当前位置:文档之家› 氨气NH3分析仪

氨气NH3分析仪

氨气NH3分析仪
氨气NH3分析仪

氨气NH3分析仪

氨气NH3分析仪(SK-600-NH3)是一款采用模块化设计、具有智能化传感器检测技术、整体隔爆(d)结构、固定安装方式的有毒气体检测仪。标准配置为带点阵LCD液晶显示、三线制4~20mA模拟和RS485数字信号输出,可选配置为可编程开关量输出等模块,根据用户需求提供定制化产品,还支持输出信号微调等功能,方便系统组网及维护。可检测NH3、NH3S、NH3、NH3、NH3、SNH3、HCN、NH3、NNH3、NH3、ClNH3、ET O等多种有毒有害气体,详情可咨询东日瀛能。同时我司氨气NH3传感器销往:河北省、山东省、辽宁省、黑龙江省、吉林省、甘肃省、青海省、河南省、江苏省、湖北省、湖南省、江西省、浙江省、广东省等全国各地。

(注意:氨气NH3传感器(SK-600-NH3)在不同的应用环境或行业有不同的别名,如氨气NH3检测仪氨气NH3变送器氨气NH3探测器氨气NH3探头便携式氨气NH3探头氨气NH3检测装置)

特点

■智能化EC传感器,采用本质安全技术,可支持多气体、多量程检测,并可根据用户需求提供定制化产品,无需工具可实现传感器互换、离线标定和零点自校准

■智能的温度和零点补偿算法,使仪器具有更加优良的性能具有很好的选择性,避免了其他气体对被检测气体的干扰

■多种信号输出,既可方便接入PLC/DCS等工控系统,也可以作为单机控制使用

■超大点阵LCD液晶显示,支持中英文界面

■免开盖,红外遥控器操作,单人可维护

■本地报警指示,一体化声光报警器(选配)

■仪器具有超量程、反极性保护,能避免人为操作不当引起的危险

■丰富的电气接口,可供用户选择

■通过ATNH3、UL、CSA等认证,具有国际化高端品质

(同时对于不同行业的针对性应用有:氨气NH3报警装置高精度氨气NH3分析仪氨气NH3检测模块氨气NH3传感器RS485信号输出氨气NH3报警器4-20mA信号输出氨气NH3报警器固定式带液晶显示型氨气NH3检测仪带显示带声光报警器固定式氨气NH3检测仪等产品模式)

东日瀛能科技氨气NH3探头厂家氨气NH3探头价格详情可咨询东日瀛能SK-600-NH3

技术参数:

■产品名称:氨气NH3报警器SK-600-NH3

■检测气体:氨气NH3

■检测原理:电化学原理、催化燃烧原理

■检测范围:0-10ppm、0-20ppm、0-50ppm、0-200ppm、0-5000pp等任意可选

■分辨率:0.1ppm、0.1ppm、0.2ppm、1ppm、25ppm等可选

■检测方式:扩散式、泵吸式可选

■显示方式:液晶显示

■输出信号:用户可根据实际要求而定,最远可传输2000米(单芯1mm2屏蔽电缆)

①两线制4-20mA电流信号输出(三线制可选)

②RS-485数字信号输出,配合RS232转接卡可在电脑上存储数据(选配)

③2组继电器输出:无源触电容量220VAC3A,24VDC3A(选配)

④报警信号输出:现场声光报警,报警声音:<90分贝(选配)

■检测精度:≤±2%(F.S)

■重复性:≤±1%

■零点漂移:≤±1%(F.S/年)

■报警方式:声、光报警

■响应时间:小于20S

■恢复时间:小于20S

■防爆类型:本质安全型

■防爆标志:NH3d II C T6Gb

■防护等级:IP65

■直接读数:PPM、%LEL、%VOL任意设定

■传感器寿命:24个月

■使用环境:温度-20℃~+70℃;相对湿度≤95%RH(非凝露)

■工作电源:24VDC(正常工作电压范围:10~30VDC)

■外型尺寸(含探枪长度):170×140×80mm

■重量:1.5Kg

■壳体材料:不锈钢/铝合金

■标准附件:说明书、合格证、发货清单、保修卡、包装箱、220V转24V电源(选配)、RS485转RS232(接电脑用为可选)

设计标准

GB50493-2009《石油化工企业可燃气体和有毒气体检测报警设计规范》

GB12358-2006《作业场所环境气体检测报警仪通用技术要求》

执行标准

GB3836.1-2010《爆炸性气体环境用电气设备第一部分:通用要求》

GB3836.2-2010《爆炸性气体环境用电气设备第二部分:隔爆型“d”》

Q/SK01-2013《深圳市东日瀛能科技有限公司企业执行标准》

【东日瀛能科技始终走在行业前端,是深圳最早从事气体检测仪生产的厂家之一;中国气体检测仪著名品牌;国家防爆合格证取得单位;产品多样(气体传感器,气体传感器模块,红外气体传感器,气体报警器,便携式气体检测仪等)技术精湛、售后完善】

东日瀛能科技将氨气NH3传感器将安全送往云南省、福建省、台湾省、海南省、山西省、四川省、陕西省、贵州省、安徽省、重庆、北京、上海、天津、广西、内蒙古、西藏、新疆、宁夏等每一处需要的地方

应用场所

石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、医药科研、制药生产车间、烟草公司、环境监测、学校科研、楼宇建设、消防报警、污水处理、工业气体过程控制、锅炉房、垃圾处理厂、隧道施工、输油管道、加气站、地下燃气管道检修、室内空气质量检测、危险场所安全防护、航空航天、军用设备监测等。

东日瀛能科技SK-600-NH3关键字:

氨气NH3检测仪氨气NH3变送器氨气NH3探测器氨气NH3报警器氨气NH3探头氨气NH3探头厂家氨气NH3探头价格便携式氨气NH3探头氨气NH3检测装置氨气NH3报警装置高精度氨气NH3分析仪氨气NH3检测模块氨气NH3传感器RS485信号输出氨气NH3报警器4-20mA信号输出氨气NH3报警器固定式带液晶显示型氨气NH3检测仪带显示带声光报警固定式氨气NH3检测仪

东日瀛能科技-氨气NH3气体传感器专家告诉你:

氨气NH3泄漏事故现场处置方案

一、目的

(1)为了及时控制和消除氨气NH3设备泄漏事故的危害,最大限度地减少事故造成的人员伤亡和财产损失

本方案适用于公司内的氨气NH3制冷系统、冷库突发氨气NH3(氨气NH3)泄漏、火灾、爆炸事故的应急处臵和救援

【氨气NH3检测仪氨气NH3变送器氨气NH3探测器氨气NH3报警器氨气NH3探头氨气NH3探头厂家氨气NH3探头价格便携式氨气NH3探头氨气NH3检测装置氨气NH3报警装置】

二、泄露类型和危害程度分析

1.氨气NH3的危险特征分析

1)氨气NH3的物理化学性质:氨气NH3是一种无色透明而具有刺激性气味的气体。极易溶于水,水溶液呈碱性。相对密度0.60(空气=1)。气氨气NH3加压到0.7—0.8MPa时就变成氨气NH3,同时放出大量的热,相反液态氨气NH3蒸发时要吸收大量的热,所以氨气NH3可作致冷剂,接触氨气NH3可引起严重冻伤,因其价廉的特点在制冰和冷藏行业得到广泛使用。

2)危险性类别:第2、3类有毒气体,8类腐蚀品。火灾爆炸危险性类别为乙类。氨气NH3与空气混合到一定比例时,遇明火能引起爆炸,其爆炸极限为15.5~25%。

3)氨气NH3具有较高的体积膨胀系数,满量充装氨气NH3的容器,在0—60℃范围内,氨气NH3温度每升高1℃,其压力升高约1.32—1.80MPa,因而氨气NH3容器超装极易发生爆炸。

2.氨气NH3泄漏危害分析

(1)低浓度氨气NH3对粘膜有刺激作用。高浓度氨气NH3可引起组织溶解性坏死、皮肤及上呼吸道粘膜化学性炎症及烧伤、肺充血、肺水肿及出血等。

(2)眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

(3)吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

【东日瀛能科技:高精度氨气NH3分析仪氨气NH3检测模块氨气NH3传感器RS485信号输出氨气N H3报警器4-20mA信号输出氨气NH3报警器固定式带液晶显示型氨气NH3检测仪带显示带声光报警固定式氨气NH3检测仪】

(4)轻度中毒:眼、口有辛辣感,流涕、咳嗽,声音嘶哑、吞咽困难,头昏、头痛,眼结膜充血、水肿,口唇和口腔、眼部充血,胸闷和胸骨区疼痛等。

(5)重度中毒:吸入高浓度氨气NH3时,可引起喉头水肿、喉痉挛,发生窒息。外露皮肤可出现II度化学灼伤,眼睑、口唇、鼻腔、咽部及喉头水肿,粘膜糜烂、可能出现溃疡。

(6)环境危害。对环境有危害,对大气可造成污染,对动植物造成冻伤。排放要溶解水后,送往专业部门处理。

3.容易发生事故的设备部位

(1)氨气NH3储罐的气相进出口、液相进出口、排污口、放散扣、液面计借口、压力表借口等接管、阀门、法兰连接密封等部位失效或泄漏。

(2)氨气NH3管道法兰、阀门、法兰连接密封部位失效或泄漏;

(3)氨气NH3罐车装卸用软管泄漏或爆裂;

(4)氨气NH3瓶泄漏或爆炸。

注意:

泄露现场应急监测方法可采用:东日瀛能科技便携式氨气NH3气体检测仪

NLAM1512氨逃逸在线分析仪用户手册2

氨逃逸率在线监测系统(NLAM1512) 用 户 手 册 北京新叶能源科技有限公司 2015年12月

前言 尊敬的用户,在您开始使用氨逃逸率在线监测系统(NLAM1512)前,请仔细阅读本手册,本手册旨在为客户介绍本产品及产品使用说明,更好的服务客户,本手册未尽事宜,请详询我公司技术人员,本手册最终解释权为我公司所有。

目录 1 安全说明 (1) 1.1 安全说明的目的 (1) 1.2本文的安全指示 (1) 1.3 容许的使用者 (2) 1.4 正确的处理 (2) 1.5 安全警告 (3) 1.5.1 避免伤人和仪器损坏的基本安全警告 (3) 1.5.2 用电的安全警告 (3) 1.5.3 测量介质的防护 (3) 2系统简介 (3) 2.1系统概述 (3) 2.2 技术原理 (5) 2.3 性能参数 (5) 3 系统组成及功能说明 (6) 3.1 系统组成 (6) 3.2功能说明 (7) 3.2.1测量探头 (7)

3.2.3发射接收单元 (8) 3.2.4计算控制单元 (9) 3.2.5附属设备 (10) 3.3流路原理 (10) 3.4软件运行流程 (11) 4安装条件及说明 (12) 4.1测点位置选取 (12) 4.2法兰接口焊接 (12) 4.3管线敷设 (13) 5启动 (15) 5.1启动主程序 (15) 5.2 参数设置 (15) 5.3 系统检测 (15) 6维护和维修 (16)

1 安全说明 描述在本手册的NLAM1512氨逃逸在线分析仪的说明和指南适用于所有用户。 1.1 安全说明的目的 ◆避免伤人。 ◆避免破坏环境、安装测量点的周围环境和其它设备。 ◆确保测量系统的正常操作和可靠性。 1.2本文的安全指示 除了本章节的总说明适用于整个测量系统手册外,对每个部分还有安全提示。通常由下列符号表示: 警告:电对人体可能有伤害。 警告:对人体可能有伤害,如机械的、气体、化学 品等等。 可能破坏环境,周围设备,或引起仪表功能故障。

氨逃逸分析仪

氨逃逸分析仪集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

关于脱硝氨逃逸在线监测系统的发展 目前国内脱硝系统陆续投运,但氨逃逸率测量的准确性始终是个问题,以下资料权作抛砖引玉,期望各电厂早日找到可靠的氨逃逸测试装置,免受脱硝负作用之沉重担忧。 1、脱硝氨逃逸在线监测系统发展史 第一代技术:稀释取样法,代表厂家:热电(ThermoFisher) 第二代技术:原位式激光分析法,代表厂家:雪迪龙(Siemens代理商);仕富梅(Servomex);纳斯克(LaserGas);优胜(Unisearch);杭州聚光(国 产掌握核心技术) 第三代技术:抽取式激光分析法,如进口Horiba、国内厂家北京莱纳克(国产掌握核心技术);杭州聚光(研发中)等 注:目前国产分析仪存在使用业绩不多,需进一步得到权威的试验院现场进行实际比对 测试验证。 2、氨逃逸监测技术介绍 (一)第一代技术:稀释采样法 (1)原理:取样烟气经压缩空气按比例稀释后送入烟气分析仪分析。分析方法是化学发光法。当样品中的NO与O3混合时生成激发态的NO2与O2。激发态NO2在返回基态时发出红外光。这种发光的强度与NO的浓度成线性比例关系。 由于该反应只能由NO完成,因此要测量氨逃逸需要把烟气中NH3转化为NO。转化过程通过转化炉完成。 样气进入分析仪后分2路: 一路经过750 ℃的不锈钢转化炉,所有的NH3和NO2都被氧化成了NO,然后进入烟气分析仪测得NT(总氮浓度)。

第二路经过氨去除器后得到不含氨的样气。其中一路经325 ℃的转化炉把NO2还原成NO,由分析仪测得NOx浓度。另一路不经过任何转化进入分析仪,测得NO浓度。这两路的NO经过计算得出NOx的总含量。 最终可计算得到氨逃逸量:NH3=NT-NOx (2)现场专工反馈问题: a)多道工序的复杂性,是否能保证此方法的稳定性。 b)氨的氧化吸附损失,以及多层计算公式的多变性,能否保证其准确 性。 c)整个工序无参考物进行准确性对比,检测数据不可考证。 (3)第一代技术淘汰原因: a)烟气经过750℃转化炉将NH3、NO2氧化成NO,这里有一个转化率问 题,高温下探头和NH3的接触反应、NH3的吸附和氨盐的形成,转化 过程中有5%-10%的烟气消耗,导致检测不准确。 b)氨去除器不能保证完全除去氨气,2路中的1路经325 ℃的转化炉把 NO2还原成NO,不能保证完全性,同时NO发出的红外光检测存在偏 差。 c)氨与不同物质接触在不同的温度下转化为NO的比率有很大差异。(二)第二代技术:原位式激光分析法 (1)原理:利用激光的单色性以及对特定气体的吸收特性进行分析。一般设计成探头型的结构,直接安装在烟道上。一般发射接收(R/S)单元安装在烟道一侧(对角安装原位式)或两侧,激光通过发射端窗口进入烟道,被接收端反射或接收后,进入分析仪。发射光通过烟气时对NH3的吸收信息保留在光信号中,即形成吸收光谱,通过对吸收光谱的分析最终得到NH3的浓度信号。

氨逃逸在线监测系统技术方案

氨逃逸在线监测系统技术方案 XXX科技股份有限公司 年月

目录 一、总则 (1) 二、系统综述 (2) 1、系统组成 (2) 2、仪器监测原理 (3) 3、仪器技术指标 (5) 4、系统功能结构 (6) 三、项目实施计划及参与人员 (8) 1、项目实施进度计划 (8) 2、项目配置主要工作人员 (9) 3、项目实施分工表 (11) 四、施工及系统安装调试方案 (11) 1、工程概况 (11) 2、工程内容 (12) 3、仪器室的布局方案 (12) 4、CEMS的安装施工方案 (13) 5、施工安全措施 (15) 6、系统验收 (16) 7、技术培训 (16) 五、质量及售后服务承诺书 (18) 1、质量及售后服务承诺 (18) 2、售后服务内容 (18) 3、技术难题的解决 (19) 4、售后服务热线 (19) 5、售后服务流程图 (19)

一、总则 1、本方案适用于氨逃逸连续监测系统,其内容包括该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 2、本方案中提出了最低限度的技术要求,我方提供满足本方案书和所列标准要求的高质量产品及其相关服务。对国家有关安全、环保等强制性标准,将满足相关要求。 我方在设备设计和制造中所涉及的各项规程,规范和标准遵循现行 GB13223-2003 火电厂大气污染物排放标准 HJ/T212-2005 污染源在线自动监控(监测)系统数据传输标准 HJ/T75-2007 固定污染源烟气排放连续监测技术规范 HJ/T76-2007 固定污染源烟气排放连续监测系统技术要求及检测方法 SDJ9-87 测量仪表装置设计技术规程 NEMA-ICS4 工业控制设备及系统的端子板 NEMA-ICS6 工业控制装置及系统的外壳 DB-50065 交流电气装置的接地设计规范 IEC801-5 防雷保护设计规范 UL1778 美国电器系列安全指标 IEC61000 电磁兼容标准 SDJ279-90 电力建设施工及验收技术规范热工仪表及控制装置篇 本规范书所使用的标准如与需方所执行的标准有不一致时,将按较高标准执行。 3、设备采用的专利涉及到的全部费用均被认为已包含在设备报价中,我方将保证需方不承担有关设备专利的一切责任。 4、我公司承诺的设备测量的技术方法为:原位抽取法 5、本技术说明书的最终解释权归XXX科技股份有限公司所有。

脱硝氨逃逸浓度监测技术分析_康玺

脱硝氨逃逸浓度监测技术分析 康玺,吴华成,路璐,钟智坤 (华北电力科学研究院有限责任公司,北京100045) 摘要:目前国内外用于烟气脱硝系统氨逃逸监测的方法主要包括在线仪器分析法和离线手工分析法两大类。本文在查阅大量氨逃逸监测技术相关资料的基础上,重点针对原位式激光分析法、稀释取样法、抽取式激光分析法等在线氨逃逸监测技术从工作原理、优缺点等方面进行综合论述;对靛酚蓝分光光度法、离子选择电极法、纳氏试剂分光光度法、容量法、离子色谱法等烟气采样离线分析法的分析原理、分析精度等方面进行简要论述。为电力企业了解脱硝氨逃逸监测原理、设备选取、结果分析等方面提供理论基础。 关键词:火电厂;脱硝;氨逃逸;监测 中图分类号:TM621.8文献标识码:B DOI:10.16308/j.cnki.issn1003-9171.2015.01.013 Analysis on Denitration Ammonia Escape Monitoring Technology Kang Xi,Wu Huacheng,Lu Lu,Zhong Zhikun (North China Electric PowerResearch Institute Co.Ltd.,Beijing100045,China) Abstract:There are two types of ammonia escaping monitoring technologies as online instrument analysis and sam-pling and off-line analysis of gas.In this paper,specific method of the two types were aggregated and compared.The laser in situ analysis,dilution sampling method and removable laser analysis belong to online analysis type,while the off-line analysis type includes indophenol blue spectrophotometry method,ion selective electrode method,Nessler’s reagent spectrophotometric method,and volumetric method and ion chromatography method.Theories and application features of these methods were discussed,aimed to provide the theory basis for power enterprise to understand and apply about ammonia escaping monitoring technologies. Key words:power plant,denitration,ammonia escape,monitoring 1脱硝氨逃逸由来及危害 在火力发电厂锅炉脱硝技术中,选择性催化 还原法(SCR)为目前应用最多,最成熟、最有效 的一种烟气脱硝技术[1-2]。基本原理为通过向反 应器内注入NH3与氮氧化物发生反应,产生N2 和H2O[3]。主要反应方程式如下: 4NO+4NH 3+O 2 →4N2+6H2O 2NO 2+4NH 3 +O 2 →3N2+6H2O 6NO 2+8NH 3 →7N2+12H2O NO+NO 2+2NH 3 →2N2+3H2O 从某种意义讲,SCR反应器就是氨反应器。生产过程中,氨注入得过少,就会降低NOx的脱除效率;氨注入得过量,不仅将使成本增加,反而因为过量的氨导致NH3逃逸出反应区,逃逸的 NH 3会与烟气中的SO3发生副反应生成硫酸氢 铵和硫酸铵。还会导致以下几个问题:(1)空气 预热器换热面的腐蚀;(2)飞灰污染;(3)催化剂 的腐蚀;(4)环境污染。其中,最主要的是对空气 预热器换热面的腐蚀和对飞灰品质的影响[4-5]。 为保障脱硝系统的经济、高效运行,在 DL/T260—2012燃煤电厂烟气脱硝装置性能验 收试验规范中明确规定氨逃逸浓度为一项重要 的性能考核指标,必须对氨逃逸浓度进行严格的 监测和控制[6]。我国目前已建、在建和科研设计 中的氨逃逸浓度一般要求不超过3?10-6。 2氨逃逸分析方法 脱硝氨逃逸浓度的量级一般都是几个ppm, 对其准确测量比较困难。目前国内外用于烟气 脱硝系统氨逃逸监测的方法主要有在线仪器分 析法和离线手工采样分析法。在线仪器分析法

氨逃逸分析仪教学资料

氨逃逸分析仪

关于脱硝氨逃逸在线监测系统的发展 目前国内脱硝系统陆续投运,但氨逃逸率测量的准确性始终是个问题,以下资料权作抛砖引玉,期望各电厂早日找到可靠的氨逃逸测试装置,免受脱硝负作用之沉重担忧。 1、脱硝氨逃逸在线监测系统发展史 第一代技术:稀释取样法,代表厂家:热电(Thermo Fisher) 第二代技术:原位式激光分析法,代表厂家:雪迪龙(Siemens代理商);仕富梅 (Servomex);纳斯克(LaserGas);优胜(Unisearch);杭州聚光(国产掌握 核心技术) 第三代技术:抽取式激光分析法,如进口Horiba、国内厂家北京莱纳克(国产掌握核心技术);杭州聚光(研发中)等 注:目前国产分析仪存在使用业绩不多,需进一步得到权威的试验院现场进行实际比对 测试验证。 2、氨逃逸监测技术介绍 (一)第一代技术:稀释采样法

(1)原理:取样烟气经压缩空气按比例稀释后送入烟气分析仪分析。分析方法是化学发光法。当样品中的NO与O3混合时生成激发态的NO2与O2。激发态NO2在返回基态时发出红外光。这种发光的强度与NO 的浓度成线性比例关系。由于该反应只能由NO完成,因此要测量氨逃逸需要把烟气中NH3转化为NO。转化过程通过转化炉完成。 样气进入分析仪后分2路: 一路经过750 ℃的不锈钢转化炉,所有的NH3和NO2都被氧化成了NO,然后进入烟气分析仪测得NT(总氮浓度)。 第二路经过氨去除器后得到不含氨的样气。其中一路经325 ℃的转化炉把NO2还原成NO,由分析仪测得NOx浓度。另一路不经过任何转化进入分析仪,测得NO浓度。这两路的NO经过计算得出NOx的总含量。 最终可计算得到氨逃逸量:NH3=NT-NOx (2)现场专工反馈问题: a)多道工序的复杂性,是否能保证此方法的稳定性。 b)氨的氧化吸附损失,以及多层计算公式的多变性,能否保证其准确性。 c)整个工序无参考物进行准确性对比,检测数据不可考证。 (3)第一代技术淘汰原因: a)烟气经过750℃转化炉将NH3、NO2氧化成NO,这里有一个转化率问题,高 温下探头和NH3的接触反应、NH3的吸附和氨盐的形成,转化过程中有 5%-10%的烟气消耗,导致检测不准确。 b)氨去除器不能保证完全除去氨气,2路中的1路经325 ℃的转化炉把NO2 还原成NO,不能保证完全性,同时NO发出的红外光检测存在偏差。 c)氨与不同物质接触在不同的温度下转化为NO的比率有很大差异。 (二)第二代技术:原位式激光分析法

氨逃逸设备工艺介绍

本分析仪依据最新理论物理成果超高频常温超导谐振原理成功研发,采用专利技术以精湛工艺制造而成。探测器采用常温超导稀土金属(铋)元件高精度集成,在分析仪进入正常检测状态时,探测器根据中央处理器发出的探测指令在探测区域形成超高频常温超导谐振区,中央处理器以常温超导稀土金属(铋)元件固有的超高频常温超导谐振系数对一切经过此区域的气体成分进行探测分析,探测区域与被探测过程样气形成一个相对恒定的超高频常温超导谐振探测场。当氮氧化物及氧在被测区内出现时整个恒定的超高频常温超导谐振探测场就会被微弱扰动,中央处理器瞬间捕捉到该微弱扰动信号进行数字化分析并迅即转换成模拟信号输出。由于常温超导稀土金属(铋)元件固有的超高频常温超导谐振特性(即超高频常温超导谐振系数)只对氮氧化物及氧敏感,所以超高频常温超导谐振探测场只对上述气体的微弱扰动产生信号反应,而其他气体成分则无此特性。基于该原理可在极短时间内获取所被测气体成分信息,为下一步工作提供了可靠的数据保障。 技术特点: 对恶劣环境适应能力强、无需采样预处理、系统成本低、维护工作量少、使用寿命长、响应速度非常快、实现数据的远程传输 应用领域: 火力发电厂脱硫脱硝控制(FDG, SCR, SNCR) 脱硝控制工艺中氨的逃逸率在0.003 ‰-0.005 ‰ 火力发电厂SNCR/SCR烟气脱硝技术相结合 各种锅炉、熔炉、窑炉的燃烧控制 石油和煤化工企业 CEMS排放监测 产品图片:

安装图片 安装图片

安装图片 安装图片

DCS监测画面 DCS安装图片

概述 KC-3000氨逃逸在线分析系统采用可调谐半导体激光吸收光谱(TDLAS)技术,分析系统主要由分析系统柜、伴热管线、取样探头单元三部分组成,图1.1为图片。 其中分析系统柜由气体加热盒、流路单元、电气单元三部分组成,分为上柜体和下柜体,图1.2为图片

氨逃逸分析仪

氨逃逸分析仪(总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

关于脱硝氨逃逸在线监测系统的发展 目前国内脱硝系统陆续投运,但氨逃逸率测量的准确性始终是个问题,以下资料权作抛砖引玉,期望各电厂早日找到可靠的氨逃逸测试装置,免受脱硝负作用之沉重担忧。 1、脱硝氨逃逸在线监测系统发展史 第一代技术:稀释取样法,代表厂家:热电(Thermo Fisher) 第二代技术:原位式激光分析法,代表厂家:雪迪龙(Siemens代理商);仕富梅 (Servomex);纳斯克(LaserGas);优胜(Unisearch);杭州聚光(国产掌握 核心技术) 第三代技术:抽取式激光分析法,如进口Horiba、国内厂家北京莱纳克(国产掌握核心技术);杭州聚光(研发中)等 注:目前国产分析仪存在使用业绩不多,需进一步得到权威的试验院现场进行实际比对 测试验证。 2、氨逃逸监测技术介绍 (一)第一代技术:稀释采样法 (1)原理:取样烟气经压缩空气按比例稀释后送入烟气分析仪分析。分析方法是化学发光法。当样品中的NO与O3混合时生成激发态的NO2与O2。激发态NO2在返回基态时发出红外光。这种发光的强度与NO 的浓度成线性比例关系。由于该反应只能由NO完成,因此要测量氨逃逸需要把烟气中NH3转化为NO。转化过程通过转化炉完成。 样气进入分析仪后分2路: 一路经过750 ℃的不锈钢转化炉,所有的NH3和NO2都被氧化成了NO,然后进入烟气分析仪测得NT(总氮浓度)。 第二路经过氨去除器后得到不含氨的样气。其中一路经325 ℃的转化炉把NO2还原成NO,由分析仪测得NOx浓度。另一路不经过任何转化进入分析仪,测得NO浓度。这两路的NO经过计算得出NOx的总含量。 最终可计算得到氨逃逸量:NH3=NT-NOx

LDS6激光气体分析仪在重型发动机测试平台氨逃逸测量-西门子中国

·1 论文编号:E070924003 LDS6激光气体分析仪在重型发动机测试平台氨逃逸测量的应用 Application of LDS6 Laser Gas Analyzer for NH3 Slip Measurement in Heavy Engine Test (西门子(中国)有限公司 A&D SC PA ,上海 200120) 刘骁 摘 要:本文介绍了西门子LDS6型激光气体分析仪的诸多软、硬件特点,及在重型发动机测试平台 逃逸氨测量应用中的优势。 关键词:可调谐激光二极管;原位式测量;重型柴油发动机测试;SCR 脱硝;氨逃逸 Abstract: Introduce the software and hardware features of LDS6 laser gas analyzer, and it’s advantage in NH3 slip measurement in heavy engine SCR DeNOx application. Key words: TDLAS;In-situ measurement;Heavy diesel engine test;SCR DeNOx;NH3 Slip 1.项目简介 汽车发动机排放是环境污染的重要源头之一,解决方法有改善发动机燃烧效率、降低有害气体的生成量,以及将排放气体中的有害成分(如氮氧化物)分解为无害的气体。对于发动机排放气体进行脱硝处理以降低排放气体中氮氧化物排放量是发动机研发过程中必须满足的要求。 重型柴油发动机具有较高的排放量,对于重型发动机的脱硝处理均采用SCR(选择性还原)方法。在紧邻发动机排放口的下游充填金属催化剂,通过向炙热的发动机尾气喷注液态氨或尿素,使得尾气中的氮氧化物在催化剂表面转化成无害的水和氮气。SCR 脱硝的效果受多种因素影响,氨(或尿素)的注入量不够,尾气中的氮氧化物不能被有效地还原,排放气体中仍有大量的污染成分;如果注入量过多,尾气中便含有大量的NH3,也会污染环境。在重型柴油发动机研发的过程中非常重要的一环就是建立发动机不同工作状态与氨(或尿素)注入量关系,使重型柴油发动机的SCR 脱硝能够得到有效的控制。 博世(Bosch )集团是全球第二大汽车技术供应商,2004年博世公司和无锡威孚集团有限公司联合投资于无锡成立博世汽车柴油系统股份有限公司,并建立了发动机研发技术中心,从事发动机动态测量、 底盘动态测量、排放测量等研究工作。博世汽车柴油系统股份有限公司的汽车&发动机试验室于2006年底采购1套西门子LDS6激光气体分析仪,用 于尾气中氨逃逸的测量,进而建立柴油发动机脱硝模型以及 催化剂性能研究。 广西玉柴集团是中国最主要的柴油机、工程机械、汽车化工、汽车零部件、环保机械、专用汽车等机械产品生产和销售商之一,拥有全球最大的独立发动机生产基地。玉柴集团的发动机研究中心也在2006年初订购1套西门子LDS6激光气体分析仪,同样用于尾气中氨逃逸的测量。 2.系统构成 LDS6 激光气体分析仪是SIEMENS 系列气体分析仪表的重要组成部分,采用原位测量(in-situ )方式,无需采样与样气处理系统,直接在安装点完成分析。整个系统由中央处理单元、发射探头、接收探头与复合光缆组成。 激光光源位于中央处理单元中,所发激光由光缆传至发射探头,激光穿过被测气体后被接收探头检测。检测信号传回中央处理单元进行处理、分析与显示。中央处理单元还承担人机工作界面和输入输出的功能。 LDS6的发射探头与接收探头直接安装于现场分析管线上。两者均采用模块化设计,绝大多数硬件可以互换。在重型发动机测试平台的应用中待侧管线直径较小,直接在管线两侧安装会造成光程过短,影响分辨率。此类应用需采取流通池的安装方式,在不改变原有管径的基础上增加光程,确保测量分辨率(见图1)。 西门子LDS6激光分析仪选择使用光缆传输信号,可以

氨逃逸分析技术的对比及探讨

氨逃逸分析技术的对比及探讨 随着国内各行业“超低排放”改造的呼声增大,作为烟气脱硝过程SCR/SNCR 的关键工艺指标,氨逃逸检测分析的需求也日益增多。目前现有氨逃逸分析技术主要基于气体吸收光谱技术,根据光源波长不同可分为中红外激光、近红外激光、紫外差分3种吸收光谱分析技术。本文主要对比探讨这3种技术在现场使用中存在的优缺点。 近红外(NIR)激光吸收光谱技术: 由于氨分子在近红外波段(800-2500nm)的吸收峰线强度很低,如图1所示,约只有中红外波段的0.01倍,为4x10-21cm-1/(molec·cm-2)。因此该技术通常需要几十次反射形成约30m的长光程吸收池来增强氨气对激光的吸收以达到 0.1ppm的检测精度,如图2所示为近红外激光吸收光谱技术的检测原理,可调谐激光器发射的为波长1512nm或1531nm的近红外激光。但是,随之长光程也带来了以下3点不可避免的缺点。 图1 NH3在近红外波段(蓝色框)比中红外波段(红色框)的吸收谱线弱近100倍

图2 近红外激光吸收光谱原理示意图 1)调光难度升级。为防止烟气中的硫酸氢铵(ABS)冷凝,分析仪中使用的长光程气体吸收池通常加热至180~250℃高温(高于ABS熔点),对光学镜片和机械机构存在一定的热胀冷缩效应,又在20~30m长光程下,会对光路造成一定的热致偏差,现场经常需要矫正光路,对仪器维护的专业要求较高。 2)可靠性差。长光程吸收池的整体通光率与镜片的单次反射率成幂指数关系:E=R^N,其中E为输出光与输入光功率比,R为镜片单次反射率,N为激光在池内反射次数;因此长光程吸收池的通光性能受镜片反射率变化的影响巨大,在SCR出口恶劣的烟气状况下,镜片反射率下降10%即可让长光程吸收池基本无光输出,造成探测器接收不到信号。例如:干净的镜片单次反射率可达97%,经30次反射,长光程吸收池的通光率为0.97^30≈60%;若镜片单次反射率降低到90%(现场运行一至两周就可能造成如图3所示的效果),通光率则剧降为0.9^30≈4%, 图3 采用多次反射长光程吸收池的光学镜片在脱硝工况运行下受腐蚀情况当然,输出激光光强急剧下降造成仪器的灵敏度、探测精度、以及数据可靠性等都大打折扣,甚至造成信号直接丢失。在SCR工况现场,ABS的沉积非常易附着于镜片表面,易影响表面反射率。

氨逃逸分析仪

关于脱硝氨逃逸在线监测系统的发展 目前国内脱硝系统陆续投运,但氨逃逸率测量的准确性始终是个问题,以下资料权作抛砖引玉,期望各电厂早日找到可靠的氨逃逸测试装置,免受脱硝负作用之沉重担忧。 1、脱硝氨逃逸在线监测系统发展史 第一代技术:稀释取样法,代表厂家:热电(Thermo Fisher) 第二代技术:原位式激光分析法,代表厂家:雪迪龙(Siemens代理商);仕富梅 (Servomex);纳斯克(LaserGas);优胜(Unisearch);杭州聚光(国产掌握 核心技术) 第三代技术:抽取式激光分析法,如进口Horiba、国内厂家北京莱纳克(国产掌握核心技术);杭州聚光(研发中)等 注:目前国产分析仪存在使用业绩不多,需进一步得到权威的试验院现场进行实际比对测试验证。 2、氨逃逸监测技术介绍 (一)第一代技术:稀释采样法 (1)原理:取样烟气经压缩空气按比例稀释后送入烟气分析仪分析。分析方法是化学发光法。当样品中的NO与O3混合时生成激发态的NO2与O2。激发态NO2在返回基态时发出红外光。这种发光的强度与NO 的浓度成线性比例关系。由于该反应只能由NO 完成,因此要测量氨逃逸需要把烟气中NH3转化为NO。转化过程通过转化炉完成。

样气进入分析仪后分2路: 一路经过750 ℃的不锈钢转化炉,所有的NH3和NO2都被氧化成了NO,然后进入烟气分析仪测得NT(总氮浓度)。 第二路经过氨去除器后得到不含氨的样气。其中一路经325 ℃的转化炉把NO2还原成NO,由分析仪测得NOx浓度。另一路不经过任何转化进入分析仪,测得NO浓度。这两路的NO经过计算得出NOx的总含量。 最终可计算得到氨逃逸量:NH3=NT-NOx (2)现场专工反馈问题: a)多道工序的复杂性,是否能保证此方法的稳定性。 b)氨的氧化吸附损失,以及多层计算公式的多变性,能否保证其准确性。 c)整个工序无参考物进行准确性对比,检测数据不可考证。 (3)第一代技术淘汰原因: a)烟气经过750℃转化炉将NH3、NO2氧化成NO,这里有一个转化率问题,高 温下探头和NH3的接触反应、NH3的吸附和氨盐的形成,转化过程中有 5%-10%的烟气消耗,导致检测不准确。 b)氨去除器不能保证完全除去氨气,2路中的1路经325 ℃的转化炉把NO2 还原成NO,不能保证完全性,同时NO发出的红外光检测存在偏差。 c)氨与不同物质接触在不同的温度下转化为NO的比率有很大差异。 (二)第二代技术:原位式激光分析法 (1)原理:利用激光的单色性以及对特定气体的吸收特性进行分析。一般设计成探头型的结构,直接安装在烟道上。一般发射接收(R/S)单元安装在烟道一侧(对角安装原位式)或两侧,激光通过发射端窗口进入烟道,被接收端反射或接收后,进入分析仪。发射光通过烟气时对NH3的吸收信息保留在光信号中,即形成吸收光谱,通过对吸

脱硝系统氨逃逸分析仪测量技术存在的问题及优化方案(新编版)

脱硝系统氨逃逸分析仪测量技术存在的问题及优化方案(新 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0966

脱硝系统氨逃逸分析仪测量技术存在的问题及优化方案(新编版) 摘要:介绍了目前2种常见的火电厂脱硝系统氨逃逸分析仪测量技术,着重分析了激光光谱测量和化学发光法测量技术中存在的问题和产生的原因,并提出了3种优化解决方案。方案提高了氨逃逸分析仪测量技术的可靠性和精准度,对日后氨逃逸分析仪的选型及运行维护具有一定参考价值。 0引言 自2006年开始,为适应更为严格的环保要求,我国燃煤机组已逐步加装了脱硝系统。作为典型的脱硝、除尘、脱硫三大火电机组烟气净化环保设施之一,脱硝装置是烟气净化的第一级装置,主要用于限制NOx的排放。原始的脱硝装置采用的是粗放式运行,为了控制NOx,脱硝装置往往喷氨过量,造成氨逃逸。逃逸的氨与烟气中

的SO3反应生成NH4HSO4,当烟温在后续烟道降低时NH4HSO4就会附着在空气预热器(以下简称空预器)和飞灰颗粒物表面,从而造成空预器的腐蚀和堵塞。NH4HSO4还会沉积并积聚在催化剂表面,引起催化剂的失活。氨逃逸还造成一定的资源浪费。因此,氨逃逸率作为脱硝运行状况的重要指标须由氨逃逸分析仪准确测量。 1氨逃逸分析仪基本原理 氨逃逸分析仪大多采取激光光谱测量或化学发光法测量技术。 1.1激光光谱测量技术 激光光谱测量技术采用可调谐半导体激光吸收光谱(TDLAS)进行测量。当激光二极管的光通过被测量气体时,其波长可调谐成被测气体的吸收波长,此光被调谐波长扫描,并由光二极管把透过的光信号记录下来,由计算单元计算吸收光的信号大小,进而得到气体的浓度。 1.2化学发光法测量技术 使用化学发光法测量的分析仪取样探头包含多个测量通道,分别为NO,NOx和NO-NO2-NH3通道。NOx通道配置了转换器,在325℃

优胜便携式氨逃逸分析仪使用指南20170808

优胜便携式氨逃逸分析仪使用指南 2017年8月8日 1.主要设备: 氨逃逸采样枪、抽气泵、激光仪、笔记本电脑、万用表、光纤、胶管、红光笔等。2.使用步骤: (1)首先将采样枪插入烟道测孔,为设备接通电源,保持装置绝对位置和相对位置稳定牢固,为手动调节光路做准备。 (2)连接采样泵。采样泵→胶管→采样枪,之后开启采样泵,保持进气。(注意:在调节光路时保持进气,在测试时保持抽气。当变更测试孔,拔出采样枪时,需开启旁路置换气体。)(3)连接红光笔,手动调节光路(粗调节)。连接顺序:红光笔接口→光纤(黄色)采样枪光纤接口。旋开伴热玻璃盖,将其放置旁边。(注意:此步骤虽然用于粗调节采样枪光路,但是至关重要,快速准确的调节能明显降低后续操作的难度。) (4)使用红光对准光路之后,拔出红光笔,包装收好,准备连接激光仪器。(注意:此步骤仅拔出红光笔一端的光纤接口,保留采样枪一端的光纤连接,切勿拔错接口。) (5)连接激光仪,细调节光路。接线顺序:激光仪光纤法兰→光纤(黄色)→采样枪光纤接口1。连接完毕之后,在采样枪光纤接口2处连接万用表,进行细调节光路,调至“20mA档位”,调节万用表,示数在2.5~3.5mA范围内为宜。 (6)将反射光信号输送到激光仪。接线顺序:反射光→采样枪光纤接口2→光纤(粉色)→激光仪上部接口。 (7)连接计算机。接线顺序:激光仪网线接口→网线→个人电脑网线接口。运行软件LasIRView读取光谱信息。(注意:此步骤用于验证数据的可靠性以及输出处理,非常重要,不可省略!) (8)拧紧采样枪上端的带有伴热功能的玻璃盖,开启采样泵,开始测试。(注意:此玻璃盖必须旋紧,确保密封,有利于加快置换气体的纯度与速度。) (9)采样结束。在计算机端保存采样数据,将必要的实验数据从主机端下载至个人电脑硬盘备份。 (10)关闭设备,断开电源,整理设备与配件,检查现场是否有遗留物品,待设备冷却后装箱。 (11)试验完毕,试验人员清点设备箱体,安全有序地搬运箱体离开测试地点。

氨逃逸检测系统工艺和技术参数

氨逃逸检测系统工艺和技术参数 我们采用当前最先进的NH3激光气体分析仪分析微量NH3。系统(包括测量池)采用全程加热,保证样品气体温度,防止有水析出而对NH3的大量溶解影响分析结果。探头 采用电加热过滤探头,在取样出就完成样品的净化,减小了后级预处理的负荷,大大降低 了器件的故障率。系统设计有探头自动反吹程序及仪表自动标零程序,正常运行后仅需要 正常的巡检即可。传输管线采用复合电伴热管缆,并控制在2m以内,整个预处理全部集成在高温加热盒内,系统紧凑以避免长距离传输管路对NH3的吸附。 ND-ATY500型安逃逸检测系统是西安南斗电子科技有限公司具有多年在国内外从事可调谐半导体激光光谱分析技术研发、掌握TDLAS核心技术并积累丰富经验的技术专家、 研发团队精心打造而成的高端气体监测设备。测量快速、准确、稳定、不受背景气体干扰。 NH3分析仪是西安南斗电子科技有限公司采用国际最先进的可调谐半导体激光光谱技术研制而成。以高稳定性、低噪声的可调谐激光器为光源,可有效克服背景气体、粉尘等 因素干扰,实现准确、快速测量。 ?适应高温、强腐蚀性气体的在线检测,采用非接触光学检测技术,对各类高温气体进行直 接分析,针对各类腐蚀性气体的检测应用,选用特制的测量气体室以及高温伴热等方式, 有效防止气体对仪器的腐蚀,满足各类应用要求。 ?系统无漂移,避免了定期校正需要,NH3分析仪采用波长调制光谱技术,并且进行动态 的补偿,实时锁住气体吸收谱线,不受温度、压力以及环境变化的影响,不存在漂移现象。

NH3气体分析系统现场安装灵活,光学非接触测量不易被腐蚀,光强不受烟气粉尘影响,抗机械振动能力强,测量不受温度和压力等过程参数影响。具有测量精度高(达0.1ppm),抗干扰能力强、维护简单,运行成本低等诸多优势,可满足脱硝工艺中氨逃逸检测需求。 检测工艺点及测量组分 ●检测工艺点:脱销氨逃逸检测●分析组分:NH3 系统主要技术指标 ●系统响应时间:1秒●测量范围:0-50ppm(可定制) ●测量精度:±1%F.S ●稳定性:无漂移 ●气体压力:25—2000mbar ●校正:出厂设定 ●系统维护周期:1年●系统可靠性: MTBF≥1年●信号输出:RS-232或RS-482/4~20mA隔离电流信号。 ●输出信号:4~20mA,控制报警信号NO/NC ●工作电源:220VAC50HZ ●工作气源:仪表级压缩空气 ●环境温度:-10℃—50℃●伴热温度:190℃ ●安装方式:在位式

#1、#2炉脱硝系统加装氨逃逸率测量装置方案

#1、#2炉脱硝系统加装氨逃逸率测量装置方案 批准: 审核: 会审: 编制:陈武 华润电力(涟源)有限公司 2013年10月24日

1、系统设备概述 我公司脱硝系统采用的SCR方式进行脱硝,在脱硝过程中需要对NH3逃逸进行实时在线监测分析,以达到优化SCR工艺中还原剂氨的注入量,监测 SCR 中催化剂的活性从而提高脱硝效率,控制 NH3逃逸还能有效地减少铵盐的生成,避免造成对下游设备的腐蚀和危害,但我公司现没有加装此装置,无法对氨逃逸率进行实时监视,拟改造加装。2、现设备存在问题 无 3、主要原因分析: 4、技术方案 为了优化脱硝过程中还原剂NH3使用量,检测SCR中催化剂的活性,从而提高脱硝效率,减少对设备损害和环境污染,拟提出下面改造技术方案: 现在主要的测量方式有以下三种: 1)激光原位测量法采用激光原位测量仪器测量微量氨,不需要采样,可直接测量氨浓度,不存在转化器的转换效率问题,但原位安装的直接测量系统,容易受烟气中水分,烟尘干扰,影响测量结果的稳定性与精度;代表的产品有英国仕富梅SERVOMEX脱硝氨逃逸分析仪和加拿大优胜; 2)激光在位测量法采用激光吸收光谱技术通过分析光被气体的选择吸收来测得气体的浓度,在采样泵的作用下,气体经预处理后进入NH3分析模块,测量NH3成分,整个流路有高温伴热,避免水汽冷凝污染流路以及铵盐结晶堵塞流路,但是该种测量方法有就地气体预处理系统,气路系统维护比较多,而且取样管路长度受产品局限(取样管路不能长于2米)主要代表产品有华创泰博推出的HTB-6300型分析装置; 3)化学发光分析法主要是先将NH3先转换成NO,采用化学分析法检测微量NO,再转换成氨的测量值,但存在转换效率问题,而且主要是取样过程中容易受外界因素影响,测量困难,暂无代表产品; 基于以上三种测量方式,激光原位测量和在位测量的原理相同,介绍激光测量法的基本原理如下: 1)LasIR 系列(优胜)和SERVOTOUGH Laser2930系列(仕富梅)气体分析系统采用近红外可调式激光器作为光源的光谱吸收气体检测系统。特定气体只吸收特定波

相关主题
文本预览
相关文档 最新文档