当前位置:文档之家› 圆柱齿轮传动精度设计知识大全教程文件

圆柱齿轮传动精度设计知识大全教程文件

圆柱齿轮传动精度设计知识大全教程文件
圆柱齿轮传动精度设计知识大全教程文件

外啮合圆柱齿轮所有计算公式大全、检验方法、各精度差数表格汇总

名称及代号

计算公式及说明

直齿轮斜齿及人字齿轮

模数m

由强度计算或结构设计确

定,并取标准值。

法向模数m n取标准值。

端面模数:m t=m n cosβ

分度圆

螺旋角β

β=0 两轮螺旋角相等,方向相反

分度圆压力角α=20

°

αn=20°,tanαt=tanαn/cosβ

分度圆直径d d=mz d=m t z

标准中心距a a=(d1+d2)/2=(z1+z2)m/2 a=(d1+d2)/2=(z1+z2)m n/(2cosβ)

啮合角α'情况Ⅰ:已知总变位系数(x1+x2)时,

invα'=2(x1+x2)tanα/(z1+z2)+invα

invαt'=2(x n1+x n2)tanαn/(z1+z2)+invαt

求出啮合角α'后,可求出变位后的中心距a';

情况Ⅱ:已知变位后的中心距a'时,

cosα'=a cosα/a'cosαt'=a cosαt/a'

求出啮合角α'后,由上式求(x1+x2)值,再进行分配。

中心距变动系

数y y=(a'-a)/m

=(z1+z2)(cosα/cosα'-1)/2

y n=(a'-a)/m n

=(z1+z2)(cosαt/cosαt'-1)/(2cosβ)

y t=y n conβ

变位后的中心

距a'

a'=a+ym=a cosα/cosα'a'=a+y t m t=a+y n m n=a cosαt/cosαt'齿根圆直径d f d f=d-2(h a+c-xm) d f=d-2(h an+c n-x n m n)

齿顶圆直径d a d a1=2a'-d f2-2c

d a2=2a'-d f1-2c

d a1=2a'-d f2-2c n

d a2=2a'-d f1-2c n

齿顶高h a h a=(d a-d)/2 齿根高h f h f=(d-d f)/2 齿高h h=h a+h f 基圆直径d b d b=d cosαd b=d cosαt

节圆直径d'd'=d b/cosα'd'=d b cosαt

分度圆齿距p p=mπp n=m nπ,p t=m tπ

基圆齿距p b p b=p cosαp bt=p t cosαt

齿顶压力角αaαa=arccos(d b/d a) αat=arccos(d b/d a)

基圆螺旋角βb

βb=0 tanβb=tanβcosαt

cosβb=cosβcosαn/cosαt

端面重合度εα

εα=[z1(tanαa1-tanα')+

z

2(tan

αa2-tanα')]/(2π)

εα=[z1(tanαat1-tanαt')+

z

2(tan

αat2-tanαt')]/(2π)

纵向重合度εβεβ=0 εβ=b sinβ/(m nπ),b为齿轮宽度

总重合度εγεγ=εαεγ=εα+εβ

注:角标n为法面,t为端面;1为小齿轮,2为大齿轮。

齿轮标准模数(mm)

圆柱齿轮

(GB12368-90)

第1系列1 1.25 1.52 2.53456810121620

第2系列

1.75

2.25 2.75(

3.25) 3.5(3.75)

4.5

5.5(

6.5)

79(11)1418

锥齿轮

(GB12368-90)

1 1.125 1.25 1.375 1.5 1.75

2 2.25 2.5 2.75

3 3.25 3.5

3.754

4.55

5.56

6.578910111214161820

注:1. 斜齿轮及人字齿轮取法面模数为标准模数;锥齿轮取大端模数为标准模数。

2. 优先采用第1系列,括号内的模数尽可能不用。

渐开线圆柱齿轮的基本齿廓mm (GB1356—88)

基本齿廓参数代号数值

齿顶高

工作齿高

顶隙

全齿高

齿距

齿根圆角半径

h a

h′

c

h

p

R f

m

2m

0.25m

2.25m

πm

≈0.38m 注:1. 本标准适用于模数m≥1mm,齿形角α=20°的渐开线圆柱齿轮。

2. 允许齿顶修缘。

中心距系列(推荐使用)mm

第1系列

405063801001251602002503154005006308001000

1250160020002500

第2系列145 180 225 280 355 450 560 710 900 1120 1400 1800 2240

动力齿轮传动的最大圆周速度m/s

精度等级

圆柱齿轮传动锥齿轮传动

直齿斜齿直齿曲线齿5级以上≥15 ≥30 ≥12 ≥20 6级<15 <30 <12 <20 7级<10 <15 <8 <10 8级<6 <10 <4 <7 9级<2 <4 <1.5 <3

齿轮常用材料及其力学性能图例

45 正火

≤100 ≤50 588 294 169~217

40~50 101~300 51~150 569 284 162~217

调质

≤100 ≤50 647 373 229~286

101~300 51~150 628 343 217~255

42SiMn 调质

≤100 ≤50 784 510 229~286

45~55 101~200 51~100 735 461 217~269

201~300 101~150 686 441 217~255

40MnB 调质

≤200 ≤100 750 500 241~286

45~55 201~300 101~150 686 441 241~286

35CrMo 调质

≤100 ≤50 750 550 207~269

40~45 101~300 51~150 700 500 207~269

40Cr 调质

≤100 ≤50 750 550 241~286

48~55 101~300 51~150 700 500 241~286

20Cr

渗碳淬火

+低温回火

≤60 ≤30 637 392 56~62

20CrMnTi

渗碳淬火

+低温回火

30 15 1079 883

56~62 ≤80 ≤40 981 785

38CrMoAl 调质、渗氮30 1000 850 229 渗氮HV>850 ZG310-570 正火

ZG340-640 正火

ZG35CrMnSi 正火、回火700 350 ≤217 调质785 588 197~269

HT300 290 190~240 HT350 340 210~260

QT500-7 500 320 170~230

QT600-3 600 370 190~270

KTZ550-04 550 340 180~250

KTZ-650-02 650 430 210~260

齿轮传动荐用的润滑油运动粘度ν /40℃

齿轮材料

圆周速度v(m/s)

<0.5 0.5~1 1~2.5 2.5~5 5~12.5 12.5~25 >25 铸铁、青铜320 220 150 100 80 60

σB=(450~1000)MPa 500 320 220 150 100 80 60

σB=(1000~1250)MPa 500 500 320 220 150 100 80

σB=(1250~1600)MPa 1000 500 500 320 220 150 100

渗碳、表面淬火1000 500 500 320 320 150 100

齿轮精度等级、公差的说明

本网络手册中的圆柱齿轮精度摘自(GB10095—88),现将有关规定和定义简要说明如下:

(1) 精度等级

齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。齿轮副中两个齿

的精度等级一般取成相同,也允许取成不相同。

齿轮的各项公差和极限偏差分成三个组(参见)。

根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组内,各项公差与极限偏差应保持相同的精度等级。参见齿轮传动精度等级选择

(2) 齿轮检验与公差(参见)

根据齿轮副的使用要求和生产规模,在各公差组中选定检验组来检定和验收齿轮精度。

(3) 齿轮副的检验与公差(参见)

齿轮副的要求包括齿轮副的切向综合误差ΔF ic′,齿轮副的一齿切向综合误差Δf ic′,齿轮副的接触班点位置和大小以及侧隙要求,如上述四方面要求均能满足,则此齿轮副即认为合格。

(4) 齿轮侧隙

齿轮副的侧隙要求,应根据工作条件用最大极限侧隙j nmax(或j tmax)与最小极限侧隙j nmin(或j

tmin)来规定。

中心距极限偏差(±f a)按“中心距极限偏差”表的规定。

齿厚极限偏差的上偏差E ss及下偏差E si从齿厚极限偏差表来选用。例如上偏差选用F(=-4f Pt),下偏差选用L(=-16f Pt),则齿厚极限偏差用代号FL表示。参看图“齿轮、齿轮副误差及侧隙的定义和代号”。

若所选用的齿厚极限偏差超出齿厚极限偏差表所列14种代号时,允许自行规定。

(5) 齿轮各项公差的数值表

齿距累积公差F P及K个齿距累公差F PK齿向公差Fβ公法线长度变动公差F w

轴线平行度公差中心距极限偏差(±f a)齿厚极限偏差接触斑点

齿圈径向跳动公差F r径向综合公差F i″齿形公差F f齿距极限偏差(±f Pt)

基节极限偏差(±f Pb)一齿径向综合公差f i″齿坯尺寸和形状公差

齿坯基准面径向和端面跳动齿轮的表面粗糙度R a圆柱直齿轮分度圆上弦齿厚及弦齿高(6) 图样标注

在齿轮零件图上应标注齿轮的精度等级和齿厚极限偏差的字母代号。

标注示例

a) 齿轮三个公差组精度

同为7级,其齿厚上偏差为F,下偏差为L:

b) 第Ⅰ公差组精度为7

级,第Ⅱ、

Ⅲ公差组精度为6级,齿厚上偏

差为G,

齿厚下偏差为M:

c) 齿轮的三个公差组精

度同为4级,其齿厚上偏差为

-330μm,下偏差为-405μm:齿轮各项公差和极限偏差的分组

公差组公差与极限偏差

项目

误差特性对传动性能的主要影响

ⅠF i′、F P、F Pk

F i″、F r、F w

以齿轮一转为周期

的误差

传递运动的准确性

f i′、f i″、f f

±f Pt、±f Pb、f fβ

在齿轮一周内,多

次周

期地重复出现的误

传动的平稳性,噪声,振

ⅢFβ、F b、±F Px齿向线的误差载荷分布的均匀性

齿轮传动精度等级的选用

按机器类型选择按速度、加工、工作条件选择

机器类型精度等级机器类型精度等级

测量齿轮3~5 一般用途减速器6~8 透平机用减速器3~6 载重汽车6~9

金属切削机床3~8 拖拉机及轧钢机的小齿轮6~10

航空发动机4~7 起重机械7~10

轻便汽车5~8 矿山用卷扬机8~10 内燃机车和电气机车5~8 农业机械8~11 注:本表不属GB10095-88,供参考

齿轮各公差组的检验组及各项误差的公差数值

项目公差数值第

I

?F i′

?F P与?F Pk

?F i″与?F w(当其中有一项超差时,应按?F P检定和验收齿轮精度)

?F r与?F w(当其中有一项超差时,应按?F P检定和验收齿轮精度)

?F r(用于10~12级精度)

F i′=F P+f f

F P与F Pk查本手册相应表

F r查本手册相应表

F i″查本手册相应表

F w查本手册相应表

?f i′(需要时,可加检?f Pb)、?f i″(须保证齿形精度)

?f f与?f Pb

?f f与?f Pt

?f fβ(用于轴向重合度εb大于1.25,6级及6级精度以上的斜齿轮或人

字齿轮)

?f Pt与?f Pb(用于9~12级精度)

?f Pt或?f Pb(用于10~12级精度)

f i=0.6(f Pt+f f)

f f查本手册相应表

f Pt查本手册相应表

f fβ=f i′cosβ,

β为分度圆螺旋角。

f Pb查本手册相应表

f i″查本手册相应表

?Fβ

?F b(仅用于轴向重合度εb等于或小于1.25,齿线不作修正的斜齿轮)

?F Px与?f f(仅用于轴向重合度εb大于1.25,齿线不作修正的斜齿轮)

Fβ查本手册相应表

F b=Fβ(按接触线长度

查本手册相应表)

F Px=Fβ

注:1. 若齿轮副的接触班点分布位置和大小确有保证,则该齿轮副中齿轮的第Ⅲ公差组项目可不考核。

2. 对于切向综合误差记录曲线中,波长大于或小于一个齿距角的小波纹,必要时允许有特殊要求,

其公差数值推荐采用一齿切向综合公差?f i′的数值。

3. 当采用设计齿形和设计齿线时,齿形的修正部分不检验?F Pb,齿线的修正部分不检?F b及?F Px

齿距累积公差(F

注:1. F P和F PK按分度圆弧长L查表:

查F P时,取L=πd/2=πm n z/2cosβ;查F PK时,取L=Kπm n/cosβ(K为2到小于z/2的整数)。

2. 一般对于F PK,K值规定取为小于z/6(或z/8)的最大整数。

齿圈径向跳动公差(F r)值μ m

公法线长度变动公差(F w)值μ m

齿距极限偏差(±f Pt)值μ m

接触斑点

最新机械基础教案(劳动版)——第十八讲直齿圆柱齿轮传动设计

第十八讲 学时: 2 学时 课题: 5.5.4 直齿圆柱齿轮传动设计目的任务:掌握渐开线直齿圆柱齿轮传动的强度计算方法重点:渐开线直齿圆柱齿轮传动的强度计算方法难点:齿面接触疲劳强度公式 教学方法:多媒体 5.5.4 直齿圆柱齿轮传动设计 1.轮齿受力分析和计算载荷 1)受力分析 图示一直齿圆柱齿轮在节点P 处的受力情况。 不考虑摩擦力,作用在齿面上的法向力Fn 可分解为圆周力Ft 和径向力Fr。

直齿圆柱齿轮传动受力分析 2) 轮齿的计算载荷 Fnc=KFn K 为载荷系数,参考表选取。 2.齿面接触疲劳强度计算 齿面点蚀主要于齿面的接触应力的大小有关。 为防止齿面点蚀,应保证齿面的最大接触应力σH不大于齿轮材料的许用接触应力[ σH。] 动画演示) u——传动比,u=z2/z1>1 ; T1——小齿轮所传递的转矩(N.mm) ; K ——载荷系数,见表; b——齿宽(mm) ; a——中心距(mm) ; ψ b ——齿宽系数; [ σH] ——齿轮材料许用接触应力(MPa) ,见表。 应用公式时还应注意下列数据的确定: 1. 传动比i 式中:σH——齿面最大接触应力(MPa) ;

u<8 时可采用一级齿轮传动。若总传动比u 为8--40,可分为二级传动;若总传动比u 大于40,可分为三级或三级以上传动。 2. 齿宽b 为了安装方便,保证轮齿全齿宽啮合,一般小齿轮齿宽b1应比大齿轮齿宽b2 大(5--10)mm 。可以认为公式里的齿宽为b2。 3. 齿宽系数ψb 一般闭式齿轮传动,ψb=0.2--1.4 4. 许用应力[ σ H] 一对齿轮啮合时,两齿轮轮齿间的接触应力相等,但许用接触应力一般是不相等的,故应用[ σH1和] [ σH2中] 较小者代入公式计算。 3.齿根弯曲疲劳强度计算 齿根弯曲疲劳强度计算是为了防止齿根出现疲劳折断。 因此,应保证齿根最大弯曲应力σF不大于齿轮材料的许用弯曲应力[ σF。](动画演示)

圆柱齿轮传动精度设计知识大全

外啮合圆柱齿轮所有计算公式大全、检验方法、各精度差数表格汇总 注:角标n为法面,t为端面;1为小齿轮,2为大齿轮。 齿轮标准模数(mm) 渐开线圆柱齿轮的基本齿廓mm (GB1356—88) 注:1. 本标准适用于模数m≥1mm,齿形角α=20°的渐开线圆柱齿轮。 2. 允许齿顶修缘。 中心距系列(推荐使用)mm 动力齿轮传动的最大圆周速度m/s

5级以上≥15 ≥30 ≥12 ≥20 6级<15 <30 <12 <20 7级<10 <15 <8 <10 8级<6 <10 <4 <7 9级<2 <4 <1.5 <3 齿轮常用材料及其力学性能图例 45 正火 ≤100 ≤50 588 294 169~217 40~50 101~300 51~150 569 284 162~217 调质 ≤100 ≤50 647 373 229~286 101~300 51~150 628 343 217~255 42SiMn 调质 ≤100 ≤50 784 510 229~286 45~55 101~200 51~100 735 461 217~269 201~300 101~150 686 441 217~255 40MnB 调质 ≤200 ≤100 750 500 241~286 45~55 201~300 101~150 686 441 241~286 35CrMo 调质 ≤100 ≤50 750 550 207~269 40~45 101~300 51~150 700 500 207~269 40Cr 调质 ≤100 ≤50 750 550 241~286 48~55 101~300 51~150 700 500 241~286 20Cr 渗碳淬火 +低温回火 ≤60 ≤30 637 392 56~62 20CrMnTi 渗碳淬火 +低温回火 30 15 1079 883 56~62 ≤80 ≤40 981 785 38CrMoAl 调质、渗氮30 1000 850 229 渗氮HV>850 ZG310-570 正火 ZG340-640 正火 ZG35CrMnSi 正火、回火700 350 ≤217 调质785 588 197~269 HT300 290 190~240 HT350 340 210~260 QT500-7 500 320 170~230 QT600-3 600 370 190~270 KTZ550-04 550 340 180~250 KTZ-650-02 650 430 210~260 齿轮传动荐用的润滑油运动粘度ν /40℃ 齿轮材料 圆周速度v(m/s) <0.5 0.5~1 1~2.5 2.5~5 5~12.5 12.5~25 >25 铸铁、青铜320 220 150 100 80 60 钢 σB=(450~1000)MPa 500 320 220 150 100 80 60 σB=(1000~1250)MPa 500 500 320 220 150 100 80 σB=(1250~1600)MPa 1000 500 500 320 220 150 100 渗碳、表面淬火1000 500 500 320 320 150 100 齿轮精度等级、公差的说明 本网络手册中的圆柱齿轮精度摘自(GB10095—88),现将有关规定和定义简要说明如下: (1) 精度等级 齿轮及齿轮副规定了12个精度等级,第1级的精度最高,第12级的精度最低。齿轮副中两个齿 轮 的精度等级一般取成相同,也允许取成不相同。 齿轮的各项公差和极限偏差分成三个组(参见)。 根据使用的要求不同,允许各公差组选用不同的精度等级,但在同一公差组,各项公差与极限偏差应保持相同的精度等级。参见齿轮传动精度等级选择 (2) 齿轮检验与公差(参见) 根据齿轮副的使用要求和生产规模,在各公差组中选定检验组来检定和验收齿轮精度。 (3) 齿轮副的检验与公差(参见) 齿轮副的要求包括齿轮副的切向综合误差ΔF ic′,齿轮副的一齿切向综合误差Δf ic′,齿轮副的接触班点位置和大小以及侧隙要求,如上述四方面要求均能满足,则此齿轮副即认为合格。 (4) 齿轮侧隙 齿轮副的侧隙要求,应根据工作条件用最大极限侧隙j nmax(或j tmax)与最小极限侧隙j nmin(或j tmin)来规定。 中心距极限偏差(±f a)按“中心距极限偏差”表的规定。 齿厚极限偏差的上偏差E ss及下偏差E si从齿厚极限偏差表来选用。例如上偏差选用F(=-4f Pt),下偏差选用L(=-16f Pt),则齿厚极限偏差用代号FL表示。参看图“齿轮、齿轮副误差及侧隙的定义和代号”。 若所选用的齿厚极限偏差超出齿厚极限偏差表所列14种代号时,允许自行规定。 (5) 齿轮各项公差的数值表 齿距累积公差F P及K个齿距累公差F PK齿向公差Fβ公法线长度变动公差F w 轴线平行度公差中心距极限偏差(±f a)齿厚极限偏差接触斑点 齿圈径向跳动公差F r径向综合公差F i″齿形公差F f齿距极限偏差(±f Pt) 基节极限偏差(±f Pb)一齿径向综合公差f i″齿坯尺寸和形状公差 齿坯基准面径向和端面跳动齿轮的表面粗糙度R a圆柱直齿轮分度圆上弦齿厚及弦齿高 (6) 图样标注

单级圆柱齿轮减速器

毕业设计(论文) 题目名称单级圆柱齿轮减速器 题目类别 学院(系)邗江电大 专业班级02机电(五)班 学生姓名杨健 指导教师吴邦荣 开题报告日期

摘要: 减速器的结构随其类型和要求不同而异。单级圆柱齿轮减速器按其轴线在空间相对位置的不同分为:卧式减速器和立式减速器。前者两轴线平面与水平面平行,如图1-2-1a所示。后者两轴线平面与水平面垂直,如图1-2-1b所示。一般使用较多的是卧式减速器,故以卧式减速器作为主要介绍对象。 单级圆柱齿轮减速器可以采用直齿、斜齿或人字齿圆柱齿轮。 一.主要特性 由于减速器已成为一种通用的传动部件,因此,圆柱齿轮减速器多数已经标准化,ZD(JB1130-70)为单级圆柱齿轮减速器的标准型号。其主要参数均已标准化和规格化。 单级圆柱齿轮减速器的主要性能参数为: 传递功率P(标准ZD型减速器P=1~2000KW) 传动比i为避免减速器的外廓尺寸过大,一般i〈6,其最大传动比imax=8~10,高速轴转速n1,中心距a(标准ZD型减速器a=100~700mm ) 工作类型及装配型式 机械零件课程设计,可以根据任务书的要求参考标准系列产品进

行设计,也可自行设计非标准的减速器。 二.组成 图1-2-2和图1-2-3所示分别为单级直齿圆柱齿轮减速器的轴测投影图和结构图。 减速器一般由箱体、齿轮、轴、轴承和附件组成。 箱体由箱盖与箱座组成。箱体是安置齿轮、轴及轴承等零件的机座,并存放润滑油起到润滑和密封箱体内零件的作用。箱体常采用剖分式结构(剖分面通过轴的中心线),这样,轴及轴上的零件可预先在箱体外组装好再装入箱体,拆卸方便。箱盖与箱座通过一组螺栓联接,并通过两个定位销钉确定其相对位置。为保证座孔与轴承的配合要求,剖分面之间不允许放置垫片,但可以涂上一层密封胶或水玻璃,以防箱体内的润滑油渗出。为了拆卸时易于将箱盖与箱座分开,可在箱盖的凸缘的两端各设置一个起盖螺钉(参见图1-2-3),拧入起盖

二级展开式圆柱齿轮传动减速器设计说明书Ⅱ

目录 设计任务书 (5) 一.工作条件 (5) 二.原始数据 (5) 三.设计内容 (5) 四.设计任务 (5) 五.设计进度 (6) 传动方案的拟定及说明 (6) 电动机的选择 (6) 一.电动机类型和结构的选择 (7) 二.电动机容量的选择 (7) 三.电动机转速的选择 (7) 四.电动机型号的选择 (7) 传动装置的运动和动力参数 (8) 一.总传动比 (8) 二.合理分配各级传动比 (8) 三.传动装置的运动和动力参数计算 (8) 传动件的设计计算 (9) 一.高速啮合齿轮的设计 (9) 二.低速啮合齿轮的设计 (14) 三.滚筒速度校核 (19)

轴的设计计算 (19) 一.初步确定轴的最小直径 (19) 二.轴的设计与校核 (20) 滚动轴承的计算 (30) 一.高速轴上轴承(6208)校核 (30) 二.中间轴上轴承(6207)校核 (31) 三.输出轴上轴承(6210)校核 (32) 键联接的选择及校核 (34) 一.键的选择 (34) 二.键的校核 (34) 连轴器的选择 (35) 一.高速轴与电动机之间的联轴器 (35) 二.输出轴与电动机之间的联轴器 (35) 减速器附件的选择 (36) 一.通气孔 (36) 二.油面指示器 (36) 三.起吊装置 (36) 四.油塞 (36) 五.窥视孔及窥视盖 (36) 六.轴承盖 (37) 润滑与密封 (37) 一.齿轮润滑 (37)

二.滚动轴承润滑 (37) 三.密封方法的选择 (37) 设计小结 (37) 参考资料目录 (38)

五.设计进度 1、第一阶段:传动方案的选择、传动件参数计算及校核、绘 制装配草图 2、第二阶段:制装配图; 3、第三阶段:绘制零件图。 传动方案的拟定及说明 一个好的传动方案,除了首先满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及维护方便。要完全满足这些要求是很困难的。在拟订传动方案和对多种传动方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的传动方案。 根据工作条件和原始数据可选方案二,即展开式二级圆柱齿轮传动。因为此方案工作可靠、传动效率高、维护方便、环境适应行好,但也有一缺点,就是宽度较大。其中选用斜齿圆柱齿轮,因为斜齿圆柱齿轮兼有传动平稳和成本低的特点,同时选用展开式可以有效地减小横向尺寸。 示意图如下: 1—电动机;2—联轴器;3—齿轮减速器;4—联轴器;5—鼓轮;6—带式运输机 实际设计中对此方案略微做改动,即:把齿轮放在靠近电动机端和滚筒端。(其他们的优缺点见小结所述)

二级展开式斜齿圆柱齿轮减速器--课程设计

二级展开式双级斜齿圆柱齿轮减速器

目录 一、第一章节 (1) (一)、课程设计的设计内容 (1) (二)、电动机选择 (2) (三)、确定总传动比及分配各级传动比 (3) 二、第二章节 (5) (一)、选择齿轮材料、热处理方式和精度等级 (5) (二)、轮齿校核强度计算 (5) 1、高速级 (5) 2、低速级 (9) 三、第三章节 (一)减速器轴及轴承装置、键的设计……………………………… 1、1轴(输入轴)及其轴承装置、键的设计……………………… 2、2轴(中间轴)及其轴承装置、键的设计……………………… 3、3轴(输出轴)及其轴承装置、键的设计……………………… (二)润滑与密封……………………………………………………… (三)箱体结构尺寸…………………………………………………… 设计总结………………………………………………………… 参考文献…………………………………………………………

一、 第一章节 (一)、课程设计的设计内容 1、设计数据及要求 (1)、F=4800N d=500mm v=1.25m/s 机器年产量:小批;机器工作环境:有粉尘; 机器载荷特性:较平稳;机器的最短工作年限:8年;其传动转动装置图如下图1-1所示。 (2)课程设计的工作条件设计要求: ①误差要求:运输带速度允许误差为带速度的±5%; ②工作情况:连续单向运转,载荷平稳; 图1.1双级斜齿圆柱齿轮减速器

③制造情况:小批量生产。 (二)、 电动机的选择 1 选择电动机的类型 按按照设计要求以及工作条件,选用一般Y 型全封闭自扇冷式笼型三相异步电动机,电压为380V 。 2、工作机所需的有效功率 由文献7中3.1试得 n 9550T P ?= 式中:P —工作机所需的有效功率(KW ) T —运输带所需扭矩(N ·m ) n —运输带的转动速度 3、 电动机的功率选择 根据文献【2】中查得联轴器(弹性)99.01=η,轴承 99.02=η,齿轮 97.03=η 滚筒 96.04=η 传动装置的总共率:833.096.097.099.099.024242 34221=???=???=∑ηηηηη 电动机所需的工作功率:Kw P P d 508.6833 .0100025 .14800=??= = ∑η 电动机工作功率:Kw P P d 61000 25 .148001000=?== 卷筒轴工作的转速:min /77.47500 14.31000 6025.1d r v n =???== π 确定电动机的转速min /22.38500 14.31000 60100060r d v n w =??=?= π 电动机转速的可选范围: m in /8.152876.305)408(22.38r i n n w d ~~=?='?= 取1000。 4、选择电动机 选电动机型号为Y132M —4,同步转速1500r/min ,满载转速970r/min ,额定功率7.5Kw (三)、 确定总传动比及分配各级传动比 1、传动装置的总传动比

单级斜齿圆柱齿轮传动设计

优秀设计 单级斜齿圆柱齿轮传动设计+链传动

目录 任务书 (3) 一、前言 (4) 二、运动学与动力学的计算 (5) 第一节选择电动机 (5) 第二节计算总传动比并分配各级传动比 (6) 第三节各轴的转速,功率及转矩,列成表格 (7) 三、传动零件的设计计算 (7) 四、齿轮的设计计算 (10) 五、轴与轴承的设计计算及校核 (14) 六、键等相关标准键的选择 (21) 七、减速器的润滑与密封 (22) 八、箱体结构设计 (23) 九、设计小结 (25) 十、参考文献 (25)

任务书 设计题目:单级斜齿圆柱齿轮传动设计+链传动 原始数据: F=2600N F:输送带拉力; V=1.5m/s V:输送带速度; D=400mm D:滚筒直径。 设计工作量: 1.设计说明书一份 2.二张主要零件图(CAD) 3.零号装配图一张 工作要求: 输送机连续工作,单向提升,载荷平衡两班制工作,使用年限10年,输送带速度允许误差为±5%。 运动简图:(见附图)

一、前言 分析和拟定传动方案 机器通常由原动机、传动装置和工作装置三部分组成。传动装置用来传递原动机的运动和动力、变换其运形式以满足工作装置的需要,是机器的重要组成部分。传动装置的传动方案是否合理将直接影响机器的工作性能、重量和成本。 满足工作装置的需要是拟定传动方案的基本要求,同一种运动可以有几种不同的传动方案来实现,这就是需要把几种传动方案的优缺点加以分析比较,从而选择出最符合实际情况的一种方案。合理的传动方案除了满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 所以拟定一个合理的传动方案,除了应综合考虑工作装置的载荷、运动及机器的其他要求外,还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。因链传动承载能力低,在传递相同扭矩时,结构尺寸较其他形式大,但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传递的转矩,减小链传动的结构尺寸。故本文在选取传动方案时,采用链传动。 众所周知,链式输送机的传动装置由电动机、链、减速器、联轴器、滚筒五部分组成,而减速器又由轴、轴承、齿轮、箱体四部分组成。所以,如果要设计链式输送机的传动装置,必须先合理选择它各组成部分,下面我们将一一进行选择。

一级斜齿圆柱齿轮减速器(机械课程设计相关)

计算及说明结果一、传动方案拟定 题目:设计带式输送机传动装置中的一级斜齿圆柱齿轮减速器 (1)工作条件:皮带式输送机单向运转,有轻微振动,经常满载、空载启动、二班制工作,运输带允许速度误差为5%,使用寿 命十年,每年工作300天。 (2)原始数据:输送带拉力F=3.2kN;带速V=1.15m/s;滚筒直径D=400mm。 整体传动示意图 二、电动机的选择 1、电动机类型的选择:Y系列三相异步电动机(工作要求:连续工 作机器),卧式封闭结构。 2、选择电动机的容量 工作机的有效功率P w为P w=FV=3.2X1.15=3.68kW 从电动机到工作机传送带间的总效率为η。 η= 由《机械设计课程设计指导书》可知: :V带传动效率0.96 :滚动轴承效率0.98(球轴承) P w=3.68k W

:齿轮传动效率0.97 (8 级精度一般齿轮传动) :联轴器传动效率0.99(齿轮联轴器) :卷筒传动效率0.96 由电动机到工作机的总效率η==0.83 因此可知电动机的工作功率为: ==kW=4.43kW 式中:——工作机实际所需电动机的输出功率,kW; P w——工作机所需输入功率。kW; η——电动机至工作机之间传动装置的总功率。 3、确定电动机转速 工作机卷筒轴的转速=r/min=54.94r/min 按推荐的传动比合理围,V带传动在(2~4)之间,一级圆柱齿轮传动在(3~6)之间,所以总传动比的合理围=6~24,故电动机的转速可选围为==330~1319 r/min,符合这一围的同步转速有750 r/min 和1000 r/min。 根据容量和转速,有机械设计手册查出有两种适用的电动机型号,其技术参数及传动比的对比情况见下表: 表1传动比方案 方案电动 机型 号 额定 功率 (kW) 同步转 速 r/min 满载 转速 r/min 重量 (kg) 总传 动比 V带 传 动 减 速 器 1 2 Y132 M2-6 Y160 M2-8 5.5 5.5 1000 750 960 720 84 119 17.4 7 13.1 1 3.2 2.5 5.4 6 5.2 4 η=0.83 =54.94 r/min

单级斜齿圆柱齿轮减速器设计

目录 1.设计任务书 (3) 2.传动方案设计 (3) 3.电动机的选择计算 (4) 4.齿轮传动的设计计算 (6) 5.轴的设计计算及联轴器的选择 (10) 6.键连接的选择计算 (15) 7.滚动轴承的校核 (15) 8.润滑和密封方式的选择 (17) 9.箱体及附件的结构设计和计算 (17) 10.设计小结 (19) 11.参考资料 (20)

1.减速器的设计任务书 1.1设计目的: 设计带式运输机的单级斜齿圆柱齿轮减速器。 1.2工作条件及要求: 用于铸工车间运型砂,单班制工作(8小时工作制),有轻微振动,使用寿命为10年,轴承寿命为3年。带式运输机的工作数据如下: 2.传动方案设计 根据已知条件可计算出卷筒的转速为 min /88.251200 1000 609.2100060r D V n w =???=???= ππ 若选用同步转速为1000r/min 或750r/min 的电动机则可估算出传动装置的总传动比为5.5或4.0,考虑减速器的工作条件和要求,暂选下图所示传动方案,其特点为:减速器的尺寸紧凑,闭式齿轮传动可保证良好的润滑和工作要求。

3.电动机的选择计算 3.1电动机的选择 3.1.1电动机类型的选择 根据动力源和工作要求,选Y 系列三相异步电动机。 3.1.2电动机功率e P 的选择 工作机所需有效功率 。KW FV P W 9.21000 9 .210001000=?== 由传动示意图可知:电动机所需有效功率KW W P d P η = 式中,η为传动装置的总效率 n ηηηηηη?????= 4321=0.886 。 设1η,2η,3η,4η分别为弹性连轴器(2个)、闭式齿轮(设齿轮精度为8级)、滚

单级斜齿圆柱齿轮减速器课程设计

机械设计课程设计 计算说明书 设计题目:带式运输机传动装置 专业0 班 设计者: 指导老师: 2009 年12 月27 日 专业课设计课程设计说明书

一、传动方案拟定…………………………………………… 二、电动机的选择…………………………………………… 三、计算总传动比及分配各级的传动比…………………… 四、运动参数及动力参数计算……………………………… 五、传动零件的设计计算…………………………………… 六、轴的设计计算…………………………………………… 七、滚动轴承的选择及校核计算…………………………… 八、键联接的选择及计算…………………………………… 九、润滑方式的确定……………………………………… 十、参考资料………………………………………………

计算过程及计算说明 一、传动方案拟定 1.设计题目名称 单级斜齿圆柱齿轮减速器。 2.运动简图 3.工作条件 运输机双班制工作,单向运转,有轻微振动,小批量生产,使用年限6年。4,原始数据 1.输送带牵引力 F=1100 N 2.输送带线速度 V=1.5 m/s 3.鼓轮直径 D=250 mm 二、电动机选择 1、选择电动机的类型: 按工作要求和工况条件,选用三相鼠笼式异步电动机,封闭式结构,电压为380V,Y型。 P: 2、计算电机的容量d

η a ——电机至工作机之间的传动装置的总效率: 85 .096.099.097.099.095.03 5 433 21 =????= ???? = η ηηηηη a 式中: 1η-带传动效率:0.95;2η-滚子轴承传动效率:0.99 3η-圆柱齿轮的传动效率:0.97;4η-弹性联轴器的传动效率:0.99 5η—卷筒的传动效率:0.96 已知运输带的速度v=0.95m/s : kw a w d P P η = kw Fv w w P η1000= 所以: kw Fv w a d P 03.296 .085.010005.111001000=???== ηη 从表22-1中可选额定功率为3kw 的电动机。 3、确定电机转速: 卷筒的转速为:min /65.114250 14.35 .1100060100060r D v n =???=?= π 按表14-8推荐的传动比合理范围,取V 带传动比4~21=i 单级圆柱齿轮减速器传动比6~42=i ,则从电动机到卷轴筒的总传动比合理范围为:24~8=i 。 故电动机转速可选的范围为: min /2752~91765.114)24~8(r n i n d =?=?= 符合这一范围的转速有:1000r/min 、1500r/min ,

课程设计任务书一级圆柱斜齿轮减速器的设计

第一章课程设计任务书 一级圆柱斜齿轮减速器的设计 1.设计题目 用于带式运输机的一级圆柱斜齿轮减速器。传动装置简图如下图所示。 带式运输机数据见数据表格。 (2)工作条件 单班制工作,空载启动,单向、连续运转,两班制工作。运输带速度允许速度误差为±5%。 (3)使用期限 工作期限为十年,检修期间隔为三年。 (4)生产批量及加工条件 小批量生产。 2.设计任务 1)选择电动机型号; 2)确定带传动的主要参数及尺寸; 3)设计减速器; 4)选择联轴器。 3.具体作业 1)减速器装配图一张;

2)零件工作图二张(大齿轮,输出轴); 3)设计说明书一份。 4.数据表 工作条件: (1)单班制工作,空载启动,单向、连续运转,工作中有轻微振动。运输带速度允许速度误差为±5%。 (2)使用期限 工作期限为十年,检修期间隔为三年。 (3)生产批量及加工条件 (4) 小批量生产。 原始数据: 运输机工作拉力F/N 1300 运输带工作速度V (m/s ) 1.5 卷筒直径(mm ) 250 第二章 设计要求 1.选择电动机型号; 2.确定带传动的主要参数及尺寸; 3.设计减速器; 运输带工作拉力F/N 1100 1150 1200 1250 1300 1350 1450 1500 1500 1600 运输带工作速度v/(m/s) 1.5 1.60 1.7 1.5 1.55 1.60 1.55 1.65 1.70 1.80 运输带滚筒直径D/mm 250 260 270 240 250 260 250 260 280 300

4.选择联轴器。 第三章. 设计步骤 1. 传动系统总体设计案 1)传动装置由三相交流电动机、一级减速器、工作机组成。2)齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。 3)电动机转速较高,传动功率大,将带轮设置在高速级。传动装置简图: 2. 电动机的选择 电动机所需工作功率为: P=F*V/1000=1300*1.55/1000=2.475kw 执行机构的曲柄转速为:n w =60×1000V/πd=121.2r/min 查表3-1(《机械设计课程设计》)机械传动效率: η1:带传动: V带 0.94 η2:圆柱齿轮 0.98 7级(稀油润滑) η3:滚动轴承 0.98 η4:联轴器浮动联轴器 0.97~0.99,取0.99 ηw输送机滚筒: 0.96 η=η1*η2*η3*η3*η4*ηw =0.94*0.98*0.98*0.98*0.99*0.96 =0.84 P r = P w / η=2.475/0.84=2.95Kw 又因为额定功率P ed ≥ P r =2.95 Kw 取P ed =3.0kw 常用传动比: V带:i =2~4 圆柱齿轮:i 1 =3~5 i=i 1×i =2~4×3~5=6~20 取i=6~20

直齿圆柱齿轮设计步骤知识讲解

直齿圆柱齿轮设计 1.齿轮传动设计参数的选择 齿轮传动设计参数的选择: 1)压力角α的选择 2)小齿轮齿数Z1的选择 3)齿宽系数φd的选择 齿轮传动的许用应力 精度选择 压力角α的选择 由《机械原理》可知,增大压力角α,齿轮的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。我国对一般用途的齿轮传动规定的压力角为α=20o。为增强航空有齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25o的标准压力角。但增大压力角并不一定都对传动有利。对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2,压力角为16 o~18 o的齿轮,这样做可增加齿轮的柔性,降低噪声和动载荷。 小齿轮齿数Z 1 的选择 若保持齿轮传动的中心距α不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。但模数小了,齿厚随之减薄,则要降低齿轮的弯曲强度。不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多 一些为好,小一些为好,小齿轮的齿数可取为z 1 =20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿 数,一般可取z 1 =17~20。 为使齿轮免于根切,对于α=20o的标准支持圆柱齿轮,应取z 1≥17。Z 2 =u·z 1 。 齿宽系数φ d 的选择

由齿轮的强度公式可知,轮齿越宽,承载能力也愈高,因而轮齿不宜过窄;但增 大齿宽又会使齿面上的载荷分布更趋不均匀,故齿宽系数应取得适合。圆柱齿轮齿宽系数的荐用值列于下表。对于标准圆柱齿轮减速器,齿宽系数取为 所以对于外捏合齿轮传动φ a 的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。运用设计计算公式时,对于标准减速器,可先选定再用上式计 算出相应的φ d 值 表:圆柱齿轮的齿宽系数φ d 装置状况两支撑相对小齿轮作对 称布置两支撑相对小齿轮作不对 称布置 小齿轮作悬臂布 置 φd0.9~1.4(1.2~1.9)0.7~1.15(1.1~1.65)0.4~0.6 注:1)大、小齿轮皆为硬齿面时φ d 应取表中偏下限的数值;若皆为软齿面或仅大齿轮为 软齿面时φ d 可取表中偏上限的数值; 2)括号内的数值用于人自齿轮,此时b为人字齿轮的总宽度; 3)金属切削机床的齿轮传动,若传递的功率不大时,φ d 可小到0.2; 4)非金属齿轮可取φ d ≈0.5~1.2。 齿轮传动的许用应力 齿轮的许用应力[σ]按下式计算 式中参数说明请直接点击 疲劳安全系数S 对接触疲劳强度计算,由于点蚀破坏发生后只引起噪声、振动增大,并 不立即导致不能继续工作的后果,故可取S=S H =1。但是,如果一旦发生断齿,就 会引起严重的事故,因此在进行齿根弯曲疲劳强度的计算时取S=S F =1.25~1.5.

圆柱齿轮传动的精度设计

一、传动齿轮的使用要求 齿轮是机器和仪器的重要零件,齿轮的精度在一定程度上影响着整台机器或仪器的质量。由于齿形比较复杂,参数比较多,所以齿轮精度的评定比较复杂。 现代工业对齿轮传动提出的要求,归纳起来有下列四项: 1、要求一转范围内传动比的变化尽量小,以保证传递运动准确。(运动准确) 2、要求瞬时传动比的变化尽量小,以保证传动平稳,冲击及振动小,噪声低。(工作平稳) 3、要求在受载下工作齿面能够良好接触,以保证足够的承载能力和使用寿命。(接触精度) 4、要求齿轮副有适当的齿侧间隙(啮合轮齿的非工作面间的间隙,以补偿热变形和贮存润滑油。) 不同用途和不同工作条件的齿轮及齿轮付对上述四项要求的侧重点是不同的。例如,控制系统或随动系统的分度传动的侧重点是运动精度,以保证主、从动齿轮的运动协调。汽车和拖拉机变速齿轮传动的侧重点是工作平稳性,以降低噪声。低速重载齿轮传动(如轧钢机的齿轮传动)的侧重点是齿面接触精度,以保证齿面接触良好。而涡轮机中的高速重械齿轮传动对三顶精度的要求都很高,而且要求很大的齿侧间隙,以保证较大流量的润滑油通过。 二、齿轮误差的评定指标 为了验收齿轮,对直齿圆柱齿轮建立了下列评定指标: 1、运动精度的评定指标 (1) 切向综合误差ΔFiˊ 定义:被测齿轮与理想精确的测量齿轮单面啮合转动时相对于测量齿轮的转角,在被测齿轮一转内被测齿轮实际转角与理论转角的最大差值。 它是一个综合性指标。 (2) 周节累积误差ΔFp,K个周节累积误差ΔFpk。 定义:在被测齿轮的分度圆上,任意两个同侧齿面间的实际弧长与公称弧长的最大差值。是一个综合性指标。 (3) 齿圈径向跳动ΔFr与公法线长度变动ΔFw A、齿圈径向跳动ΔFr 定义:在齿轮一转范围内,测头在齿槽内或轮齿上,于齿高中部双面接触,测头相对于齿轮轴线的最大变动量。 是一个单向性指标。(径向方向) B、公法线长度变动ΔFw 定义:在齿轮一周范围内,实际公法线长度最大值与最小值之差。 是一个切向性质的单向性指标。 (4)径向综合误差ΔFi″

单级斜齿圆柱齿轮链传动设计书

单级斜齿圆柱齿轮链传动设计书 二.前言 分析和拟定传动方案 机器通常由原动机、传动装置和工作装置三部分组成。传动装置用来传递原动机的运动和动力、变换其运形式以满足工作装置的需要,是机器的重要组成部分。传动装置的传动方案是否合理将直接影响机器的工作性能、重量和成本。 满足工作装置的需要是拟定传动方案的基本要求,同一种运动可以有几种不同的传动方案来实现,这就是需要把几种传动方案的优缺点加以分析比较,从而选择出最符合实际情况的一种方案。合理的传动方案除了满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 所以拟定一个合理的传动方案,除了应综合考虑工作装置的载荷、运动及机器的其他要求外,还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。因链传动承载能力低,在传递相同扭矩时,结构尺寸较其他形式大,但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传递的转矩,减小链传动的结构尺寸。故本文在选取传动方案时,采用链传动。 众所周知,链式输送机的传动装置由电动机、链、减速器、联轴器、滚筒五部分组成,而减速器又由轴、轴承、齿轮、箱体四部分组成。所以,如果要设计链式输送机的传动装置,必须先合理选择它各组成

部分,下面我们将一一进行选择。 三.运动学与动力学的计算 第一节选择电动机 电动机是常用的原动机,具体结构简单、工作可靠、控制简便和维护容易等优点。电动机的选择主要包括选择其类型和结构形式、容量(功率)和转速、确定具体型号。 (1)选择电动机的类型: 按工作要求和条件选取Y系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。(2)选择电动机的容量: 工作所需的功率: P d = P w/η P w = F*V/(1000ηw) 所以:P d = F*V/(1000η*ηw) 由电动机至工作机之间的总效率(包括工作机的效率)为 η*ηw = η1*η2*η2*η3*η4*η5*η6 式中η1、η2、η3、η4、η5、η6分别为齿轮传动、链传动、联轴器、卷筒轴的轴承及卷筒的效率。 取η1= 0.96、η2= 0.99、η3=0.97、η4= 0.97、η5 = 0.98、η6 = 0.96 ,则: η*ηw = 0.96×0.99×0.99×0.97×0.97×0.98×0.96 =0.832 所以: P d = F*V/1000η*ηw = 2600×1.5/(1000×0.832) kW = 4.68 kW 根据Pd选取电动机的额定功率P w使P m = (1∽1.3)P d = 4.68∽6.09 kW 由查表得电动机的额定功率P w = 7.5 kW (3)确定电动机的转速: 卷筒轴的工作转速为: n w = 60×1000V/πD = 60×1000×1.5/(3.14×400) r/min = 71.66r/min 按推荐的合理传动比围,取链传动的传动比i1 = 2 ∽ 5,单级齿轮传动比i2 = 3 ∽ 5

一级圆柱斜齿轮减速器机械设计说明

机械设计《课程设计》 课题名称一级圆柱齿轮减速器的设计计算 学院材料与冶金学院 专业高分子材料与工程 班级081班 姓名胡桐 学号8 指导老师伟刚老师 完成日期2011年1月8日星期六

目录 第一章绪论 (4) 第二章课题题目及主要技术参数说明 (5) 2.1课题题目 (5) 2.2 主要技术参数说明 (5) 2.3 传动系统工作条件 (5) 2.4 传动系统方案的选择 (5) 第三章减速器结构选择及相关性能参数计算 (7) 3.1 减速器结构 (7) 3.2 电动机选择 (7) 3.3 传动比分配 (8) 3.4 动力运动参数计算 (8) 第四章带轮设计 (10) 第五章齿轮的设计计算 (12) 5.1 齿轮材料和热处理的选择 (12) 5.2 齿轮几何尺寸的设计计算 (12) 5.2.1 按照接触强度初步设计齿轮主要尺寸 (12) 5.2.2 齿轮几何尺寸的确定 (14) 5.3 齿轮的结构设计 (15) 第六章轴的设计计算 (16) 6.1 轴的材料和热处理的选择 (16) 6.2 轴几何尺寸的设计计算 (17)

6.2.1 按照扭转强度初步设计轴的最小直径 (17) 6.2.2 轴的结构设计 (17) 6.3输出轴几何尺寸的设计计算 (22) 6.3.1 按照扭转强度初步设计输出轴的最小直径 (22) 6.3.2 输出轴的结构设计 (23) 第七章轴承、键和联轴器的选择 (26) 7.1滚动轴承的校核计算 (26) 7.1.1输入轴承的校核(型号7208C) (26) 7.1.2输出轴承的校核(型号7210C) (27) 7.2 键的选择计算及校核 (29) 7.3联轴器的选择 (29) 第八章减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算 (30) 8.1 润滑的选择确定 (30) 8.1.1润滑方式 (30) 8.1.2润滑油牌号及用量 (30) 8.2密封形式 (31) 8.3减速器附件的选择确定 (31) 8.4箱体主要结构尺寸计算 (32)

单级斜齿圆柱齿轮减速器的设计.

机械零件课程设计说明书 设计题目单级斜齿圆柱齿轮减速器的设计 学院能源与动力学院专业热能与动力工程-动力机械班级动力机械x班学号 091102xxxx 设计人:xxx 指导教师:xxx 完成日期:2011年7月13日

目录 一、设计任务书------------------------------------------3 二、电动机的选择---------------------------------------4 三、计算传动装置的运动和动力参数---------------4 四、三角带传动设计------------------------------------6 五、齿轮的设计计算------------------------------------7 六、轴的设计计算---------------------------------------9 七、滚动轴承的选择及计算---------------------------12 八、键联接的选择及校核计算------------------------13 九、联轴器的选择---------------------------------------14 十、润滑与密封------------------------------------------14 十一、设计小结----------------------------------------15 十二、参考资料目录----------------------------------16

一、设计任务书 用于带式运输机的单级斜齿圆柱齿轮减速器。传动装置简图如 下图所示: 工作条件及要求:单班制工作,空载启动,单向、连续运 转,工作中有轻微振动。运输带速度允许速度误差为±5%。 工作期限为十年,检修期间隔为三年。小批量生产。 F=2850N V=1.5m/s D=400mm

直齿圆柱齿轮传动轴的轴承组合设计原版

直齿圆柱齿轮传动轴的轴承组合设计设计计算 说明书5 学号:姓名:杜荣荣 b=80mm m=3mm n已知:=137r/min P= z=101 2l=65mm L=160mm a=80mm c=100mm 、计算受力1p52.44= N?mm =95510×T=955×10×n1372d=mz=3×101=303mm 1x T174270.122F=== N t d3031F=Ftanα=×tan20°= N ?tr2、选择轴的材料 用45钢,调质。由表12-2查得C=107~118。 3、估算轴径 p2.5=112×= ,由轴径选择键A8×7=取C=112,dC×57 GB/T1096-33min n1372003。 考虑键槽的影响,则d=×=。min4、结构设计 (1)为便于轴承部件的装拆,机体采用剖分式结构。因传递的功率小, 齿轮减 速器效率高, 发热小,估计轴不会长,轴承部件的固定方式可采用两端固定方式。由此,所设计的轴承部件的结构形式如图所示。然后,可按轴上零件的安装顺序, 从d处开始设计。min(2)=65mm,轴段①长度ld就是轴段①的直径,d=1min1(3) 轴段②的直径由密封圈确定,密封圈选用毛毡圈中的轴径为35mm的,则轴段②的直径d=35mm,l=。毛毡圈按标准画法画。22(4) 轴承类型选深沟球轴承,轴段③上安装轴承,查轴承手册,内径d=40mm,外径D=80mm,宽度B=18mm。故轴段③的直径d=40mm,考虑到齿轮中心线3到轴承中点距离a=80mm,故 l=53mm。3(5) 轴段④上安装齿轮,为方便齿轮的安装,d应略大于d,可取 d=44mm。齿443轮左端用套筒端面顶在齿轮左端面上,即靠紧,轴段④的长度l 应比吃轮毂略短,4因齿轮宽度b=80mm,故取l=78mm。由d选择键A12×8×70 GB/T1096- 2003,44t=。 (6) 齿轮右端用轴肩固定,由此可确定轴段⑤的直径。按公式h=~d= ~,取 4d=50mm,l=5mm。55(7) 轴段⑦的直径d=d=40mm,考虑到齿轮中心线到轴承

单级斜齿圆柱齿轮减速器设计讲解

机械设计基础课程设计说明书课程设计题目: 单级斜齿圆柱齿轮减速器设计 专业: 班级: 学号: 设计者: 指导老师:

目录 一课程设计书3二设计步骤3 1. 传动装置总体设计方案 4 2. 电动机的选择 4 3. 确定传动装置的总传动比和分配传动比 5 4. 计算传动装置的运动和动力参数 5 5. 齿轮的设计 6 6. 滚动轴承和传动轴的设计 11 7. 键联接设计 15 8. 箱体结构的设计 17 9.润滑密封设计 18 10.联轴器设计 20 11. 联轴器设计21 三设计小结21 四参考资料22

一、课程设计书 设计题目:带式输送机传动用的单级斜齿圆柱齿轮减速器 工作条件:工作情况:两班制,每年300个工作日,连续单向运转,有轻度振动; 工作年限:10年; 工作环境:室内,清洁; 动力来源:电力,三相交流,电压380V; 输送带速度允许误差率为±5%;输送机效率ηw=0.96; 制造条件及批量生产:一般机械厂制造,中批量生产。 -表一: 题号 1 参数 运输带工作拉力(kN) 1.5 运输带工作速度(m/s) 1.7 卷筒直径(mm)260 设计任务量:减速器装配图1张(A1);零件图3张(A3);设计说明书1份。 二、设计步骤 1. 传动装置总体设计方案 2. 电动机的选择 3. 确定传动装置的总传动比和分配传动比 4. 计算传动装置的运动和动力参数 5. 齿轮的设计 6. 滚动轴承和传动轴的设计 7、校核轴的疲劳强度 8. 键联接设计 9. 箱体结构设计

10. 润滑密封设计 11. 联轴器设计 1.传动装置总体设计方案: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀, 要求轴有较大的刚度。 3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。 其传动方案如下: 初步确定传动系统总体方案如:传动装置总体设计图所示。 选择V带传动和单级圆柱斜齿轮减速器。 η 传动装置的总效率 a η=η1η2η32η4=0.876; η(为V带的效率)=0.95,η28(级闭式齿轮传动)=0.97 1 η(弹性联轴器)=0.99 η3(滚动轴承)=0.98, 4 2.电动机的选择

相关主题
文本预览
相关文档 最新文档