当前位置:文档之家› 氨逃逸分析仪

氨逃逸分析仪

氨逃逸分析仪
氨逃逸分析仪

关于脱硝氨逃逸在线监测系统的发展

目前国内脱硝系统陆续投运,但氨逃逸率测量的准确性始终是个问题,以下资料权作抛砖引玉,期望各电厂早日找到可靠的氨逃逸测试装置,免受脱硝负作用之沉重担忧。

1、脱硝氨逃逸在线监测系统发展史

第一代技术:稀释取样法,代表厂家:热电(Thermo Fisher)

第二代技术:原位式激光分析法,代表厂家:雪迪龙(Siemens代理商);仕富梅

(Servomex);纳斯克(LaserGas);优胜(Unisearch);杭州聚光(国产掌握

核心技术)

第三代技术:抽取式激光分析法,如进口Horiba、国内厂家北京莱纳克(国产掌握核心技术);杭州聚光(研发中)等

注:目前国产分析仪存在使用业绩不多,需进一步得到权威的试验院现场进行实际比对测试验证。

2、氨逃逸监测技术介绍

(一)第一代技术:稀释采样法

(1)原理:取样烟气经压缩空气按比例稀释后送入烟气分析仪分析。分析方法是化学发光法。当样品中的NO与O3混合时生成激发态的NO2与O2。激发态NO2在返回基态时发出红外光。这种发光的强度与NO 的浓度成线性比例关系。由于该反应只能由NO 完成,因此要测量氨逃逸需要把烟气中NH3转化为NO。转化过程通过转化炉完成。

样气进入分析仪后分2路:

一路经过750 ℃的不锈钢转化炉,所有的NH3和NO2都被氧化成了NO,然后进入烟气分析仪测得NT(总氮浓度)。

第二路经过氨去除器后得到不含氨的样气。其中一路经325 ℃的转化炉把NO2还原成NO,由分析仪测得NOx浓度。另一路不经过任何转化进入分析仪,测得NO浓度。这两路的NO经过计算得出NOx的总含量。

最终可计算得到氨逃逸量:NH3=NT-NOx

(2)现场专工反馈问题:

a)多道工序的复杂性,是否能保证此方法的稳定性。

b)氨的氧化吸附损失,以及多层计算公式的多变性,能否保证其准确性。

c)整个工序无参考物进行准确性对比,检测数据不可考证。

(3)第一代技术淘汰原因:

a)烟气经过750℃转化炉将NH3、NO2氧化成NO,这里有一个转化率问题,高

温下探头和NH3的接触反应、NH3的吸附和氨盐的形成,转化过程中有

5%-10%的烟气消耗,导致检测不准确。

b)氨去除器不能保证完全除去氨气,2路中的1路经325 ℃的转化炉把NO2

还原成NO,不能保证完全性,同时NO发出的红外光检测存在偏差。

c)氨与不同物质接触在不同的温度下转化为NO的比率有很大差异。

(二)第二代技术:原位式激光分析法

(1)原理:利用激光的单色性以及对特定气体的吸收特性进行分析。一般设计成探头型的结构,直接安装在烟道上。一般发射接收(R/S)单元安装在烟道一侧(对角安装原位式)或两侧,激光通过发射端窗口进入烟道,被接收端反射或接收后,进入分析仪。发射光通过烟气时对NH3的吸收信息保留在光信号中,即形成吸收光谱,通过对吸

收光谱的分析最终得到NH3的浓度信号。

(2)现场专工反馈问题与淘汰原因:

a)原位安装,仪表无法进行标定和验证,测量准确率无法保证。

b)当现场粉尘含量≥50ppm,因激光功率低下,透射率不足,无读数。采用

对角安装方式,取样在烟道内紊流层,无代表性。

c)机组点火时,烟道震动导致发射端与接收端不能对准,无读数或数据跳变。

d)测量光程短,仪表测量下限与精度不足,数据忽高忽低。

e)现场粉尘造成发射端与接收端镜片堵塞,维护量非常大,维护周期1-2

周。

f)对穿式原位安装中的发射端与接收端出现偏移时,现场工作人员不具备拆

卸校对水平能力,数据持续忽高忽低状态。

(三)第三代技术:抽取式激光分析法(以北京莱纳克为例)

(1)原理:利用激光的单色性以及对特定气体的吸收特性进行分析。通过采样预处理装置,过滤掉大量粉尘颗粒,经过保温传输装置将样气传送到烟气分析单

元,其中烟气分析单元前设置二次过滤与标气验证阀,便于验证数据准确性。

样气室内高温环境,并对气体进行压力补偿,利用激光法测量氨气含量。(2)最新科研成果应用与系统特点

a)采样预处理装置应用我司最新研发成果,保证气体流通的顺畅。

b)取样更具代表性:采样点插入烟道核心区域或辐射状多点采样。

c)旁路测量不受现场震动等环境因素的影响。

d)非常方便通入标准气体,可以随时标定及验证。

e)首次采用我司最新研发成果,锁定测量激光束的步长,防止数据漂移。

f)国内独家多次反射样气室,全方位覆盖检测,提高测量精度与下限,光程

≥30m。

g)远程GPRS数据分析传输功能,研发团队1小时内故障分析并远程纠正。

1.氨逃逸监测技术对比

2.第二代原位式激光分析法进口产品淘汰分析

近年来,随着国内电厂脱硝改造的呼声增大,氨逃逸在线监测也被提上日程,纵观国外脱硝技术发展史,可以看出原位式激光分析法在国外的技术已经非常成熟,为何同样的产品进入我国市场迟迟不能发挥其应有的作用,可从下面几点分析:(1)国外发电工艺标准与我国标准的不同,导致烟道内氨测量环境不同,进口仪器完全不能适应复杂的现场工况,导致无数据或数据忽高忽低。

(2)进口产品的核心技术依然掌握在外企手中,国内代理商引进产品只能进口整套产品,因此国内代理商不具备自主改进的基础和能力。

(3)相对于国外环境,进口产品在外企眼中已完全成熟,不会因中国市场的变化而

继续推陈出新,适应国内市场。

以上导致了进口氨逃逸率在线分析系统在国内市场的频频失利,同时加快了掌握核心技术的国内厂家对氨逃逸在线监测产品的研发步伐。

NLAM1512氨逃逸在线分析仪用户手册2

氨逃逸率在线监测系统(NLAM1512) 用 户 手 册 北京新叶能源科技有限公司 2015年12月

前言 尊敬的用户,在您开始使用氨逃逸率在线监测系统(NLAM1512)前,请仔细阅读本手册,本手册旨在为客户介绍本产品及产品使用说明,更好的服务客户,本手册未尽事宜,请详询我公司技术人员,本手册最终解释权为我公司所有。

目录 1 安全说明 (1) 1.1 安全说明的目的 (1) 1.2本文的安全指示 (1) 1.3 容许的使用者 (2) 1.4 正确的处理 (2) 1.5 安全警告 (3) 1.5.1 避免伤人和仪器损坏的基本安全警告 (3) 1.5.2 用电的安全警告 (3) 1.5.3 测量介质的防护 (3) 2系统简介 (3) 2.1系统概述 (3) 2.2 技术原理 (5) 2.3 性能参数 (5) 3 系统组成及功能说明 (6) 3.1 系统组成 (6) 3.2功能说明 (7) 3.2.1测量探头 (7)

3.2.3发射接收单元 (8) 3.2.4计算控制单元 (9) 3.2.5附属设备 (10) 3.3流路原理 (10) 3.4软件运行流程 (11) 4安装条件及说明 (12) 4.1测点位置选取 (12) 4.2法兰接口焊接 (12) 4.3管线敷设 (13) 5启动 (15) 5.1启动主程序 (15) 5.2 参数设置 (15) 5.3 系统检测 (15) 6维护和维修 (16)

1 安全说明 描述在本手册的NLAM1512氨逃逸在线分析仪的说明和指南适用于所有用户。 1.1 安全说明的目的 ◆避免伤人。 ◆避免破坏环境、安装测量点的周围环境和其它设备。 ◆确保测量系统的正常操作和可靠性。 1.2本文的安全指示 除了本章节的总说明适用于整个测量系统手册外,对每个部分还有安全提示。通常由下列符号表示: 警告:电对人体可能有伤害。 警告:对人体可能有伤害,如机械的、气体、化学 品等等。 可能破坏环境,周围设备,或引起仪表功能故障。

氧分析仪说明书

注意事项 !使用及保存注意事项 ●仪器在使用过程中不可打开外壳,避免发生烫伤及触电危险。 ●仪器在使用、存放、及运输过程中应避免强烈震动,以免损坏氧化锆 传感器。 ●仪器在存放期间应保持清洁,要防止仪器受潮,进排气嘴应加盖防尘 帽,以防落入异物及灰尘。 请严格遵守注意事项,否则将造成人为测量误差或重大事故!!! 服务与保证

仪器自出厂之日起,仪器的保修期限为一年。凡在此期限内,工作人员在正常操作的情况下,仪器出现的软件或硬件的故障,我公司均负责免费维修及更换零部件。若由于工作人员违反操作规程、不严格按照使用说明操作仪器以及由于不可抗拒的因素而对仪器造成的损坏,我公司不负责免费维修。如需维修,我公司将根据损坏情况适当收取维修成本费用。 如有用户需要,我公司也可指派技术人员进行现场培训。 如果您对本公司的仪器在使用和操作过程中,还有什么疑问及要求请及时与我们联系,以便我们能给您提供更完善的服务。联系方式见封底。 一、概述

该氧分析仪是利用氧化锆氧浓度差电池作为检测传感器的氧量分析仪器。该仪器测控系统采用了最新型的单片机计算与控制系统,LED显示器;具有技术先进、精度高、响应快、性能稳定、功能齐全、操作方便、气体分析过程连续等特点;它不仅可测量锅炉燃烧过程中残余氧量,而且可以用于热力学研究,气体制造厂氧含量的连续监测、均热炉燃烧过程中的控制、化工、冶金、电子工业、医疗等方面的气体中氧含量的检测。 本公司生产的测量氧探头分为中温型、低温型、高温型,其基本参数及使用性能如下表1所示: 二、工作原理 2.1氧化锆原理图

仪器的工作原理如图1.0所示。它主要由气路系统、氧化锆传感器、微机测控系统三部分组成。 图1.0 测量原理框图 2.2氧化锆传感器 氧化锆传感器是由氧化锆陶瓷材料制成的氧浓度差电池,在高温时氧化锆具有氧离子的传导特性,当氧化锆管的两个电极之间的氧分压不同时,氧浓度差电池产生一个与氧浓度成比例的电势,电势大小按下式计算: E = ln 式中:R ——理想气体常数 F ——法拉第常数 T ——氧化锆加热炉绝对温度(K) n——电极反应的电子交换数目 P 0 ——空气中氧分压(20.9%) P ——样气中的氧分压 通过测量氧浓度差电池的电动势E 与温度T ,就可以计算出样气中的氧分压,即氧含量。浓度差电池的各种干扰电势,如本底电势、渗透效应、 RT 2n P 0 P

氨逃逸分析仪

氨逃逸分析仪集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

关于脱硝氨逃逸在线监测系统的发展 目前国内脱硝系统陆续投运,但氨逃逸率测量的准确性始终是个问题,以下资料权作抛砖引玉,期望各电厂早日找到可靠的氨逃逸测试装置,免受脱硝负作用之沉重担忧。 1、脱硝氨逃逸在线监测系统发展史 第一代技术:稀释取样法,代表厂家:热电(ThermoFisher) 第二代技术:原位式激光分析法,代表厂家:雪迪龙(Siemens代理商);仕富梅(Servomex);纳斯克(LaserGas);优胜(Unisearch);杭州聚光(国 产掌握核心技术) 第三代技术:抽取式激光分析法,如进口Horiba、国内厂家北京莱纳克(国产掌握核心技术);杭州聚光(研发中)等 注:目前国产分析仪存在使用业绩不多,需进一步得到权威的试验院现场进行实际比对 测试验证。 2、氨逃逸监测技术介绍 (一)第一代技术:稀释采样法 (1)原理:取样烟气经压缩空气按比例稀释后送入烟气分析仪分析。分析方法是化学发光法。当样品中的NO与O3混合时生成激发态的NO2与O2。激发态NO2在返回基态时发出红外光。这种发光的强度与NO的浓度成线性比例关系。 由于该反应只能由NO完成,因此要测量氨逃逸需要把烟气中NH3转化为NO。转化过程通过转化炉完成。 样气进入分析仪后分2路: 一路经过750 ℃的不锈钢转化炉,所有的NH3和NO2都被氧化成了NO,然后进入烟气分析仪测得NT(总氮浓度)。

第二路经过氨去除器后得到不含氨的样气。其中一路经325 ℃的转化炉把NO2还原成NO,由分析仪测得NOx浓度。另一路不经过任何转化进入分析仪,测得NO浓度。这两路的NO经过计算得出NOx的总含量。 最终可计算得到氨逃逸量:NH3=NT-NOx (2)现场专工反馈问题: a)多道工序的复杂性,是否能保证此方法的稳定性。 b)氨的氧化吸附损失,以及多层计算公式的多变性,能否保证其准确 性。 c)整个工序无参考物进行准确性对比,检测数据不可考证。 (3)第一代技术淘汰原因: a)烟气经过750℃转化炉将NH3、NO2氧化成NO,这里有一个转化率问 题,高温下探头和NH3的接触反应、NH3的吸附和氨盐的形成,转化 过程中有5%-10%的烟气消耗,导致检测不准确。 b)氨去除器不能保证完全除去氨气,2路中的1路经325 ℃的转化炉把 NO2还原成NO,不能保证完全性,同时NO发出的红外光检测存在偏 差。 c)氨与不同物质接触在不同的温度下转化为NO的比率有很大差异。(二)第二代技术:原位式激光分析法 (1)原理:利用激光的单色性以及对特定气体的吸收特性进行分析。一般设计成探头型的结构,直接安装在烟道上。一般发射接收(R/S)单元安装在烟道一侧(对角安装原位式)或两侧,激光通过发射端窗口进入烟道,被接收端反射或接收后,进入分析仪。发射光通过烟气时对NH3的吸收信息保留在光信号中,即形成吸收光谱,通过对吸收光谱的分析最终得到NH3的浓度信号。

NFYIC型常量氧分析仪使用说明书1

注意事项 电源注意事项 ◆仪器使用220VAC±10%、50/60Hz、1A电源,要 求接地良好,不应有高频或强磁场干扰。我公 司建议用户给仪器配备有净化功能的交流稳压 器或UPS电源,以确保仪器在长期的使用中有 稳定的电源供给。同时有助于延长仪器的使用 寿命。 安装注意事项 ◆仪器应该现场安装,并且与取样点要尽可能的接 近(≤2米)。 ◆当被测气体压力高于0.25MPa时,应在取样 点处安装可靠的减压阀。取样系统管路中的接头应尽可能的少,接头处密 封性要好,不得采用套接的方法。 ◆必须保证仪器的出口排气通畅。仪器排放的气体 应用管道引到室外排空。 ◆仪器应在空气畅通、无强烈震动处水平安装。 配管注意事项 ◆取样管必须是材质致密、内壁光滑清洁、无砂眼

使用及保存注意事项 ◆仪器在使用过程中不可打开外壳,避免发触电危 险。 ◆仪器在使用、存放、及运输过程中应避免强烈震 动,以免损坏传感器。 ◆仪器在存放期间应保持清洁,要防止仪器受潮, 进排气嘴应加盖防尘帽,以防落入异物及灰尘。 ◆为保证仪器的测量精度,应按根据用户要求定期 校准。在长期使用或存放后,应对仪器的气路系统进行气密性检查。 ●被测量气体注意事项 ◆测试气体中的腐蚀性气体(二氧化硫、硫化氢、 氯化氢、氯、氟化氢、氟等)或毒性气体(矽、铅、磷、锌、锡、砷等)可能会造成传感器的损坏,

请严格遵守以上所列注意事项,否则将造成人为测量误差或重大事故!!! 一、概述 NFY-IC型氧量分析仪,是我公司最新研发的高精度在线氧量检测分析仪器。该仪器采用进口的电化学传感器,结合单片机控制技术,形成具有测量精度高、使用操作简便的特点。 该仪器采用128*64点阵LCD显示器,视角小,直观醒目,触摸按键全中文菜单操作,通俗易懂、简单可靠,具有控制点输出、越限自身报警(蜂鸣器),并可随意设置控制方式,标准4~20mA 电流输出和RS-232等外接端口,无人职守时,可定时记录氧含量值,最多可以存储3000个数据。当被测样气中氧含量达到设定的报警点时,仪器会自动报警。如有特殊需要时,可进行报警输出和标准的RS-232微机接口。 NFY-IC型氧量分析仪,采用新型的气路稳流

大方科技氨逃逸系统最佳解决方案

大方科技抽取式氨逃逸在线监测系统

根据脱硝系统对氨逃逸测量的要求,以及现场工况情况,大方科技脱硝氨逃逸在线分析系统(DLGA---3000)来检测分析脱硝反应器出口氨逃逸浓度。系统分为机柜、采样探头、伴热管线三部分,采样探头直接安装在管道上,烟气进过采样探头、伴热管线后进入样气室进行测量分析,可以很好地避免高尘环境下飞灰对测量的影响,另外光学部件没有直接安装在烟道上,也可避免震动对光路的影响。另外烟气流经管路及样气室全部采用高温加热,可保证烟气取样过程中无氨气吸附。分析仪仪表采用多次反射样气室,测量光程可达30米,可大大提高检测下限。系统设计满足国标要求,安全可靠。 1系统方案 图1 2仪表测量原理 自主研发并生产制造的脱硝氨逃逸在线监测系统,采用采用可调谐半导体激光吸收光谱技术进行气体的测量,以可调谐激光器作为光源,发射出特定波长激

光束,穿过待测气体,通过探测器接收端将光信号转换成电信号,通过分析因被测中NH3分子吸收导致的激光光强衰减,实现高灵敏快速精确监测待测气体中NH3浓度。由于激光谱宽特别窄(小于0.0001nm),且只发射NH3分析吸收的特定波长,如图2所示,使测量不受测量环境中其它成分的干扰。图2中氨气的吸收峰高与NH3浓度成正比。 图2 根据朗伯比尔定律,,激光吸收光谱技术的测量精度与测量光程成正比,光程越长,测量精度越高,我司生产的脱硝氨逃逸在线监测系统采用多次反射样气室(专利技术),见图3,使得测量光程可达30米,大大提高了测量精度。

图3 3系统结构 系统由采样探头及探头箱、机柜、伴热管线组成。 采样探头及探头箱: 采样探头由采样探杆、一级过滤器及挡板组成。其中安装时应保证挡板能够有效的保护过滤器,安装方向据现场工况而定。 探头箱与伴热管线进行连接确保氨气在采样过程中无吸附。 机柜: 机柜尺寸为900mm(宽)*1500mm(高)*450mm(厚)可分体,机柜内安装有加热箱,仪表盒,以及温控单元。 加热箱 加热箱由箱体、加热器组成,内部安装有气室、气动球阀、射流泵及PT100、K 型热电偶。 仪表盒 仪表盒内安装有分析电路板、液晶显示屏、键盘、激光器等部件。 温控单元 温控单元由温度控制器和固态继电器组成,分别控制加热箱温度、气室温度、探头温度、加热器温度、伴热管线等部分的温度。 伴热管线: 伴热管线长度根据使用现场工况进行定制,包括加热丝、取样管、保温及PT100,伴热管线可保证烟道到分析机柜过程中样气无吸附及冷凝。

YB-88系列氧量分析仪 说明书

一.系统概述 YB-88系列氧量分析仪能自动地对各种炉窑烟气中氧量进行连续监测(也适用于惰性气体中的氧量监测),从而为操作人员调节燃风配比提供有用参数,或者把信号送入计算机进行处理。通常与控制系统级联,实现闭环控制,达到低氧合理燃烧,降低燃耗、烧损(设备及原材料),稳定工艺,提高产品质量,防止环境污染等目的。 氧量分析仪的核心元件氧传感器是由稳定氧化锆材料制造的,材料的熔点在2200℃以上,它本身耐高温、抗腐蚀的性能较好。氧化锆烟气氧量分析仪能适应高温、大粉尘、有腐蚀性的环境,是其他分析方法无法比拟的,是近几十年来各国普遍采用的首选仪器。但由于服役的环境条件很恶劣,对组装成实用氧传感器和氧检测器的相关材料也必须满足这种高温、大粉尘、腐蚀性强的环境。若某个结构部件损坏或失效,整个探头就需检修或报废。所以应从构件的整体考虑它的选材和结构。 本公司自主开发的氧化锆烟气氧检测器(氧探头),其氧传感器引线采用独特的复线结构;金属构件采用耐热合金钢制造;绝缘材料采用进口优质材料。该项技术已获得两项国家专利。 1.1 系统配臵 根据所配样气采样器的不同,现场系统配臵共分为下面五种类型: A.低温DW-1型:耐烟气温度<400℃。氧检测器直接插入炉膛或烟道内的烟气流中,氧传感器就地采气样。氧传感器工作温度控制在750℃时,其两侧氧浓度差直接转换为氧电势。高粉尘场合,应配装防尘管或防尘套。 B.中温ZW-1型:耐烟气温度<700℃,安装方式和特点同低温DW-1型,采用耐中温防尘管或防尘套。 C.高温GW-1型:耐烟气温度>700℃。炉内微正压或微负压力(-50Pa以内),此时应采用高温导流方式,可省去抽气装臵。 D.高温GW-2型:耐烟气温度>700℃。炉内负压力(-50Pa以上)时,应采用高温引流式,即用泵连续抽取样气流,确保分析结果数据可靠。喷射泵气源压力需0.05~0.3Mpa。其排气方式又分为外排式、内排式。 E.抽气式氧化锆分析仪:主要用于含有腐蚀性气体,样气预处理后才能送至氧传感器进行分析转换。例如含有SO2或SO3的场合,以及高粉尘的场合。 * 采样点温度<400℃建议采用DW-1型;温度<700℃建议采用ZW-1型。 1.2 主要特点 A.复线制:氧探头中氧传感器的引线采用复线,克服了压触式引线的缺点,成倍地延长氧探头寿命。 B.中温直插式:氧探头与烟气的接触部分采用新型高温合金钢,氧探头可以在700℃以下直

智能氧化锆氧量分析仪说明书

智能氧化锆氧量分析仪 使用说明书

一、用途 SK-SZO系列氧化锆氧量分析仪可对锅炉、窑炉、加热炉等燃烧设备在燃烧过程中所产生的烟气含量进行快速、正确的在线检测分析,以实现低氧燃烧控制,达到节能目的,减少环境污染。 SK-SZO系列氧化锆氧量分析仪有氧化锆头(一次仪表)和氧量变送器(二次仪表)二部分组成。 SK-SZO型氧化锆探头外壳采用耐高温、耐腐蚀的不锈钢材料制成。 不必外加气 ,参比气能自行对流。并设有标准气接口,可在现场运行时用标准气体进行标定校验。探头锆管能方便地拆卸更换。 SK-SZO型氧量变送器结构简单,安装尺寸规范,线路设计合理,工艺质量先进,仪表性能稳定可靠,调试方便。 SK-SZO系列氧化锆氧量分析仪由于其优越的性能价格比,数年来在国内大中型电厂得到广泛应用。 二、型号规格 1、氧化锆探头的型号定义 SK-SZO-口—口 探头的长度规格分400、800、1200mm 探头的加热形式 4表示加热式,即低温式 5表示不加热式,即高温式 2、氧量变送器的型号定义 SK-SZO-口—口 Ⅰ表示盘装式 Ⅱ表示盘装横式 Ⅲ表示盘装方式 Ⅳ表示墙挂式 4表示加热式(中低温型) 三、规格尺寸 5表示不加热式(高温型) 1.氧量变送器尺寸 -1-

盘装竖式 (Ⅰ) 160×80 ×250 152 ×76 盘装横式(Ⅱ) 80 ×160 ×250 或160 76 ×152 盘装方式(Ⅲ) 160 ×160 ×250或160 153 ×153 墙挂式(Ⅳ) 325 ×250 ×110 310 ×128 2、氧化锆探头的外形尺寸:单位mm L=400,800,1200 四.技术指标 1.基本误差:<+3%F.S; 仪表精度1级 2.量程:0~25%O2 3.本底修正:-20mV~+20mV 4.被测烟气温度:ZO-4型低于800℃(低温型);ZO-5型 800℃~1200℃ (高温型) 5.输出信号:0~10mADC 4~20mADC任意设置 6.负载能力:0~1.2KΩ(0~10mA时)或0~600Ω(4~20mA时) 7.环境能力:0~50℃,相对湿度〈90% 8.电源/;220V+10%,50Hz。 9.功耗:变送器约8W,加热炉平均为50W。 10.响应时间/;90%约3秒。 11.氧化锆探头加热炉升温时间:约20分钟。 五、仪表接线氧化锆探头的端子接线图 -2- 120

氨逃逸在线监测系统技术方案

氨逃逸在线监测系统技术方案 XXX科技股份有限公司 年月

目录 一、总则 (1) 二、系统综述 (2) 1、系统组成 (2) 2、仪器监测原理 (3) 3、仪器技术指标 (5) 4、系统功能结构 (6) 三、项目实施计划及参与人员 (8) 1、项目实施进度计划 (8) 2、项目配置主要工作人员 (9) 3、项目实施分工表 (11) 四、施工及系统安装调试方案 (11) 1、工程概况 (11) 2、工程内容 (12) 3、仪器室的布局方案 (12) 4、CEMS的安装施工方案 (13) 5、施工安全措施 (15) 6、系统验收 (16) 7、技术培训 (16) 五、质量及售后服务承诺书 (18) 1、质量及售后服务承诺 (18) 2、售后服务内容 (18) 3、技术难题的解决 (19) 4、售后服务热线 (19) 5、售后服务流程图 (19)

一、总则 1、本方案适用于氨逃逸连续监测系统,其内容包括该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 2、本方案中提出了最低限度的技术要求,我方提供满足本方案书和所列标准要求的高质量产品及其相关服务。对国家有关安全、环保等强制性标准,将满足相关要求。 我方在设备设计和制造中所涉及的各项规程,规范和标准遵循现行 GB13223-2003 火电厂大气污染物排放标准 HJ/T212-2005 污染源在线自动监控(监测)系统数据传输标准 HJ/T75-2007 固定污染源烟气排放连续监测技术规范 HJ/T76-2007 固定污染源烟气排放连续监测系统技术要求及检测方法 SDJ9-87 测量仪表装置设计技术规程 NEMA-ICS4 工业控制设备及系统的端子板 NEMA-ICS6 工业控制装置及系统的外壳 DB-50065 交流电气装置的接地设计规范 IEC801-5 防雷保护设计规范 UL1778 美国电器系列安全指标 IEC61000 电磁兼容标准 SDJ279-90 电力建设施工及验收技术规范热工仪表及控制装置篇 本规范书所使用的标准如与需方所执行的标准有不一致时,将按较高标准执行。 3、设备采用的专利涉及到的全部费用均被认为已包含在设备报价中,我方将保证需方不承担有关设备专利的一切责任。 4、我公司承诺的设备测量的技术方法为:原位抽取法 5、本技术说明书的最终解释权归XXX科技股份有限公司所有。

YB-88G氧量分析仪说明书

YB-88G氧量分析仪说明书 说明书 YB-88G氧量分析仪 YB-88系列氧量分析仪能自动地对各种炉窑烟气中氧量进行连续监测(也适用于惰性气体 中的氧量监测),从而为操作人员调节燃风配比提供有用参数,或者把信号送入计算机进行处理。通常与控制系统级联,实现闭环控制,达到低氧合理燃烧,降低燃耗、烧损(设备及原材料),稳定工艺,提高产品质量,防止环境污染等目的。 YB-88G氧量分析仪的核心元件氧传感器是由稳定氧化锆材料制造的,材料的熔点在 2200℃以上,它本身耐高温、抗腐蚀的性能较好。氧化锆烟气氧量分析仪能适应高温、大粉尘、有腐蚀性的环境,是其他分析方法无法比拟的,是近几十年来各国普遍采用的首选仪器。但由于服役的环境条件很恶劣,对组装成实用氧传感器和氧检测器的相关材料也必须满足这种高温、大粉尘、腐蚀性强的环境。若某个结构部件损坏或失效,整个探头就需检修或报废。所以应从构件的整体考虑它的选材和结构。 本公司自主开发的氧化锆烟气氧检测器(俗称氧探头),其氧传感器引线采用独特的复 线结构;金属构件采用耐热合金钢制造;绝缘材料采用进口优质材料。该项技术已获得两项国家专利。 一.工作原理 在氧化锆粉末中加入适量的低价氧化物,经过研磨、成型、烧结制成氧化锆元件。氧化 锆中加入适量低价氧化物有两个作用:其一,氧化锆晶体中形成氧空位,这是氧离子能在氧化锆晶体中迁移的物质基础;其二,使氧化锆晶体结构稳定化,在1150℃附近升温或降温过程中,氧化锆晶体不再发生相变,抗热振性能好,才可能做成实用的元件。这种氧化锆成为氧离子导体,称它为氧化锆固体电解质。氧化锆固体电解质只有在600℃以上,才具有较好的氧离子导电能力。因此在氧化锆管内外两侧涂有铂金电极并对其加热,则氧化锆元件两侧因氧离子浓度不同产生了氧电动势,就成了一个浓差氧电池。若使内外两侧接触氧分压不同的气体,由于在氧分压较高一侧的电极(阴极)上,氧分子获得电子变为氧离子,氧离子通过固体电解质至阳极并释放电子,还原为氧分子。 阴极:O2+4e → 2O 2-阳极:2O→ O2+4e 2- 通过这一反应在两电极间建立起来的电势E,可由能斯特公式得到:

脱硝氨逃逸浓度监测技术分析_康玺

脱硝氨逃逸浓度监测技术分析 康玺,吴华成,路璐,钟智坤 (华北电力科学研究院有限责任公司,北京100045) 摘要:目前国内外用于烟气脱硝系统氨逃逸监测的方法主要包括在线仪器分析法和离线手工分析法两大类。本文在查阅大量氨逃逸监测技术相关资料的基础上,重点针对原位式激光分析法、稀释取样法、抽取式激光分析法等在线氨逃逸监测技术从工作原理、优缺点等方面进行综合论述;对靛酚蓝分光光度法、离子选择电极法、纳氏试剂分光光度法、容量法、离子色谱法等烟气采样离线分析法的分析原理、分析精度等方面进行简要论述。为电力企业了解脱硝氨逃逸监测原理、设备选取、结果分析等方面提供理论基础。 关键词:火电厂;脱硝;氨逃逸;监测 中图分类号:TM621.8文献标识码:B DOI:10.16308/j.cnki.issn1003-9171.2015.01.013 Analysis on Denitration Ammonia Escape Monitoring Technology Kang Xi,Wu Huacheng,Lu Lu,Zhong Zhikun (North China Electric PowerResearch Institute Co.Ltd.,Beijing100045,China) Abstract:There are two types of ammonia escaping monitoring technologies as online instrument analysis and sam-pling and off-line analysis of gas.In this paper,specific method of the two types were aggregated and compared.The laser in situ analysis,dilution sampling method and removable laser analysis belong to online analysis type,while the off-line analysis type includes indophenol blue spectrophotometry method,ion selective electrode method,Nessler’s reagent spectrophotometric method,and volumetric method and ion chromatography method.Theories and application features of these methods were discussed,aimed to provide the theory basis for power enterprise to understand and apply about ammonia escaping monitoring technologies. Key words:power plant,denitration,ammonia escape,monitoring 1脱硝氨逃逸由来及危害 在火力发电厂锅炉脱硝技术中,选择性催化 还原法(SCR)为目前应用最多,最成熟、最有效 的一种烟气脱硝技术[1-2]。基本原理为通过向反 应器内注入NH3与氮氧化物发生反应,产生N2 和H2O[3]。主要反应方程式如下: 4NO+4NH 3+O 2 →4N2+6H2O 2NO 2+4NH 3 +O 2 →3N2+6H2O 6NO 2+8NH 3 →7N2+12H2O NO+NO 2+2NH 3 →2N2+3H2O 从某种意义讲,SCR反应器就是氨反应器。生产过程中,氨注入得过少,就会降低NOx的脱除效率;氨注入得过量,不仅将使成本增加,反而因为过量的氨导致NH3逃逸出反应区,逃逸的 NH 3会与烟气中的SO3发生副反应生成硫酸氢 铵和硫酸铵。还会导致以下几个问题:(1)空气 预热器换热面的腐蚀;(2)飞灰污染;(3)催化剂 的腐蚀;(4)环境污染。其中,最主要的是对空气 预热器换热面的腐蚀和对飞灰品质的影响[4-5]。 为保障脱硝系统的经济、高效运行,在 DL/T260—2012燃煤电厂烟气脱硝装置性能验 收试验规范中明确规定氨逃逸浓度为一项重要 的性能考核指标,必须对氨逃逸浓度进行严格的 监测和控制[6]。我国目前已建、在建和科研设计 中的氨逃逸浓度一般要求不超过3?10-6。 2氨逃逸分析方法 脱硝氨逃逸浓度的量级一般都是几个ppm, 对其准确测量比较困难。目前国内外用于烟气 脱硝系统氨逃逸监测的方法主要有在线仪器分 析法和离线手工采样分析法。在线仪器分析法

燃料电池氧分析仪操作使用说明书教程文件

燃料电池氧分析仪操作使用说明书

北京恒奥德仪器仪表有限公司

燃料电池氧分析仪操作使用说明书 该仪器采用先进的燃料池传感器测量氧含量。它具有测量快速、准确的特点。由于传感器完全密封,所以传感器是免维护的。通常使用寿命可达三到五年。是老一代微氧仪的更新换代产品。填补了国内该系列产品的空白。它广泛地应用于空分、钢铁、石化、电力、医疗等行业。同时,由于该仪器设计时采用独特的吹扫进样流程,更使它在快速、大量分析作业中发挥重要作用。一性能参数 1、测量范围:0-20/200/2000ppm 2、测量精度: 3% 3、响应时间:30秒到达90%读数 4、工作温度:-5℃-40℃ 5、工作电源:220V AC / 9V DC 6、工作压力:进口-0.5kg/cm2;出口-直排大气

7、安全性:仅用电池工作时为本质安全型 8、外型尺寸:高130×宽255×深290 9、整机重量:2.3kg

二工作原理 采用完全密封的燃料池氧传感器是当前国际上最先进的测氧方法之一。燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。 O2+2H2O+4e→4OH? 2Pb+4OH?→2Pb(OH)2+4e KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电极不需定期清洗或更换。样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量,这样,

该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。 采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程,“金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中,传感器可以非常稳定可靠的工作很长时间。事实上,燃料电池氧传感器是完全免维护的。 三使用方法 3.1仪器介绍

大方科技氨逃逸系统最佳解决方案

大方科技抽取式 氨逃逸在线监测系统 根据脱硝系统对氨逃逸测量的要求,以及现场工况情况,大方科技脱硝氨逃逸在线分析系统(DLGA---3000)来检测分析脱硝反应器出口氨逃逸浓度。系统分为机柜、采样探头、伴热管线三部分,采样探头直接安装在管道上,烟气进过采样探头、伴热管线后进入样气室进行测量分析,可以很好地避免高尘环境下飞灰对测量的影响,另外光学部件没有直接安装在烟道上,也可避免震动对光路的影响。另外烟气流经管路及样气室全部采用高温加热,可保证烟气取样过程中无氨气吸附。分析仪仪表采用多次反射样气室,测量光程可达30米,可大大提高检测下限。系统设计满足国标要求,安全可靠。 1系统方案 图1 2仪表测量原理 自主研发并生产制造的脱硝氨逃逸在线监测系统,采用采用可调谐半导体激光吸收光谱技术进行气体的测量,以可调谐激光器作为光源,发射出特定波长激光束,穿过待测气体,通过探测器接收端将光信号转换成电信号,通过分析因被测中NH3分子吸收导致的激光光强衰减,实现高灵敏快速精确监测待测气体中NH3浓度。由于激光谱宽特别窄(小于0.0001nm),且只发射NH3分析吸收的特定波长,如图2所示,使测量不受测量环境中其它成分的干扰。图2中氨气的吸收峰高与NH3浓度成正比。 图2 根据朗伯比尔定律,,激光吸收光谱技术的测量精度与测量光程成正比,光程越长,测量精度越高,我司生产的脱硝氨逃逸在线监测系统

采用多次反射样气室(专利技术),见图3,使得测量光程可达30米,大大提高了测量精度。 图3 3系统结构 系统由采样探头及探头箱、机柜、伴热管线组成。 采样探头及探头箱: 采样探头由采样探杆、一级过滤器及挡板组成。其中安装时应保证挡板能够有效的保护过滤器,安装方向据现场工况而定。 探头箱与伴热管线进行连接确保氨气在采样过程中无吸附。 机柜: 机柜尺寸为900mm(宽)*1500mm(高)*450mm(厚)可分体,机柜内安装有加热箱,仪表盒,以及温控单元。 加热箱 加热箱由箱体、加热器组成,内部安装有气室、气动球阀、射流泵及PT100、K 型热电偶。 仪表盒 仪表盒内安装有分析电路板、液晶显示屏、键盘、激光器等部件。 温控单元 温控单元由温度控制器和固态继电器组成,分别控制加热箱温度、气室温度、探头温度、加热器温度、伴热管线等部分的温度。 伴热管线: 伴热管线长度根据使用现场工况进行定制,包括加热丝、取样管、保温及PT100,伴热管线可保证烟道到分析机柜过程中样气无吸附及冷凝。

TFZO5液晶显示氧化锆氧量分析仪说明书资料

一、概述 氧化锆烟气氧量分析仪是近几十年发展起来的新型测氧器,因其具有结构简单、维护方便、反应速度快、测量范围广等特点,而广泛应用于电力、冶金、供暖、建材、电子等部门,分析各种工业锅炉及窑炉中烟气的氧含量,提高燃烧效率,节约能源,减少环境污染。 氧化锆氧量分析仪由转换器和检测器(俗称氧探头)组成,在检测器的核心元件氧化锆浓差电池上,采用了纳米材料和先进的生产工艺,在电极涂层上添加抑制电极老化的添加剂。大大提高了氧化锆测量探头的精度和使用寿命。检测器采用直插式探头结构,不需取样系统,能及时反映锅炉内燃烧状况,如与自控装置配合使用,可有效地控制燃烧状况。转换器采用单片机智能化设计,汉字液晶显示,使数据显示、功能控制更具有人性化;可与各类型DCS数据接入设备连接。使仪表的操作变的简单,容易掌握。具有以下特点: 1. 通用性较强,可以直接替换其它厂家氧量分析仪。

2. 大屏幕蓝底白字LCD显示。 3. 全中文操作菜单(出口产品可以提供英文菜单)。 4. 氧量量程0.01-2 5.00%内自由设定(最低量程0-5%)。 5. 温度采用PID控温,恒温点700℃和750℃(可现场选择)。 6. 可设置氧量上、下限报警指示,温度上、下限报警指示。 7. 本底电势一键校正。 8. 可用标准气在线校准。 9. 4-20mA标准电流输出与主电路光电隔离,可直接远传进入DCS系统。 10. 多种故障信息提示。 二、工作原理 氧化锆是一种高温电解质浓差电池,在数百度的高温环境下,具有能产生氧离子迁移的导电性能,由于被测气体(烟气或其它气体)与参比气 体(空气或其它气体)在氧化锆两侧铂电极的氧分压不同,在两极间有一 定数量的氧离子迁移而产生了氧浓差电势,其电势值与氧浓度的关系,可 以用能斯特(Nernst)公式来表示: E=RT/4F×LnP 1/P 2 式中:E—氧浓差电势(V) R—理想气体常数(8.314J/moLK) T—绝对温度值(K) F—法拉第常数(96500c/moL) P1—参比气体分压(空气) P2—被测气体分压 变送器把所测量出的数据,经单片机计算转换,将氧含量在液晶屏上显示出来,同时转换成电流信号供计算机或计录仪使用。 700℃和750℃时氧浓度与氧浓差电势关系见附表. 三、技术指标

抽取氨逃逸(NH3)在线监测技术方案

烟气连续监测系统(CEMS)技术方案 xxx有限公司

目录 1 总则 (3) 2 概述 (3) 3.2 氨逃逸NH3分析子系统 (4) 4 公用条件 (6) 5 供货范围 (6) 6 备品备件 (7) 6.1 随机备件清单(满足系统正常运行一年) (7) 6.2 两年备件清单................................................................................................... 错误!未定义书签。 7 日常维护工作 (8) 8 进度安排 (8) 8.1 设计进度 (8) 8.2 制造进度表 (8) 8.3 交货................................................................................................................... 错误!未定义书签。 8.4 安装和调试进度表........................................................................................... 错误!未定义书签。

1总则 本技术方案适用于XXXXXXXXXX,包括烟气连续监测系统的功能设计、性能、结构、安装、调试和维护等方面的技术要求。 2概述 CM-CEMS-8000N由原位抽取式安装的氨逃逸NH3分析子系统构成,在线监测点在工艺中所处的位置: NH3 原 位 安 装 CM-CEMS-8000N是本公司在多年气体分析产品研发基础上设计的一款专用于脱硝系统在线监测的高性能在线检测仪。 CM-CEMS-8000N采用200°C高温伴热采样、高温测量技术,NH3采用可调谐激光(TDLAS)测量技术。 3系统方案

ZO-12B型氧化锆氧量分析仪说明书DOC

目录 1 概述 (1) 2 仪器测量原理 (2) 3 仪器主要技术参数 (3) 4 仪器简介 (4) 4.1 仪器组成 (4) 4.2 各部分简介 (4) 4.2.1 探头简介 (4) 4.2.2 变送器简介 (5) 4.2.2.1 基本结构 (5) 4.2.2.2 基本操作 (6) 4.2.2.3 基本设置 (7) 5 仪器检验 (7) 6 仪器安装 (9) 6.1 安装前的准备 (9) 6.1.1 探头安装位置的选择 (9) 6.1.2 炉体法兰的焊接 (10) 6.1.3 现场布线 (11) 6.2 安装 (12)

6.2.1 变送器的安装 (12) 6.2.2 探头的安装 (12) 6.3 现场连线 (13) 7 仪器校准 (13) 7.1 校准前的准备 (13) 7.2 校准方法 (14) 8 仪器日常维护与常见故障排除 (15) 8.1 仪器日常维护 (15) 8.2 常见故障的分析与排除 (16)

1 概述 氧化锆氧分析仪主要用于测定锅炉烟气中的氧分压即氧气的体积百分数含量(简称氧含量或氧量),对于保障锅炉运行安全、提高燃料燃烧效率及减少环境污染将起到重要作用。其应用场所主要有: ●火电厂锅炉; ●炼油厂加热炉和输油管道加热炉; ●冶炼厂加热炉和均热炉; ●化工、轻纺、食品加工、制药、水泥和采暖等企业的工业锅炉。 燃料燃烧效率与空气过剩系数密切相关。在燃烧过程中,当空气过剩系数太小即氧量不足时,由于燃料未充分燃烧而导致热效率降低,且排出的未完全燃烧气体也将对导致环境污染;而当空气过剩系数太大即氧量过多时,虽然能使燃料充分燃烧,但过剩空气带走的热量多,也导致热效率降低,同时过量氧气使烟气中硫化物和氮氧化物含量增大,同样导致环境污染。因此,通过安装氧化锆氧分析仪,在线实时监测烟气中的氧含量,调节空气和燃料的最佳配比,实现优化燃烧,在节能减排与安全环保等方面具有重要意义。 中国原子能科学研究院始建于1950年,是中国核科学技术的发祥地,是以核科学为主、多学科并存的综合性大型科研基地,是我国“两弹一艇”事业的摇篮。氧化锆开发研究室是院下属的集科研、产品开发和市场营销为一体的综合性实体,从事氧化锆测氧技术的研究已30余年,编写了国内本行业第一本专著:《氧离子固体电解质浓差电池与测氧技术》。该技术曾先后多次荣获国家发明奖及部科技成果奖。在这一系列科研成果的基础上,成功研制出ZO系列氧化锆氧分析仪。该产品曾在北京国际博览会上获同类产品最高质量奖,并在全国氧化锆氧分

氨逃逸分析仪教学资料

氨逃逸分析仪

关于脱硝氨逃逸在线监测系统的发展 目前国内脱硝系统陆续投运,但氨逃逸率测量的准确性始终是个问题,以下资料权作抛砖引玉,期望各电厂早日找到可靠的氨逃逸测试装置,免受脱硝负作用之沉重担忧。 1、脱硝氨逃逸在线监测系统发展史 第一代技术:稀释取样法,代表厂家:热电(Thermo Fisher) 第二代技术:原位式激光分析法,代表厂家:雪迪龙(Siemens代理商);仕富梅 (Servomex);纳斯克(LaserGas);优胜(Unisearch);杭州聚光(国产掌握 核心技术) 第三代技术:抽取式激光分析法,如进口Horiba、国内厂家北京莱纳克(国产掌握核心技术);杭州聚光(研发中)等 注:目前国产分析仪存在使用业绩不多,需进一步得到权威的试验院现场进行实际比对 测试验证。 2、氨逃逸监测技术介绍 (一)第一代技术:稀释采样法

(1)原理:取样烟气经压缩空气按比例稀释后送入烟气分析仪分析。分析方法是化学发光法。当样品中的NO与O3混合时生成激发态的NO2与O2。激发态NO2在返回基态时发出红外光。这种发光的强度与NO 的浓度成线性比例关系。由于该反应只能由NO完成,因此要测量氨逃逸需要把烟气中NH3转化为NO。转化过程通过转化炉完成。 样气进入分析仪后分2路: 一路经过750 ℃的不锈钢转化炉,所有的NH3和NO2都被氧化成了NO,然后进入烟气分析仪测得NT(总氮浓度)。 第二路经过氨去除器后得到不含氨的样气。其中一路经325 ℃的转化炉把NO2还原成NO,由分析仪测得NOx浓度。另一路不经过任何转化进入分析仪,测得NO浓度。这两路的NO经过计算得出NOx的总含量。 最终可计算得到氨逃逸量:NH3=NT-NOx (2)现场专工反馈问题: a)多道工序的复杂性,是否能保证此方法的稳定性。 b)氨的氧化吸附损失,以及多层计算公式的多变性,能否保证其准确性。 c)整个工序无参考物进行准确性对比,检测数据不可考证。 (3)第一代技术淘汰原因: a)烟气经过750℃转化炉将NH3、NO2氧化成NO,这里有一个转化率问题,高 温下探头和NH3的接触反应、NH3的吸附和氨盐的形成,转化过程中有 5%-10%的烟气消耗,导致检测不准确。 b)氨去除器不能保证完全除去氨气,2路中的1路经325 ℃的转化炉把NO2 还原成NO,不能保证完全性,同时NO发出的红外光检测存在偏差。 c)氨与不同物质接触在不同的温度下转化为NO的比率有很大差异。 (二)第二代技术:原位式激光分析法

电厂后燃NOX排放控制装置中的在线氨逃逸监测

电厂后燃NO X 排放控制装置中的在线氨逃逸监测 H. A. Gamble 1, G. I. Mackay 1 J. T. Pisano 2 and R Himes 3 1 Unisearch Associates Inc., 96 Bradwick Dr., Concord, Ont. L4K 1K8 2 Bourns College of Engineering Center for Environmental Research and Technology, University of California Riverside, California 92507 3 Electric Power Research Institute, 3412 Hillview Ave., Palo Alto, CA 94304 摘要 在后燃(Post-Combustion ) NO X 的控制技术中,不论是选择性催化还原法(SCR )还是选择性非催化还原法(SNCR )在燃煤发电厂都得到了越来越多的广泛使用。然而,无论是选择使用SCR 法或是SNCR 法,掌握好注入到NO X 上的氨总量和对于注入分布的控制是达到最小的氨逃逸率和最大的NO X 脱除效率的关键所在。过量的氨注入到整个管道或是管道的部分区 域都会导致NH 3的逃逸。 逃逸的NH 3将与反应器后部烟道内工艺流程中产生的硫酸盐发生反应,形成盐类沉淀在锅炉尾部更远的区域。这些沉淀物能够腐蚀和污染空气预热器,从而带来昂贵的维护费用等问题。 通过过程参数如NO 排放量和锅炉总负载来反馈控制氨(或尿素)注入率的自动控制流程能够帮助控制NO X 的排放。通常地,基于负载和NO X 排放来进行反馈调节,目前的系统是可以按这种程序设置来控制 NO X 排放在我们想要的范围内的。一款基于可调式二极管激光器的仪器,LasIR ,已经在多个发电厂用于在线监测,获得了长期精确并且一致的NH 3逃逸数据。 通过LasIR 仪器实时在线监测逃逸的NH 3从而优化了加入到反应器内的氨量。 在目前的燃煤发电厂,这些数据已经用来监控和评估NO X 排放控制系统的效能。

相关主题
文本预览
相关文档 最新文档