕴含的数学美。 欧拉公式包含着统一多样美。在欧拉公式中,第一次将指数函数、虚数单位i 与三角函数统一于一个优美而简洁的公式中。欧拉公式具有一目了然的简洁美,而愈简单就愈能体现真、善、美的统一。一位哲人说:美是真理的光辉。而欧拉公式就是向人们永远发出熠熠夺目的真理光辉的典范!举世公认的科学巨匠爱因斯坦曾经宣称我们在寻求一个能把观察到的事实联结到一起的思路体系,它将具有最大可能的简单性.我们说.欧拉已经寻求到了一个美妙绝伦的公式,它在把指数函数、三角函数和虚数联结到一起时,就具有了最大可能的简单性。 欧拉公式具有和谐奇异的美。令πθ=,得到01=+πi e ,式中出现了五个常数 e,i,π ,1 ,0,它们都是自然科学中十分重要的常数。在法国巴黎的发明宫中,有一个数学史陈列室,其中在古代数学与近代数学部分的间壁培上,就悬挂着这个公式,这是非常发人深思的,这个公式散发着奇花异草般的芳香,表砚出惊人的数学奇异美:π和e 是重要的超越数.-1与i.又标志着数学发展的两个重要阶段—数的概念由正数扩展到负数,由实数扩展到虚数,和谐美与奇异美对立统一于一体。 欧拉公式还具有动态平衡美。数学的动态平衡美,反映出事物的量变到质变的规律,若将欧拉公式展开成幂级数形式就不难看出其动态美了,事实上欧拉公式的多样统一美与和谐奇异美也是幂级数收敛于和函数的极限过程的动态平衡美的结果。 2. 勾股定理 大体上勾股定理可以从两方面描述: 1.从代数角度叙述:直角三角形两直角边的平方和等于斜边的平方.如果用a 、b 和c 分别表示直角三角形的两直角边和斜边,那么a2 + b2=c2。 2.从几何角度叙述:以直角三角形斜边为边的正方形的面积等于以直角三角形两直角边为边的正方形的面积和。如上所述,该定理内容精准、清晰、言简意赅,在用最平实的语言阐明道理的同时,留给读者充足的想象空间,引发其积极思考.其中公式a2 + b2 = c2形式整齐、和谐、简单、美观,给人以美的感受.另外,此定理的条件恰到好处,多一个太多,少一个

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

哈工大数学实验实验报告

实验一 2(1)(a) 程序语句: a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5]; b=[0;2;-1;6]; inv(a)*b (b) 程序语句: a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5]; b=[0;2;-1;6]; a\b (2)

4个矩阵的生成语句: e=eye(3,3); r=rand(3,2); o=zeros(2,3); s=diag([1,2]);%此为一个任取的2X2 矩阵 矩阵a 的生成语句: a=[e r;o s] 验证语句: a^2 b=[e r+r*s; o s^2]

(3)(a) 生成多项式的语句:poly ([2,-3,1+2i,1-2i,0,-6]) (b) 计算x=0.8,-x=-1.2 之值的指令与结果: 指令:polyval([1,5,-9,-1,72,-180,0],0.8) 指令:polyval([1,5,-9,-1,72,-180,0],-1.2)

(4) 求a的指令与结果:指令:a=compan([1,0,-6,3,-8]) 求a的特征值的指令与结果:指令:eig(a) roots(p)的指令与结果为: 指令:roots([1,0,-6,3,-8])

结论:利用友元阵函数a=company(p) 和eig(a) 可以与roots(p)有相同的作用,结果相同。 (5) 作图指令: x=0:0.01:1.5; y=[x.^2;x.^3;x.^4;x.^5]; plot (x,y) 作图指令: x=0:0.01:10; y1=x.^2; y2=x.^3; y3=x.^4; y4=x.^5; subplot(2,2,1),plot (x,y1),title('x^2') subplot(2,2,2),plot (x,y2),title('x^3') subplot(2,2,3),plot (x,y3),title('x^4') subplot(2,2,4),plot (x,y4),title('x^5')

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

相关主题
文本预览
相关文档 最新文档