当前位置:文档之家› 圆柱齿轮传动精度设计知识大全资料

圆柱齿轮传动精度设计知识大全资料

圆柱齿轮传动精度设计知识大全

外啮合圆柱齿轮所有计算公式大全、检验方法、各精度差数表格汇总 注:角标n为法面,t为端面;1为小齿轮,2为大齿轮。 齿轮标准模数(mm) 渐开线圆柱齿轮的基本齿廓mm (GB1356—88) 注:1. 本标准适用于模数m≥1mm,齿形角α=20°的渐开线圆柱齿轮。 2. 允许齿顶修缘。 中心距系列(推荐使用)mm 动力齿轮传动的最大圆周速度m/s

5级以上≥15 ≥30 ≥12 ≥20 6级<15 <30 <12 <20 7级<10 <15 <8 <10 8级<6 <10 <4 <7 9级<2 <4 <1.5 <3 齿轮常用材料及其力学性能图例 45 正火 ≤100 ≤50 588 294 169~217 40~50 101~300 51~150 569 284 162~217 调质 ≤100 ≤50 647 373 229~286 101~300 51~150 628 343 217~255 42SiMn 调质 ≤100 ≤50 784 510 229~286 45~55 101~200 51~100 735 461 217~269 201~300 101~150 686 441 217~255 40MnB 调质 ≤200 ≤100 750 500 241~286 45~55 201~300 101~150 686 441 241~286 35CrMo 调质 ≤100 ≤50 750 550 207~269 40~45 101~300 51~150 700 500 207~269 40Cr 调质 ≤100 ≤50 750 550 241~286 48~55 101~300 51~150 700 500 241~286 20Cr 渗碳淬火 +低温回火 ≤60 ≤30 637 392 56~62 20CrMnTi 渗碳淬火 +低温回火 30 15 1079 883 56~62 ≤80 ≤40 981 785 38CrMoAl 调质、渗氮30 1000 850 229 渗氮HV>850 ZG310-570 正火 ZG340-640 正火 ZG35CrMnSi 正火、回火700 350 ≤217 调质785 588 197~269 HT300 290 190~240 HT350 340 210~260 QT500-7 500 320 170~230 QT600-3 600 370 190~270 KTZ550-04 550 340 180~250 KTZ-650-02 650 430 210~260 齿轮传动荐用的润滑油运动粘度ν /40℃ 齿轮材料 圆周速度v(m/s) <0.5 0.5~1 1~2.5 2.5~5 5~12.5 12.5~25 >25 铸铁、青铜320 220 150 100 80 60 钢 σB=(450~1000)MPa 500 320 220 150 100 80 60 σB=(1000~1250)MPa 500 500 320 220 150 100 80 σB=(1250~1600)MPa 1000 500 500 320 220 150 100 渗碳、表面淬火1000 500 500 320 320 150 100 齿轮精度等级、公差的说明 本网络手册中的圆柱齿轮精度摘自(GB10095—88),现将有关规定和定义简要说明如下: (1) 精度等级 齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。齿轮副中两个齿 轮 的精度等级一般取成相同,也允许取成不相同。 齿轮的各项公差和极限偏差分成三个组(参见)。 根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组,各项公差与极限偏差应保持相同的精度等级。参见齿轮传动精度等级选择 (2) 齿轮检验与公差(参见) 根据齿轮副的使用要求和生产规模,在各公差组中选定检验组来检定和验收齿轮精度。 (3) 齿轮副的检验与公差(参见) 齿轮副的要求包括齿轮副的切向综合误差ΔF ic′,齿轮副的一齿切向综合误差Δf ic′,齿轮副的接触班点位置和大小以及侧隙要求,如上述四方面要求均能满足,则此齿轮副即认为合格。 (4) 齿轮侧隙 齿轮副的侧隙要求,应根据工作条件用最大极限侧隙j nmax(或j tmax)与最小极限侧隙j nmin(或j tmin)来规定。 中心距极限偏差(±f a)按“中心距极限偏差”表的规定。 齿厚极限偏差的上偏差E ss及下偏差E si从齿厚极限偏差表来选用。例如上偏差选用F(=-4f Pt),下偏差选用L(=-16f Pt),则齿厚极限偏差用代号FL表示。参看图“齿轮、齿轮副误差及侧隙的定义和代号”。 若所选用的齿厚极限偏差超出齿厚极限偏差表所列14种代号时,允许自行规定。 (5) 齿轮各项公差的数值表 齿距累积公差F P及K个齿距累公差F PK齿向公差Fβ公法线长度变动公差F w 轴线平行度公差中心距极限偏差(±f a)齿厚极限偏差接触斑点 齿圈径向跳动公差F r径向综合公差F i″齿形公差F f齿距极限偏差(±f Pt) 基节极限偏差(±f Pb)一齿径向综合公差f i″齿坯尺寸和形状公差 齿坯基准面径向和端面跳动齿轮的表面粗糙度R a圆柱直齿轮分度圆上弦齿厚及弦齿高 (6) 图样标注

齿轮几何精度设计

研究性训练载体1-2:车床传主轴箱齿轮的几何精度设计 机电0904 09221117 张忠文1.问题提出: 零件的几何精度直接影响零件的使用性能,而零件的配合表面和非配合表面的精度要求高低各不相同;即便是配合表面,其工作性质不同,提出进度要求及公差项目也不相同,针对车床主轴箱齿轮进行几何精度设计。 2.专题研究的目的: (1)理解零件几何精度对其使用性能的影响; (2)根据零件不同表面的工作性质及要求提出相应的公差要求; (3)掌握正确的零件公差标注方法; (4)掌握零件的几何精度设计方法; 3.研究内容: 完成图1所示齿轮零件的几何精度设计。 (1)对零件各表面主要部分的技术要求进行分析研究; ①作为定位的基准内孔Φ40H7表面其粗糙度精度比基准端面的要求高,基 准端面的粗糙度较粗,为5um。但它对基准孔的端面圆跳动0.018um,比一般精度的齿轮要求高,因此在齿坯加工中,尚需留一定的余量进行精加工。 ②精加工孔和端面采用磨削的的加工方法。先以齿轮分度圆和端面作为定位 基准磨孔,再以孔位定位基准磨削面,控制端面圆跳动的要求,以确保齿形精加工用的精基准的精确度。 ③该例齿轮精度要求较高,工序安排滚齿后应留有一定磨齿的加工余量。(2)根据零件不同表面的工作性质及要求,提出相应的公差项目及公差值;包括齿轮的尺寸精度设计、形状精度设计、位置精度设计及表面粗糙度。 ①齿轮的工作面为齿面,齿轮在传动过程中,接触的两齿面会产生一定相 互滑动。发生滑动摩擦,导致齿面发生磨损。磨损严重时,会加大齿侧间隙而引起传动不平稳和冲击。为保证齿轮传动的平稳性,并且减小摩擦等要求,应采用较高的表面粗糙度,此处选择2.5um; ②齿轮Φ40H7内孔表面与传动轴为过盈配合,并且其内孔表面为摩擦表面,

齿轮设计说明书

设计计算说明书设计题目:齿轮 学院: 专业: 班级: 学号: 姓名: 指导老师:

计算内容计算说明结果 1.计算齿轮传动 比i2根据ω=2πn,v=ωr ,求得 n=ω/2π=1.96*60=117.6r/min 由此算出i2=1500/(2.5*117.6)=5.1 传动比i2=5.1 2选择齿轮材料,并确定许用应力大丶小齿轮都采用CrMnTi,渗碳淬火,齿面硬度 HRC60.根据参考文献[1]图10-38和图10-39查出齿 轮的疲劳极限强度,确定许用应力。 σHlim 1=σHlim 2=1500MPa σFlim 1=σFlim=460MPa [σH]=0.9σHlim 1=0.9*1500=1350MPa [σF]=1.4σFlim 1=1.4*460=644MPa 材料:大丶小齿轮都采 用CrMnTi,渗碳淬火 许用应力。 σHlim1=σHlim2=1500MPa σFlim1=σFlim=460MPa [σH]=1350MPa [σF]=644MPa 3.选取设计参数取最小齿轮齿数Z1=17,则 Z2=i2Z1=5.1*17=86.7,取大齿轮齿数Z2=87 Z1=17 Z2=87 4计算齿数比U=Z2/Z1=5.1 U=5.1 5计算相对误差是 否合理由于传动比误差为|(u-i)/i|*100%=0.39%<3%~5%, 所以齿轮数选择合理 合理 6选齿宽系数Φd参考表10—11选齿宽系数Φd =0.5 (齿轮相对于轴承为对称布置) Φd =0.5

7计算系数 A m、A d 初选螺旋角β=10°, 根据表10—8,系数A m=12.4,A d=756 A m=12.4 A d=756 8计算小齿轮的功率P1和小齿轮的转 速n1取传动带的效率 η=0.95,P1=P c*0.95=28.8*0.95=27.36w n1=V/i=1500/2.5=600(r/min) P1=27.36w n1=600(r/min) 9计算小齿轮的转 矩T1T1=9550*(P1/n1) =9550*(27.36/600)=435.48(N·m) T1=435.48(N·m) 10计算当量齿数按式(10-32)计算齿轮当量齿数 Z V1=Z1/cos3β=17/cos310°=17.8 Z V2=Z2/cos3β=87/cos310°=91.1 Z V1=17.8 Z V2=91.1 11计算模数m n根据表10—10查出复合齿形系数 Y SF1=4.49,Y SF2=3.85 取载荷系数K=1.2 m n≥A m31Y KT FS1/Φd Z12[σF] =12.4*) 644 * 2 ^ 17 * 5.0 /( ) 49 .4 * 48 . 435 * 2.1( 3=3.6 按表10—1取标准值m n=4mm M n=4mm 11计算中心距a a=[m n(z1+z2)]/2cosβ =[4*(17+87)]/2*cos10°=211.2mm 取a=212mm a=212mm

齿轮的设计

齿轮的设计 变位齿轮(gear with addendum modification)简介 通过改变标准刀具对齿轮毛坯的径向位置或改变标准刀具的齿槽宽切制出的齿形为非标准渐开线齿形的齿轮。切制轮齿时,改变标准刀具对齿轮毛坯的径向位置称为径向变位。改变标准刀具的齿槽宽称为切向变位。最常用的是径向变位,切向变位一般用于圆锥齿轮的变位。 切制 加工径向变位齿轮时,齿条形刀具的中线相对被加工齿轮分度圆移动的距离称为变位量,用xm表示,x称为变位系数,m为模数。通常规定,刀具中线相对轮心移远时,x 取正值,称为正变位;刀具中线相对轮心移近时,x取负值,称为负变位。 特点 变位齿轮与标准齿轮相比,其模数、齿数、压力角均无变化;但是正变位时,齿廓曲线段离基圆较远,齿顶圆和齿根圆也相应增大,齿根高减小,齿顶高增大,分度圆齿厚与齿根圆齿厚都增大,但齿顶容易变尖;负变位时,齿廓曲线段离基圆较近,齿顶圆和齿根圆也相应减小,齿根高增大,齿顶高减小,分度圆齿厚和齿根圆齿厚都减小。传动类型 径向变位齿轮传动可分为高变位齿轮传动和角变位齿轮传动。 高变位齿轮传动又称变位零传动,其特点是两轮的变位系数x1+x2=0。因此,高变位齿轮传动的啮合角α′等于压力角α,即α′=α;节圆与分度圆重合,即r′=r;中心距a′等于标准齿轮传动的中心距a,即a′=a。但由于变位齿轮齿顶高和齿根高发生了变化,高变位齿轮传动可用于中心距等于标准中心距,而又需要提高小齿轮齿根弯曲强度和减小磨损的场合。 角变位齿轮传动的特点是x1+x2≠0,故α′≠α,r′≠r,a′≠a。与标准齿轮传动相比,其啮合角发生了变化。当x1+x2>0 时,称为正传动,此时α′>α,r′>r,a′>a。采用正传动可以提高轮齿的接触强度和弯曲强度,改善轮齿的磨损,凑配中心距,但重合度有所减小。当x1+x2<0 时,称为负传动,此时α′<α,r′a,可以安装,却产生大的侧隙,重合度也降低,都影响了传动的平稳性。3)若滚齿切制的标准齿轮齿数小于17,则会发生根切现象,影响实际使用。 设计借助于Solidworks2011自带的渐开线齿轮设计插件GearTrax 2011进行辅助设计。 1、初级齿轮设计 1)在“螺距数据”选框中选择“模数制”,在标准中选择“小节距渐开线20度”,选

减速机标准汇总

GB/T 10062.1-2003锥齿轮承载能力计算方法第1部分:概述和通用影响系数 GB/T 10062.2-2003锥齿轮承载能力计算方法第2部分:齿面接触疲劳(点蚀)强度计算 GB/T 10062.3-2003锥齿轮承载能力计算方法第3部分:齿根弯曲强度计算 GB/T 10063-1988通用机械渐开线圆柱齿轮承载能力简化计算方法 GB/T 11365-1989锥齿轮和准双曲面齿轮精度 GB/T 11366-1989行星传动基本术语 GB/T 10085-1988圆柱蜗杆传动基本参数 GB/T 10086-1988圆柱蜗杆、蜗轮术语及代号 GB/T 12368-1990锥齿轮模数 GB/T 12369-1990直齿及斜齿锥齿轮基本齿廓 GB/T 10087-1988圆柱蜗杆基本齿廓 GB/T 10088-1988圆柱蜗杆模数和直径 GB/T 10089-1988圆柱蜗杆、蜗轮精度 GB/T 10090-1988圆柱齿轮减速器基本参数 GB/T 12370-1990锥齿轮和准双曲面齿轮术语 GB/T 12371-1990锥齿轮图样上应注明的尺寸数据 GB/T 10095.1-2001渐开线圆柱齿轮精度第1部分:轮齿同侧齿面偏差的定义和允许值 GB/T 10095.2-2001渐开线圆柱齿轮精度第2部分:径向综合偏差与径向跳动的定义和允许值GB/T 10096-1988齿条精度 GB/T 10107.1-1988摆线针轮行星传动基本术语 GB/T 10107.2-1988摆线针轮行星传动图示方法 GB/T 10107.3-1988摆线针轮行星传动几何要素代号 GB/T 10224-1988小模数锥齿轮基本齿廓 GB/T 10225-1988小模数锥齿轮精度 GB/T 12601-1990谐波齿轮传动基本术语 GB/T 12759-1991双圆弧圆柱齿轮基本齿廓 GB/T 12760-1991圆柱蜗杆,蜗轮图样上应注明的尺寸数据 GB/T 1356-2001通用机械和重型机械用圆柱齿轮标准基本齿条齿廓 GB/T 1357-1987渐开线圆柱齿轮模数 GB/T 10226-1988小模数圆柱蜗杆基本齿廓 GB/T 10227-1988小模数圆柱蜗杆、蜗轮精度 GB/T 1357-2008通用机械和重型机械用圆柱齿轮模数 GB/T 13924-1992渐开线圆柱齿轮精度检验规范 GB/T 13672-1992齿轮胶合承载能力试验方法 GB/T 13799-1992双圆弧圆柱齿轮承载能力计算方法 GB/T 14229-1993齿轮接触疲劳强度试验方法 GB/T 14230-1993齿轮弯曲疲劳强度试验方法 GB/T 13924-2008 渐开线圆柱齿轮精度检验细则 GB/T 14231-1993齿轮装置效率测定方法 GB/T 16442-1996平面二次包络环面蜗杆传动术语 GB/T 16443-1996平面二次包络环面蜗杆传动几何要素代号 GB/T 16444-1996平面二次包络环面蜗杆减速器系列、润滑和承载能力 GB/T 16445-1996平面二次包络环面蜗杆传动精度 GB/T 16446-1996平面二次包络环面蜗杆减速器技术条件 GB/T 15752-1995圆弧圆柱齿轮基本术语 GB/T 15753-1995圆弧圆柱齿轮精度

圆柱齿轮传动的精度设计

一、传动齿轮的使用要求 齿轮是机器和仪器的重要零件,齿轮的精度在一定程度上影响着整台机器或仪器的质量。由于齿形比较复杂,参数比较多,所以齿轮精度的评定比较复杂。 现代工业对齿轮传动提出的要求,归纳起来有下列四项: 1、要求一转范围内传动比的变化尽量小,以保证传递运动准确。(运动准确) 2、要求瞬时传动比的变化尽量小,以保证传动平稳,冲击及振动小,噪声低。(工作平稳) 3、要求在受载下工作齿面能够良好接触,以保证足够的承载能力和使用寿命。(接触精度) 4、要求齿轮副有适当的齿侧间隙(啮合轮齿的非工作面间的间隙,以补偿热变形和贮存润滑油。) 不同用途和不同工作条件的齿轮及齿轮付对上述四项要求的侧重点是不同的。例如,控制系统或随动系统的分度传动的侧重点是运动精度,以保证主、从动齿轮的运动协调。汽车和拖拉机变速齿轮传动的侧重点是工作平稳性,以降低噪声。低速重载齿轮传动(如轧钢机的齿轮传动)的侧重点是齿面接触精度,以保证齿面接触良好。而涡轮机中的高速重械齿轮传动对三顶精度的要求都很高,而且要求很大的齿侧间隙,以保证较大流量的润滑油通过。 二、齿轮误差的评定指标 为了验收齿轮,对直齿圆柱齿轮建立了下列评定指标: 1、运动精度的评定指标 (1) 切向综合误差ΔFiˊ 定义:被测齿轮与理想精确的测量齿轮单面啮合转动时相对于测量齿轮的转角,在被测齿轮一转内被测齿轮实际转角与理论转角的最大差值。 它是一个综合性指标。 (2) 周节累积误差ΔFp,K个周节累积误差ΔFpk。 定义:在被测齿轮的分度圆上,任意两个同侧齿面间的实际弧长与公称弧长的最大差值。是一个综合性指标。 (3) 齿圈径向跳动ΔFr与公法线长度变动ΔFw A、齿圈径向跳动ΔFr 定义:在齿轮一转范围内,测头在齿槽内或轮齿上,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。 是一个单向性指标。(径向方向) B、公法线长度变动ΔFw 定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。 是一个切向性质的单向性指标。 (4)径向综合误差ΔFi″

齿轮及轴的几何精度设计

齿轮及轴的几何精度设计 学生作品 所属学院: 专业:机械工程及自动化 小组成员: 组长: 授课教师: 提交时间:

传动轴设计准备工作——明确问题的提出及研究目的1.问题提出: 零件的几何精度直接影响零件的使用性能,而零件的配合表面和非配合表面的精度要求高低各不相同;即便是配合表面,其工作性质不同,提出进度要求及公差项目也不相同,针对车床传动轴进行几何精度设计。 2.专题研究的目的: (1)理解零件几何精度对其使用性能的影响; (2)根据零件不同表面的工作性质及要求提出相应的公差要求;(3)掌握正确的零件公差标注方法; (4)掌握零件的几何精度设计方法。 车床传动轴的几何设计要求——研究内容 1.完成图1所示传动轴零件的几何精度设计。 (1)对轴上各部分的作用进行分析研究; (2)对零件各表面主要部分的技术要求进行分析研究; (3)根据零件不同表面的工作性质及要求,提出相应的公差项目及公差值;包括传动轴的尺寸精度设计、形状精度设计、位置精度设计及表面粗糙度。 2.把公差正确的标注在零件图上。

图1 传动轴 工作安排 1.查阅资料了解传动轴各部位的作用; 2.根据相关资料及所学知识设计相应的尺寸及公差要求; 3.绘制传动轴零件图; 4.在零件图上准确地标出相应的尺寸及公差要求; 5.总结上述过程,完成研究报告。 组员分工 1.查阅资料—— 2.设计尺寸及公差要求—— 3.绘制零件图—— 4.制作报告—— 技术要求 一、传动轴的作用: 车床传动轴多用于传动,两端圆柱面与轴承配合。轴肩的位置是 ② ① ③ ④ ⑤ ⑥ ⑦

为了便于轴与轴上零件的装配,键槽通过与键配合实现扭矩的传递。 由给定传动轴的零件图可知,各阶梯轴的基本尺寸均已给出,但在设计时,我们要根据轴所受的转矩来初步估算,然后再按轴上零件的配合方案和定位要求,从而逐一确定各段直径。在此过程中,我们需注意以下几点:(1)轴上装配标准件的轴段(如图1中①、③、⑤、⑦),其直径必须符合标准件的标准直径系列值。(2)与一般零件(如齿轮、带轮等)相配合的轴段(该轴中无此段),其直径应与相配合的零件毅孔直径相一致,井采用标准尺寸(GB2822--81)。而不与零件相配合的轴段(如图1中②、④、⑥),其直径可不取标准尺寸。3)起定位作用的轴肩称力定位轴肩(如图1中①与②、③与④之间的轴肩),其高度按相关的原则确定。为便于轴上零件安装而设置的非定位轴肩,其高度一般取1~~3mm。 二、基准的选择及加工工艺: 1、定位基准的选择①粗基准的选择:轴类零件粗基准一般选择外圆表面。这样,一方面可方便装夹,同时也容易获得较大的支撑刚度。 ②精基准的选择:轴类零件的精基准在可能的情况下一般都选择轴两端面中心孔。这是因为轴类零件的各主要表面的设计基准都是轴线,选择中心孔作精基准,既可满足基准重合的要求,又可满足基准统一的要求。当不能选中心孔作为精基准时,可采用轴的外表面或轴的外表面加一中心孔作为精基准。对精度要求不高的轴,为了减少加工工序,增加支撑刚度,一般选择轴的外圆作精基准。 2、工艺路线:轴类零件主要表面加工的工艺路线如下:下料(圆

齿轮设计实例

【例1】设计一电动机驱动的带式运输机的两级减速器高速级的直齿圆柱齿轮传动。已知传递的功率P 1=5.5kW ,小轮转速n 1=960r/min ,齿数比u =4.45。 解: 1.轮齿部分主要几何尺寸的设计与校核 ① 选定材料、齿数、齿宽系数 由表10-7选择常用的调质钢 小轮:45调质 HB 1=210~230, 大轮:45正火 HB 2=170~210, 取小轮齿数Z 1=22,则大轮齿数Z 2=uZ 1=4.45×22≈98, 对该两级减速器,取φd =1。 ②确定许用应力: 许用接触应力 N H lim H H min []Z S σσ= 许用弯曲应力 Flim ST NT F F min []Y Y S σσ= 式中 σHlim1=560MPa ,σHlim2=520MPa (图8-7(c )), σFlim1=210MPa ,σFlim2=200MPa (图8-7(c ))。 σFlim 按图8-26查取,应力修正系数Y ST =2,而最小安全系数σHlim =σFlim =1(表8-5),故 H11560 []5601σ?== MPa H21520 []5201σ?== MPa F12102 []4201σ?== MPa F22002 []4001 σ?= = MPa ③ 按齿面接触强度设计 由式 d 1 计算小轮直径。 载荷系数K =K A K V K β 取K A =1(表8-2),K V =1.15,K β=1.09(表8-3),故 K =1×1.15×1.09=1.25 小轮传递的转矩 T 1=9.55×106p /n =9.55×106×5.5/960=54713.5N ?mm 弹性变形系数Z E =189.8(表10-5)。 节点区域系数Z H =2.5。 将以上数据代入上式得

齿轮设计说明书

重庆大学本科学生课程设计零件齿轮的工艺规程设计 学生:何XX 学号:2XX 指导教师:XXX 专业:机械电子工程 重庆大学机械工程学院 二0一七年十二月

目录 重庆大学本科学生课程设计任务书 (3) 1. 序言 (4) 2. 零件分析 (4) 2.1. 零件的作用 (4) 2.2. 零件的工艺分析 (4) 3. 基准的选择 (4) 3.1. 定位方式 (4) 3.1.1. 带轴齿轮的定位方式 (4) 3.1.2. 以内孔和端面定位 (5) 3.1.3. 以外圆和端面定位 (5) 3.2. 零件的技术条件 (6) 3.2.1. 零件的表面粗糙度和加工精度 (6) 3.2.2. 各表面的位置精度(略) (6) 3.2.3. 零件表面的加工方法 (6) 4. 工艺规程的设计 (7) 4.1. 毛坯的确定 (7) 4.1.1. 确定机械加工余量 (8) 4.1.2. 确定毛坯尺寸公差 (8) 4.1.3. 确定圆角半径 (8) 4.1.4. 确定拔模斜度 (9) 4.1.5. 确定分模位置 (9) 4.1.6. 确定毛坯的热处理 (9) 4.2. 制定工艺路线(见机械加工工艺过程卡片) (9) 4.2.1. 粗铣 (9) 4.2.2. 精铣 (9) 4.2.3. 粗车 (9) 4.2.4. 粗车 (9) 4.2.5. 拉孔 (9) 4.2.6. 滚齿 (9) 4.3. 重点工序的说明(见工序卡片) (10) 5. 各工序切削用量的选择热处理工艺及工时的计算 (10) 5.1. 工序1(略) (10) 5.2. 工序2(略) (10) 5.3. 工序3(略) (10) 5.4. 工序4:见工序卡片 (10) 5.4.1. 切削用量 (10) 5.4.2. 工时的计算 (10) 6. 设计心得体会 (11)

两级圆柱齿轮减速器精度分析

机械精度课程大作业两级圆柱齿轮减速器装配分析 2014年12月

目录 一、减速器的工作原理及实际应用 二、减速器的主要组成部件精度及配合选用分析 三、相关零件图 四、装配图(部分)

一、减速器的工作原理和实际应用 1、两级圆柱齿轮减速器的工作原理 2、减速器的实际应用 减速机是国民经济诸多领域的机械传动装置,食品轻工、电力机械、建筑机械、冶金机械、水泥机械、环保机械、电子电器、筑路机械、水利机械、化工机械、矿山机械、输送机械、建材机械、橡胶机械、石油机械等行业领域对减速机产品都有旺盛的需求。 二、减速器的组成部件精度及配合选用分析 (部分装配图) 1、轴的精度和配合选用 1)确定尺寸精度

如图,输出轴上Φ32mm轴径与一个轴承的内圈配合,Φ60mm的轴颈与齿轮基准孔配合,Φ45mm轴头与减速器外开始齿轮传动主动齿轮(图中未画出)基准孔配合,Φ68mm轴肩的两端面分别为齿轮和滚动轴承内圈的轴向定位基准面。 (轴装配图) 该轴转速不高,承受载荷不大,有轴向力,故轴承采用7211 GB/T 297-1994圆锥滚子轴承,其额定动载荷为52800N。 经计算,该轴承的当量动载荷为3036N,与额定动载荷的比值小于0.07,则该轴承的负荷状态属于轻负荷。 轴承工作时承受定向负荷的作用,内圈与轴颈一起转动,外圈与箱体固定不旋转,因此轴承内圈属于负荷方向旋转。 根据以上计算,查表6.2可知,轴颈公差带代号为Φ55k6。

选取安装在Φ60mm轴颈上的从动轮的最高精度等级为7级,查表10.10 (表10.10) 确定齿轮内孔尺寸公差为IT7,轴比孔高一级,取IT6。同理安装在该轴端 部Φ45mm轴颈上的开式齿轮精度等级为9级,该轴头尺寸公差为IT7

第十章渐开线圆柱齿轮的精度设计

第十章渐开线圆柱齿轮的精度设计 一、判断下列说法的正误,正确用“T”表示,错误用“F”表示,字母一律写在括号内。 1. 在齿轮的加工误差中,影响齿轮副侧隙的误差主要是齿厚偏差和公法线平均长度偏差。(T) 2. 圆柱齿轮根据不同的传动要求,同一齿轮的三项精度要求,可取相同的精度等级,也可以取不同的精度等级相组合。(T) 3. 同一个齿轮的齿距累积误差与其切向综合误差的数值是相等的。( F ) 4. 当一个齿轮的使用基准与加工基准的轴线重合时,即不存在齿圈径向跳动误差。( T ) 5. 齿距累积误差是由于径向误差与切向误差造成的。(T ) 6. 齿形误差对接触精度无影响。(F) 7. 切向综合误差能全面的评定齿轮的运动精度。(F) 8. 齿厚的上偏差为正值,下偏差为负值。(F) 9. 齿轮的单项测量,不能充分评定齿轮的工作质量。(F) 10. 齿轮的综合测量的结果是各单项误差的综合。( F ) 二、选择题 1.齿轮传递运动准确性的必检指标是( C ) A.齿厚偏差;B.齿廓总偏差;C.齿距累积偏差;D.螺旋线总偏差 2.保证齿轮传动平稳性的公差项目是(B ) A.齿向公差;B.齿廓偏差;C.齿厚极限偏差;D.齿距累积公差 3.下列说法正确的有(AB) A.用于精密机床的分度机构,测量仪器上的读数分度齿轮,一般要求传递运动准确; B.用于传递动力的齿轮,一般要求传动平稳;C.用于高速传动的齿轮,一般要求传递运动准确;D.低速动力齿轮,对运动的准确性要求高 4.齿轮副的侧隙用于(D ) A.补偿热变形;B.补偿制造误差和装配误差;C.储存润滑油;D.以上三者 5. 对轧钢机、矿山机械和起重机械等低速重载齿轮的传动精度要求较高的为(B) A. 传递运动的准确性;B. 载荷在齿面上分布的均匀性;C. 传递运动的平稳性;D. 传递侧隙的合理性6.对高速传动齿轮(如汽车、拖拉机等)减速器中齿轮精度要求较高的为( C ) A. 传递运动的准确性;B. 载荷在齿面上分布的均匀性;C. 传递运动的平稳性;D. 传递侧隙的合理性7. 测量齿圈径向跳动误差,主要用以评定由齿轮( A )

齿轮设计

微型汽车所配发动机的基本参数,其最大功率58.8KW/6000rpm ,最大转矩108Nm/4400rpm 变速器的设计。 参考一款类似车型的传动比大小,初步选定各档传动比值 传动比:一档769.322 2714431=?=i 二档915.1222725392=?= i 三档339.122 2733363=?= i 四档14=i 五档89.022 2740295=?= i 齿轮的初步参数 中心距:根据经验公式初选31max g e A i T K A η= K A 是中心距系数,乘用车8.9~9.3,商用车8.6~9.6。max e T 发动机最大转矩(Nm )1i 一档传动比,η传动效率96% 初选模数:经验公式,一档mm i T K m e m n ,31max 1η=,1m K 为模数系数,一般为0.27~0.37, max e T 发动机最大转矩,1i 变速器一档传动比,η变速器传动效率0.96 高档齿轮 mm T K m e m n ,3max =,m K 模数系数0.37~0.48 齿宽:齿轮宽度较大时,其承载能力会提高,但是当齿轮受载后,由于存在轴的挠度变形及齿轮的齿向误差等原因,使得齿轮沿齿宽方向的受力不均匀,因而选择齿宽时不宜过大。通常情况下,齿宽的确定是根据齿轮模数的相关经验公式来选取的 n c m K b = c K 齿宽系数,直齿轮取4.4~7.0;斜齿轮取7.0~8.6。为便于装配和调整,一般小齿轮宽度 再加大5~10mm ,但计算时按大齿轮宽度计算。 螺旋角:一般10°~35°,过大,轴向力大;过小, 中间轴上轴向力平衡111tan βn a F F = 222tan βn a F F = 传递的扭矩相等2211r F r F T n n == 2 1 21tan tan r r =ββ,尽量抵消轴向力 各档齿数的分配

齿轮设计实例

【例1】设计一电动机驱动的带式运输机的两级减速器高速级的直齿圆柱齿轮传动。已 知传递的功率 P i =5.5kW ,小轮转速n i =960r/min ,齿数比u=4.45。 解: 1 ?轮齿部分主要几何尺寸的设计与校核 ① 选定材料、齿数、齿宽系数 由表10-7选择常用的调质钢 小轮:45调质 大轮:45正火 取小轮齿数Z 1=22 , 对该两级减速器,取 ② 确定许用应力: 许用接触应力 许用弯曲应力 S Fmin d U 计算小轮直径。 载荷系数K = K A K V K B 取 K A =1 (表 8-2), K V =1.15, K B =1.09 (表 8-3),故 K=1X 1.15 X 1.09=1.25 小轮传递的转矩 T 1=9.55 >106 p/n=9.55 M 06 X5.5/960=54713.5N mm 弹性变形系数 Z E =189.8 (表10-5)。 节点区域系数Z H =2.5。 将以上数据代入上式得 HB 1=210 ?230 , HB 2=170 ?210 , 则大轮齿数 Z 2=U Z 1=4.45 X 2- 98 , d =1。 [H ] Z N Hlim S H min Flim Y ST Y NT F ] 式中 Hlim1 =560MPa , Flim1 =210MPa , Flim 按图 8-26查取, 8-7 (c )). (图 (图 8-7 ③ 由式 Hlim2 =520MPa Flim2=200MPa 应力修正系数 Y ST =2 ,而最小安全系数 Hlim = Flim =1 (表 8-5), 按齿面接触强度设计 H1 ] F2] 560 MPa 520 MPa 420 MPa 400 MPa d 1> 3 ------------------------------------------------ 2 2KT 1 u 1 Z E Z H 1 560 Fl ] 1 H2 ]

齿轮传动精度设计

1. 确定齿轮的精度等级 确定齿轮精度等级的方法采用类比法。 见表10.4所示, 减速器用齿轮精度等级为6~9级。 计算齿轮圆周线速度,确定其平稳性精度。 )s /m (10006022?=n d v π从动轮转速为 从动轮分度圆直径为 681 .222 12414cos /723cos /22="'??==βz m d n n /r (5.1874/750/12 mi i n n ===) s /m (185.2 1000605.187681.222 100060 22=???=?=ππn d v 则

根据v = 2.185m/s查表10.5得平稳性精度为9级考虑减速器运动精度要求不高,载荷分布均匀性精度一般不低于平稳性精度,故确定齿轮传递运动准确性、传动平稳性、载荷分布均匀性分别为·9级,9级、8级。 确定齿轮必检偏差项目的允许值由表10.1、和表10.2(在下页)得: 运动准确性:齿距累积总偏差FP = 0.1 平稳性:单个齿距偏差fpt = ±0.026 齿廓总偏差Fα= 0.036 载荷分布均匀性:螺旋线总偏差Fβ=0.029 200

(1)最小法向侧隙 的确定min bn j mm 18.13912414cos 2)7218(3cos 2)(21n ="'??+?=+=βz z m a 2008) 3. 确定齿轮的最小法向侧隙和齿厚上、下偏差 根据中心距a 查表10.6。 用插入法得 jbnmin= 0.152mm 。 (2) 齿厚上、下偏差的计算 ① 上偏差: ???? ??++-=n n bn min bn sns tan 2cos ) 5.10(ααa f J j E 由式()[] 222221pt bn /34.02)(88.0 ) 4.10(βF b l f f J pt ++=由式 由表10.1和表10.2查得 fpt1=23μm, fpt2=26μm, Fβ=29μm 和 L = 100 , b = 55。 将上述数据代入上式(10.4)

齿轮标准大全资料

齿轮标准大全 (精度部分) 1、GB/T 2821-92 齿轮几何要素代号(已作废) (注:已有GB/T 2821-2003 在标准参考资料<十二> 中) 2、GB1356-88 渐开线圆柱齿轮基本齿廓(已作废) (注:已有GB/T 1356-2001 在标准汇编中) 3、GB1357-87 渐开线圆柱齿轮模数(已作废) (注:已有“GB/T 1357-2008 通用机械和重型机械用圆柱齿轮模数”在标准汇编第九部分中) 4、GB1356-88 渐开线圆柱齿轮基本齿廓、GB1357-87 渐开线圆柱齿轮模数编制说明 5、GB10095-88 渐开线圆柱齿轮精度(已作废) 6、GB10095-88 渐开线圆柱齿轮精度编制说明 (注:已有GB/T 10095.1.2-2001 在标准参考资料<九> 中) 7、GB10096-88 齿条精度 8、GB10096-88 齿条精度编制说明 9、GB6443-86 渐开线圆柱齿轮图样上应注明的尺寸数据 10、GB6443-86 渐开线圆柱齿轮图样上应注明的尺寸数据编制说明 11、GB/T13924-94 渐开线圆柱齿轮精度检验规范 12、GB/T13924-94渐开线圆柱齿轮精度检验规范编制说明 (注:已有GB/T 13924-2008 渐开线圆柱齿轮精度检验细则在标准参考资料<九> 中) 13、JB/T53441-94 渐开线圆柱齿轮产品质量分等通则(注:标准出版社出版标准汇编中没有) 14、JB/T53441-94渐开线圆柱齿轮产品质量分等通则编制说明

1、GB10085-88 圆柱蜗杆传动基本参数 2、GB10085-88圆柱蜗杆传动基本参数编制说明 3、GB10086-88 圆柱蜗杆传动、蜗轮术语及代号 4、GB10087-88 圆柱蜗杆基本齿廓 5、GB10087-88 圆柱蜗杆基准齿形编制说明 6、GB10088-88 圆柱蜗杆模数和直径 7、GB10088-88 圆柱蜗杆模数和直径编制说明 8、GB10089-88 圆柱蜗杆、蜗轮精度 9、GB10089-88 圆柱蜗杆、蜗轮精度编制说明 10、GB/T12760-91 圆柱蜗杆、蜗轮图样上应注明的尺寸数据

齿轮精度设计示例_student

2. 齿轮精度设计示例 【例】某机床变速箱中一对直齿圆柱齿轮,模数m=3mm ,齿数Z1 =30,齿数Z2 =90,齿形角α=20°,齿宽b1=20,转速n1=1400r/min ,齿轮材料为45号钢,单件小批量生产。试①确定小齿轮精度等级;②确定检查项目;③计算齿轮副侧隙和齿厚偏差;④将齿厚极限偏差换算成公法线平均长度极限偏差。⑤确定齿轮坯公差(确定小齿轮内孔和齿顶圆的尺寸公差、齿顶圆的径向圆跳动公差和端面跳动公差。)⑥确定齿轮零件表面粗糙度;⑦绘制齿轮零件图。 解: 准备工作:对于小齿轮 根据分度圆直径d=mz 算得:分度圆直径d1=m ×Z1=3×30=90 mm 根据齿顶圆直径d a = mz+2m 算得:齿顶圆直径d a 1=m×z1+2×m=3×30+2×3=96mm ①确定小齿轮精度等级 ∵该齿轮是机床变速箱中速度较高的齿轮,主要要求是传动平稳性 ∴根据圆周速度确定其影响传动平稳性的偏差项目的精度等级。 根据圆周速度 s m s m dn v /59.6/1000601400 901000601 =???=?=ππ 参考表9-8(P232,旧版教材P216),选影响传动平稳性的偏差项目的精度等级为8级。 ∵该齿轮对传递运动的准确性要求不高 ∴可降低一级,选影响传递运动准确性的偏差项目的精度等级为9级。 ∵该齿轮既传递运动又传递动力,动力齿轮对齿面载荷分布均匀性有一定要求,通常精度等级不低于影响传动平稳性的偏差项目的精度等级, ∴选影响载荷分布均匀性的偏差项目的精度等级为8级。 ∵三个公差组 (旧标准)GB/ T 10095.1-2001标准开始取消了原标准三个公差组的说法 根据齿轮的使用要求分为三个公差组。 ∴ 第Ⅰ公差组 影响传递运动准确性的偏差项目的精度等级为9级 第Ⅱ 公差组 影响传动平稳性的偏差项目的精度等级为8级 第III 公差组 影响载荷分布均匀性的偏差项目的精度等级为8级 ②选择齿轮检查组,确定检查项目公差值 ∵该齿轮属于中等精度、小批量生产,没有对齿轮局部范围提出更严格的噪振动要求, ∴参考表9-9(P233,旧版教材P217),选第1检验组,检验项目为: 单个齿距偏差 f pt 齿距累积总偏差p F 齿廓总偏差a F 螺旋线总偏差βF 径向圆跳动F r 1)单个齿距偏差 f pt (第Ⅱ公差组 精度等级8级 传动平稳性) 根据分度圆直径d=90、法向模数m n =3、精度等级8级,

齿轮设计说明书

齿轮参数化建模说明书 已知参数为:齿数z=34,模数m=2,压力角α=20°,建立直齿圆柱齿轮参数化建模。参数化建模过程: 1、启动Pro/E程序后,选择【文件】/【新建】命令,在弹出的【新建】对话框中的【类型】选项组中选取【零件】选项,在【子类型】选项组中选取【实体】选项,同时取消【使用缺省模版】选项的选中状态,最后在【名称】文本框中输入gear,单击按钮后,系统弹出【新文件选项】对话框,在【模版】选项组 中选择mmns_part_solid选项,最后单击该对话框中的按钮后进入Pro/E系统的零件模块。

2、设置尺寸参数单击菜单栏【工具】在下拉菜单单击【参数】,在【参数】对话框中添加尺寸的各个参数,如下图所示

3、设置关系参数 在主菜单上依次单击“工具”→“关系”,系统弹出“关系”对话框,并在“关系”对话框内输入齿轮的分度圆直径关系、基圆直径关系、齿根圆直径关系和齿 顶圆直径关系,如下图所示: 4、绘制齿轮基本圆 (1)在工具栏内单击按钮,系统弹出“草绘”对话框。选择“FRONT”面作为草绘平面,选取“RIGHT”面作为参考平面,参考方向为向“左”,如图2-1 所示。单击【草绘】进入草绘环境。

(2)在绘图区以绘图提供的原点为圆心,绘制四个同心圆,并且标注圆的直径尺寸。在工具栏内单击按钮,完成草图的绘制,如下图所示: (3)在主菜单上依次单击“工具”→“关系”,系统弹出“关系”对话框。在

“关系”对话框中输入尺寸关系,通过该关系创建的圆即分别为分度圆、齿顶圆、齿根圆、基圆。 (4)在【关系】对话框中单击确定按钮,系统自动根据设定的参数和关系式再生模型并生成新的基本尺寸。最终生成如下图所示的标准齿轮基本圆。 5、创建齿轮轮廓线在右工具箱中单击“基准曲线”按钮打开【曲线选项】菜单,在该菜单中选择【从方程】选项,然后选取【完成】选项。 系统提示选取坐标系,在模型树窗口中选择当前的坐标系,然后在【设置坐标类型】菜单中选择【笛卡尔】选项。系统打开一个记事本编辑器。在记事本中添加如下图所示的渐开线方程式,完成后依次选取【文件】/【保存】选项保存方程式,然后关闭记事本窗口。

齿轮精度标准分析

一、 圆柱齿轮精度标准 渐开线圆柱齿轮是机械传动量大而广的基础零部件,广泛在汽车、拖拉机、机床、电力、冶金、矿山、工程、起重运输、船舶、机车、农机、轻工、建工、建材和军工等领域中应用。齿轮和齿轮箱在国内外都已以商品进行贸易。齿轮的质量以工作可靠、寿命长、振动噪声低为准则。除材料热处理硬度因素外,机械制造精度很为关键。据德国G尼曼、H温特尔齿轮专家资料介绍,制造精度等级相差一级,其承载能力强度相差20~30%,噪声相差2.5-3分贝,制造成本相差60~80%。齿轮的设计、工艺、制造、检验以及销售和采购都以齿轮精度标准为重要的依据。 1 国际齿轮精度标准的发展 在本世纪四十年代,齿轮精度标准有英国BS 436—1940、美国齿轮制造协会AGMA 231.02—1941、德国企业工程师协会ADS提案、苏联TOCT 1643—46、法国NFE 23—006(1948)等,这期间齿轮标准特点是,规定的精度等级较少(4~6个级),从几何学观点规定齿轮参数项目,按极其简单的模式来确定各项公差值。五十年代由于齿轮制造技术、测量仪器和使用经验的积累,对齿轮啮合原理及精度理论的研究,世界各国都进行了齿轮精度标准的修订,以德国DIN 3960~3967(1952—1957)和苏联TOCT 1643—1956标准为代表,齿轮精度等级和误差项目增多,规定了切向和径向综合误差、建立了综合误差与单项误差的关系,独立规定侧隙配合制度,并根据误差产生的原因和各误差对传对性能的影响,提出了精度等级及误差允许分类组合的概念。这对评定精度、减少废品、降低制造费用等极为有利。 七十年代国际贸易发展,齿轮精度标准向国际间的统一,表现在误差的符号、定义和公差值的一致,1951年法国、苏联、英国、比利时和瑞士六国组成ISO/TC 60/WG2(齿轮技术委员会第二工作组),负责制订齿轮精度ISO标准,法国为秘书国,经过十余年的磋商、讨论和验证,于1967年提出了ISO/DR 1328《平行轴渐开线圆柱齿轮—ISO精度制》(推荐草案)。1970年3月20日在ISO/TC 60的第六次全体会议上以20票赞成,5票反对,5票保留讨论通过了“标准草案”,WG2根据各国所提意见又进行部分修改,最后于1975年通过为正式标准ISO 1328—1975。此国际标准除了德国、美国、日本外世界各国都以等同或等效采用ISO 1329—1975标准修订各自国家标准。同时,由于工业先进国家德国、美国、

相关主题
文本预览
相关文档 最新文档