当前位置:文档之家› 第三章 微分中值定理及其应用

第三章 微分中值定理及其应用

第三章 微分中值定理及其应用
第三章 微分中值定理及其应用

第三章 微分中值定理及其应用

3.1 中值定理

3.1.1 费马引理

设函数)(x f 在点0x 处可导且在点0x 处取得极值,则0)(0'=x f 。 备注:费马引理实质上是可导函数极值存在的必要条件。

3.1.2 罗尔定理

设函数)(x f 在[]b a ,上连续,),(b a 上可导,且)()(b f a f =,则至

少存在一点),(b a ∈ε,使得0)('=εf 。

(1)罗尔定理的三个条件缺一不可。

(2)罗尔定理的几何意义是曲线)(x f 存在水平切线。

(3)罗尔定理只给出了导函数零点的存在性,通常这样的零点是不易具体求出的。

例1:设函数)(x f 在[]3,0上连续,在)3,0(上可导,3)2()1()0(=++f f f ,1)3(=f 。证明:至少存在一点)3,0(∈ε,使得0)('=εf 。 例2:设函数)(x f 在[]b a ,上连续,0)()(==b f a f ,且)(x f 在),(b a 内可导,试证:对任意的实数α,存在一点),(b a ∈ξ,使得αξξ=)()('f f 例3:设函数)(x f 在[]b a ,上具有二阶导数,且0)()(==b f a f ,

0)()('' b f a f 。证明:

(1)至少存在一点),(b a ∈ε,使得0)(=εf (2)至少存在一点),(b a ∈η,使得0)(''=ηf 。

例4:设n a a a 21,满足n i R a n a a a a i n n ,2,1,,01

2)1(531321=∈=--+++-- 证明:方程0)12cos(3cos cos 21=-+++x n a x a x a n 在)2

,0(π内至少有一个实根。

例5:设函数)(x f ,)(x g 在[]b a ,上连续,在),(b a 内二阶可导且存在相等的最大值,又)()(),()(b g b f a g a f ==。证明:

(1)存在),(b a ∈η,使得)()(ηηg f =;

(2)存在),(b a ∈ε,使得)()(''''εεg f =。

例6:设函数)(x f 在[]b a ,上连续,在),(b a 内可导。证明:若0 a , 0)(=a f 时,存在点),(b a ∈ε,使得)()('εεεf a

b f -=。 3.1.3 拉格朗日中值定理(微分中值定理)

设函数)(x f 在[]b a ,上连续,),(b a 上可导,则至少存在一点),(b a ∈ε,使得)()()()('εf a b a f b f -=-或者a

b a f b f f --=)()()('ε。 (1)微分中值定理的两个条件缺一不可。

(2)微分中值定理的几何意义:曲线)(x f 上存在一点的切线平行于由点))(,(a f a 与点))(,(b f b 连结成的弦。

(3)微分中值定理揭示了函数)(x f 在闭区间[]b a ,上的整体平均变化率等于函数)(x f 在),(b a 上局部某点的瞬时变化率,它是连接整体与局部的桥梁。

(4)罗尔定理可以看成是微分中值定理的一个特殊情况。

(5)微分中值定理的具体公式:

10)),(()()()(' θθa b a f a b a f b f -+-=-

(6)推论:

①若函数)(x f 在区间I 上的导数恒为零,则)(x f 在I 上恒为常数。

②若函数)(x f 、)(x g 在区间I 上恒有)()(''x g x f =,则在I 上有

C x g x f +=)()(,其中C 为常数。

例7:下列四个命题中正确的是()

(A )若)('x f 在)1,0(内连续,则)(x f 在)1,0(内有界。

(B )若)(x f 在)1,0(内连续,则)(x f 在)1,0(内有界。

(C )若)('x f 在)1,0(内有界,则)(x f 在)1,0(内有界。

(D )若)(x f 在)1,0(内有界,则)('x f 在)1,0(内有界。 例8:证明:

(1)当1 x 时,x e e x ?

(2)当[]1,1-∈x 时,2arccos

arcsin π=+x x 。 (3)对任意自然数1 n ,有n

n n 1)11ln(11 ++。 例9:设k x f x =+∞

→)(lim ',求[])()1(lim x f x f x -++∞→ 例10:设10≤b ,ξ为函数x x f arcsin )(=在区间[]b ,0上应用拉格朗日中值定理得到的中值,求极限b

b ξ+→0lim 。 例11:假设函数)(x f 和)(x g 在[]b a ,上存在二阶导数并且0)(''≠x g 0)()()()(====b g a g b f a f 。证明:(1)在),(b a 内0)(≠x g 。(2)在 ),(b a 内至少存在一点ε,使得)

()()()(''''εεεεg f g f =。 例12:已知函数)(x f 在[]1,0上连续,在)1,0(内可导,且0)0(=f 1)1(=f 。证明:(1)存在)1,0(∈ε,使得εε-=1)(f ;(2)存在两个不同的点)1,0(,∈γη,使得1)()(''=γηf f 。

3.1.4 柯西中值定理

设函数)(x f 与)(x g 在[]b a ,上连续,在),(b a 内可导,且在),(b a 内的任一点x 均有0)('≠x g ,则至少存在一点),(b a ∈ε,使得

)

()()()()()(''εεg f a g b g a f b f =-- (1)柯西中值定理是针对两个函数而言的。

(2)柯西中值定理不能看成为两个函数应用拉格朗日中值定理的商。

(3)当x x g =)(时,柯西中值定理就变成了拉格朗日中值定理,因此柯西中值定理称为广义的中值定理。

例13:证明:设b a 0,函数)(x f 在[]b a ,上连续,在),(b a 内可导,则在),(b a 内至少存在一点ξ,使得[])()()()(2'22ξξf a b a f b f -=- 例14:设b a 0,试证至少存在一点),(b a ∈ξ,使得 222/)ln 1)((ln ln ξξ--=-ba ab a b b a

例15:设函数)(x f 在[]1,0上连续,在)1,0(内可导,0)(' x f ,

10 x ,0)0(=f 。证明:存在)1,0(,∈μλ使得1=+μλ,且 )

()()()(''μμλλf f f f = 例16:设函数在)(x f []b a ,上连续,在),(b a 内可导,且0)('≠x f 。 证明:存在),(,b a ∈ηε,使得

ηηε---=e a

b e e f f a b )()(''。 3.2 洛必达法则

3.2.1 两种基本未定式

(1)“00”型 若函数)(),(x g x f 满足下列条件:

①当a x →时,函数0)(),(→x g x f

②在点a 的某去心领域内有)(),(''x g x f 存在,且0)('≠x g

③)()(lim ''x g x f a x →存在(或为∞) 则)

()(lim )()(lim ''x g x f x g x f a x a x →→= (2)“∞∞”型

若函数)(),(x g x f 满足下列条件:

①当a x →时,函数∞→)(),(x g x f

②当x 充分大时有)(),(''x g x f 存在,且0)('≠x g

③)()(lim ''x g x f a x →存在(或为∞) 则)

()(lim )()(lim ''x g x f x g x f a x a x →→= 备注:

(1)应用洛必达法则之前一定要先检验极限是否为未定式。

(2)具体的解题过程中洛必达法则可能不止使用一次,一直使用到不能使用为止。

(3)洛必达法则求极限之前要先对式子进行恒等变形或者等价无穷小替换将式子进行简化,然后利用洛必达法则。

(4)运用洛必达法则求极限,若)

()(lim ''x g x f a x →不存在且不为∞,则只能说明洛必达法则失效,不意味着原函数的极限不存在。

(5)当+∞→x 时,+∞→)0(,,ln λλx n e x x ,且速度依次递增。即 0ln lim =+∞→n x x x 0lim =+∞→x n

x e x λ 0ln lim

=+∞→x x e x λ(人,妖,神)

3.2.2 其他类型未定式

(1)“∞?0”型:

方法:倒下去,使之成为“00”或者“∞

∞” (2)“∞-∞”型:

方法:①通分;②根式有理化;③倒代换(提因子+变量代换)

(3)“1∞,0∞,00”型:

方法:化成以e 为底,然后转化成基本未定式求极限。 例17:求极限)1ln()cos 1(1cos

sin 3lim 20x x x x x x +++→ 例18:求极限:

(1)x e x x 210lim -→(2)21lim x x x ++∞

→(3)x x x +→0lim (4))1(lim a a n n n ∞→ 例19:求????

??+-∞→)11ln(lim 2x x x x 例20:若0,0 c a 均为常数,则x x x x c a sin 302lim ???? ??+→=

例21:试确定常数C B A ,,的值,使得)(1)1(32x o Ax Cx Bx e x ++=++,其中)(3x o 是当0→x 时比3x 高阶的无穷小。

例22:已知)(x f 在),(+∞-∞内可导,且e x f x =∞

→)(lim ', [])1()(lim lim --=??? ??-+∞→∞→x f x f c x c x x x

x ,求c 的值。 3.3 泰勒公式

设函数)(x f 在含有0x 的某个开区间),(b a 内具有直到)1(+n 阶

的导数,则对于任意一点),(b a x ∈有

)()(!)()(!2)())(()()(00)(200''00'

0x R x x n x f x x x f x x x f x f x f n n n +-++-+-+= , 其中10)1()()!

1()()(++-+=n n n x x n f x R ξ,(ξ介于0x 与x 之间),则称)(x f 是按)(0x x -的幂展开的n 阶泰勒公式。

(1)10)1()()!

1()()(++-+=n n n x x n f x R ξ称为拉格朗日型余项。 (2)[]n n x x x R )(0)(0-=称为皮亚诺型余项。

(3)麦克劳林公式:

)(!)0(!2)0()0()0()()(2'''

n n n x o x n f x f x f f x f +++++= (4)求函数)(x f 的n 阶泰勒公式的方法:①直接法;②间接法。

(5)常见函数的麦克劳林公式

①)(!)(!!3!21032n n n n n n x x o n x x o n x x x x e +=++++++=∑= ②∑=++++++-=++-+++-=n n n n n n n n x o n x x o n x x x x x 01212121253)()!12()1()()!12()1(!5!3sin ③∑=+-=+-+++-=n n n n n n n n x o n x x o n x x x x 0222242)()!2()1()()!2()1(!4!21cos ④∑=+-++-=+-+++-=+n n n n n n n n x o n x x o n x x x x x 01132)(1)1()()1(32)1ln( ⑤)()(11102n n n n n n x o x x o x x x x +=+++++=-∑= ⑥∑=+-=+-++-+-=+n n n n n n x o x x o x x x x x 0

32)()1()()1(111

⑦)(!

)1()1(!2)1(1)1(2n n m x o x n n m m m x m m mx x ++--+-++=+ 例23:设)(x f 在a x =处n 阶可导,0)(,0)(,,0)()()1(≠==-a f a f a f n n ,则)(x f ~ )(a x →。

例24:求极限)(lim 656656x x x x x --++∞→

例25:设函数)(x f 在[]1,1-上具有三阶连续导数,且0)1(=-f ,1)1(=f ,0)0('=f ,证明:在)1,1(-内至少存在一点ε使3)('''=εf 。 例26:设1)(lim 0=→x

x f x 且0)('' x f ,证明:x x f ≥)(。 例27:设函数)(x f 在[]b a ,上连续,在),(b a 内具有二阶连续导数,求证:),(b a ∈?ε使得2''))((41

)()2

(2)(a b f a f b a f b f -=++-ε。 例28:将函数x x f 1)(=展开成3-x 的泰勒公式。

3.4 函数的单调性与曲线的凹凸性

3.4.1 函数的单调性

设函数)(x f 在[]b a ,上连续,在),(b a 内可导,若在),(b a 内有

0)(' x f ,

则)(x f 在[]b a ,上单调增加;在),(b a 内有0)(' x f ,则)(x f 在[]b a ,上单调减少。

(1)函数的单调性是区间的性质,判断函数在某个区间的单调性,需要根据导函数在整个区间的符号来判断,而不能根据区间内某一点导数的符号来判断。

(2)区间上个别导数为零的点不会影响函数在整个区间上的单调性。

(3)求函数)(x f 单调区间的步骤:①确定函数)(x f 的定义域

或定义区间;②求出)('x f ,令0)('=x f 求出所有驻点以及使)

('x f

不存在的点;③根据上述所求的点将定义域(定义区间)分割成若干个小区间,利用“三线表”逐一判断导函数)('x f 在各个小区间上的符号。

例29:证明:当π b a 0时,a a a a b b b b ππ++++cos 2sin cos 2sin 例30:设)(x f 在),(+∞a 上连续,)(''x f 在),(+∞a 内存在且大于0,记)(,)()()(a x a

x a f x f x F --=。证明:)(x F 在),(+∞a 上单增。 3.4.2 曲线的凹凸性

3.4.2.1 凹凸性的概念

定义1:设函数)(x f 在I 上连续,对于I 上的任意两点21,x x 如果有 [])()(2

1)2(

2121x f x f x x f ++ ,则)(x f 在I 上是凹函数;如果 [])()(21)2(2121x f x f x x f ++ ,则)(x f 在I 上是凸函数。 定义2:设函数)(x f 在[]b a ,上连续,在),(b a 上具有二阶导数,若在),(b a 上有0)('' x f ,则函数)(x f 在[]b a ,上是凹的;若在),(b a 上有0)('' x f ,则函数)(x f 在[]b a ,上是凸的。

3.4.2.2 拐点

(1)定义:连续曲线上凹弧与凸弧的分界点称为拐点。

(2)拐点存在的必要条件:若函数)(x f 在0x 处存在二阶导

数,且在0x 处取得拐点,则0)(0''=x f 。

(3)拐点存在的第一充分条件:若函数)(x f 在0x 处存在三阶

导数,且0)(0''=x f ,0)(0'''≠x f ,则函数)(x f 在0x 处取得拐点。

(4)拐点存在的第二充分条件:设函数)(x f 在点0x 的领域内连续且二阶可导()(0''x f 可以不存在),在点0x 的左右两边)

(''x f

的符号相反,则函数)(x f 在0x 处取得拐点。

备注:拐点一般出现在使0)(''=x f 或者使)(''x f 不存在的点处。

(5)求函数)(x f 凹凸区间的步骤:①确定函数)(x f 的定义域(定义区间);②求出)(''x f ,令0)(''=x f ,求出所有的点以及使

)(''x f 不存在的点;

③根据上述所求的点将定义域(定义区间)分割成若干个小区间,然后利用“三线表”逐一判断)(''x f 在各个区间上的符号。

例31:设函数)(x y y =由参数方程???+-=++=1

31333t t y t t x 确定,则曲线)(x y y =向上凹的x 的取值范围是 。

例32:利用函数的凹凸性证明:)0(2sin ππ

x x

x

3.5 函数的极值与最值

3.5.1 函数的极值 (1)定义:设函数)(x f 在点0x 的领域内有定义,若对于该领

域内的任意一点x (0x x ≠)都有)()(0x f x f ,则函数)(x f 在点0x 处取得极小值;若)()(0x f x f ,则函数)(x f 在点0x 处取得极大

值。其中0x 称为极值点,)(0x f 称为极值。

备注:函数的极值是一个局部的概念,函数的极大(小)值只能说明在该点的领域内是最大(小)的,在整个定义区间上不一定是最大(小)的。

(2)极值存在的必要条件:设函数)(x f 在点0x 处可导,且在

0x 处取得极值,则0)(0'=x f 。

(3)极值存在的第一充分条件:设函数)(x f 在点0x 的领域内

连续并且可导()(0'x f 可以不存在),若在点0x 的左右两边)('x f 的符号不同,则函数)(x f 在点0x 处取得极值。

(4)极值存在的第二充分条件:设函数)(x f 在点0x 处存在二阶导数,且0)(0'=x f ,0)(0''≠x f ,若0)(0'' x f ,则)(x f 在点0x 处取得极小值;若0)(0'' x f ,则)(x f 在点0x 处取得极大值。

(5)驻点:使0)('=x f 的点称为驻点。

备注:可导函数的极值点一定是驻点,但驻点不一定是极值点,极值点一般在导数等于零或使导数不存在的点出现。

3.5.2 函数的最值

求函数)(x f 在闭区间[]b a ,最值的步骤:

(1)求出)(x f 一切可能极值点处的函数值与区间端点处的函数值)(),(b f a f

(2)将上述所求的数值进行比较,大中取大,小中取小。 备注:若0x 是函数)(x f 在[]b a ,上的唯一驻点,则)(x f 在点0x 处既取得极值,同时也取得最值。

例33 设)(x f 二阶可导,0)(=πf ,0)('' πf ,π=x 是)(x f 的极值点,x x f x g cos )()(=,则()

(A )π=x 是)(x g 的极大值点 (B )π=x 是)(x g 的极大值点

(C )π=x 不是)(x g 的极大值点

(D )不能确定π=x 是否为)(x g 的极大值点

例34 已知

)(x f 在0=x 的某个领域内连续,且0)0(=f ,2cos 1)(lim 0=-→x

x f x ,则在点0=x 处)(x f ()

(A )不可导 (B )可导且0)0('≠f

(C )取得极大值 (D )取得极小值

例35 设1 a ,at a t f t -=)(在),(+∞-∞内的驻点为)(a t ,问a 为何值时,)(a t 最小?并求出最小值。

例36 设10 α,证明不等式ααα-≤-1x x

例37 讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数。 例38 当0 x 时,证明:22)1(ln )1(-≥-x x x

例39 设)1,0(∈x ,证明:22)1(ln )1(x x x ++

例40 设常数0 k ,求函数k e

x x x f +-=ln )(在),0(+∞内零点个数。 3.6 渐近线

3.6.1 渐近线的概念

当曲线上的动点沿着曲线无限远离原点时,若动点与某一定直线的距离趋于零,则称该直线为曲线的渐近线。

3.6.2 渐近线的类型

(1)水平渐近线

设函数)(x f 的定义域为无穷区间,若C x f x =∞→)(lim (C 为常

数),则直线C y =是)(x f 的水平渐近线。

备注:①)(lim x f x +∞→与)(lim x f x -∞

→只要有一个存在,则)(x f 就存在水平渐近线。②)(x f 的水平渐近线可能不止一条。

(2)垂直渐近线

设函数)(x f 在点0x 处间断,若∞=→)(lim 0

x f x x ,则直线0x x =是)(x f 的垂直渐近线。

备注:①函数)(x f 的垂直渐近线出现在间断点处;②)(lim

0x f x x +→与

)(lim 0x f x x -→只要有一个为无穷大,则)(x f 就存在垂直渐近线;

③)(x f 的垂直渐近线可能不止一条。

(3)斜渐近线

设函数)(x f y =

,若[]0)(lim =+-∞→b ax y x ,则直线)0(≠+=a b ax y 是)(x f 的斜渐近线。其中x

x f a x )(l i m ∞→=(a 存在且不为零);[]ax x f b x -=∞

→)(lim (b 存在) 备注:①a 与b 缺一不可,且0≠a ;②求a 与b 极限的变化趋势必须一致。③)(x f 的斜渐近线可能不止一条。 例41 曲线)1ln()

1(1x e x x y ++-=的渐近线的条数为() (A )1 (B )2 (C )3 (D )4 例42 曲线)0)(1ln( x x

e x y +=的渐近线方程是

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

北大版高等数学第四章微分中值定理与泰勒公式答案习题

习题4.5 x (,3 2 )3 2 (3 2 ,0) 0(0, 3 2 ) 3 2 (3 2 ,+) f0+00+ f拐点拐 点 拐 点x(,0) -∞0(0,1)1(1,2)2(2,) +∞y'0++0 y''++ y 极小值拐点极大值 ()() ()() 2 22222 22 222 32 1.() ()212,()12(2)4 3 642320,0,. 2 x x x x x x x x f x xe f x e x e e x f x e x x xe e x x xe x x - ------- = ''' -=-=--- =-+=-+==± 求函数 的凸凹性区间及拐点. 解= 23 2 1 ,(,). 3 2(2)0,0,2. 220, 1. y x x x y x x x x x y x x =-∈-∞∞ '=-=-== ''=-== 作下列函数的图形: 2.

222223.,(,).2(2)(2)0,0,2;(2)(22)(42)0,2 2. x x x x x x x x y x e x y xe x e e x x e x x x y e x x e x e x x x --------'=∈-∞+∞=-=-=-==''=--+-=-+==± x (,0)-∞ (0,22)- 22- (22,2)- 2 (2,22)+ 22+ (22,)++∞ y ' - + + - - y '' + + - - 0 + y ? 极小值 ? 拐点 ? 极大值 ? 拐点 ? 22231 4.,0. 11 10, 2 1;. y x x x x y x x x y x =+≠-'=-==''=±=

第三章微分中值定理导数的应用

第三章微分中值定理导数的应用 教学目的与要求 1掌握并会应用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。 2理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。 3. 用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线, 会描绘函数的图形。 4. 握用洛必达法则求未定式极限的方法。 5. 道曲率和曲率半径的概念,会计算曲率和曲率半径。 6. 了解方程近似解的二分法及切线法。 一、中值定理,泰勒公式(放入泰勒级数中讲) 1.罗尔定理 如()x f 满足: (1)在 []b ,a 连续. (2)在 ()b ,a 可导. (3)()()b f a f = 则至少存在一点()b ,a ∈ξ 使()0f /=ξ 例 设()()()()1x 31x 21x x x g -++=,则 在区间(-1,0)内,方程()0x g /= 有2个实根;在(-1,1)内()0x g //=有2个根 例 设()x f 在[0,1]可导,且()()01f 0f ==, 证明存在()1,0∈ η,使()()0f f /=ηη+η。 证: 设()()x xf x F =在[a,b]可导,()()1F 0F = ∴ 存在()1,0∈η使()0F /=η 即()()0f f /=ηη+η 例 设()x f 在[0,1]可导,且()()01f 0f ==, 证明存在η ()()0F F /=η+η 。 解: 设()()x f e x F x =,且()()1F 0F = 由罗尔定理

存在η 使()0F /=η 即()()0f e f e /=η+ηηη, 亦即()()0f f /=η+η 例 习题6 设()()()x g e x f x F =(复合函数求导) 2、 拉格朗日中值定理 如()x f 满足:①在[a,b]连续;②在(a,b )连续, 则存在()b ,a ∈ξ 使()()()()a b f a f b f /-ξ=-。 推论:⑴ 如果在区间I 上()0x f /≡,则()c x f = ⑵ 如果在区间I 上())0(0x f /<>, ()x f 在I单增(减) 例 对任意满足1x <的x , 都有4x arcsin 21x 1x 1arctg π=++- 设 ()x arcsin 21x 1x 1arctg x f ++-= ∵ ()()0x 1121x 12x 1x 121x 1x 111x f 22/=-++-?+-?+-+= 0x 121x 12x 1x 12x 1212 22=-++?-+?+?-= ∴ ()c x f = ∵ ()4 0f π= ∴ ()4 x f π= 例 设()0x >,证明()x x 1ln x 1x <+<+ 求导证明 作业:见各章节课后习题。

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

第四章 微分中值定理与导数的应用

第四章 微分中值定理与导数的应用 第一节 中值定理(2课时) 要求:理解罗尔中值定理与拉格朗日中值定理。了解柯西中值定理。 重点:理解中值定理及简单的应用。 难点:中值定理证明的应用。 一、罗尔(Rolle)定理 罗尔定理 如果函数)(x f 满足条件 (1)在闭区间],[b a 上连续; (2)在开区间),(b a 内可导; (3))()(b f a f =. 则在开区间),(b a 内至少有一点)(b a <<ξξ,使得函数)(x f 在该点的导数等 于零,即0)(='ξf . 几何解释 设曲线? AB 的方程为))((b x a x f y ≤≤=,罗尔定理的条件的几何表示,?AB 是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,且两个端点的纵坐标相等,结论是曲线弧? AB 上至少有一点C ,使该点处曲线的切线是水平的.从图中看到,在曲线的最高点或最低点处,切线是水平的,这就启发了我们证明这个定理的思路,ξ应在函数取最值点处找. 例1.验证罗尔定理对函数34)(2+-=x x x f 在]3,1[上的正确性. 证明 因为函数)3)(1(34)(2--=+-=x x x x x f 在闭区间]3,1[上连续,可导.

)2 (2 4 2 ) (- = - = 'x x x f 且0 )3( )1(= =f f 函数) (x f在区间]3,1[上满足罗尔定理条件,所以在区间)3,1(内存在ξ使得 )2 (2 ) (= - = 'ξ ξ f, 于是)3,1( 2∈ = ξ. 故确实在区间)3,1(内至少存在一点2 = ξ使得0 )2(= 'f,结论成立. 二、拉格朗日中值定理(微分中值定理) 几何分析 拉格朗日中值定理设函数) (x f满足条件 (1)在闭区间] , [b a上连续; (2)在开区间) , (b a内可导. 则在区间) , (b a内至少存在一点) (b a< <ξ ξ,使得等式 ) )( ( ) ( ) (a b f a f b f- ' = -ξ成立. 推论1如果函数) (x f在区间I上的导数恒为零,那么函数) (x f在区间I上是一个常数(它的逆命题也成立). 例2.试证 2 cot arctan π = +x arc x) (+∞ < < -∞x. 证明构造函数x arc x x f cot arctan ) (+ =, 因为函数) (x f在) , (+∞ -∞上可导,且 1 1 1 1 ) ( 2 2 = + - + = ' x x x f 由推论得()arctan cot f x x arc x C =+=,(,) x∈-∞+∞,

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题] 1、 曲线的渐近线为()。 A、仅有铅直渐近线 B、仅有水平渐近线 C、既有水平渐近线又有铅直渐近线 D、无渐近线 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 本题考察渐近线计算. 因为,所以y存在水平渐近线,且无铅直渐近线。 [单选题] 2、 在区间[0,2]上使罗尔定理成立有中值为ξ为() A、4 B、2 C、3 D、1 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题] 3、 ,则待定型的类型是(). A、 B、 C、 D、

【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题] 4、 下列极限不能使用洛必达法则的是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则. [单选题] 5、 在区间[1,e]上使拉格朗日定理成立的中值为ξ=(). A、1 B、2 C、e D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】本题考察中值定理的应用。

[单选题] 6、 如果在内,且在连续,则在上(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 在内,说明为单调递增函数,由于在连续,所以在 上f(a)<f(x)<f(b). [单选题] 7、 的单调增加区间是(). A、(0,+∞) B、(-1,+∞) C、(-∞,+∞) D、(1,+∞) 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题] 8、 ().

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题 § 微分中值定理 1. 填空题 (1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 π π -4. (2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中. 2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且 )()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ). A . 必要条件 B .充分条件 C . 充要条件 D . 既非充分 也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A. x e x f =)( B. ||)(x x f = C. 21)(x x f -= D. ????? =≠=0 ,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ). A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξ B . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间

C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ 3.证明恒等式:)(2 cot arctan ∞<<-∞= +x x arc x π . 证明: 令x arc x x f cot arctan )(+=,则011 11)(2 2=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2 f π =, 故 )(2 cot arctan ∞<<-∞= +x x arc x π . 4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf . 证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf . 5. 证明方程06 213 2=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则03 1 )2(,01)0(<-=->=f f ,根据零点 存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在) ,(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02 112>++ηη矛盾.故方程0 62132=+++x x x 只有一个实根.

第三章 微分中值定理与导数应用教案教学设计

第三章 微分中值定理与导数应用 第一节 微分中值定理 教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒 中值定理。 教学重点:罗尔定理、拉格朗日中值定理。 教学难点:罗尔定理、拉格朗日中值定理的应用。 教学内容: 一、罗尔定理 1. 罗尔定理 几何意义:对于在],[b a 上每一点都有不垂直于x 轴的切线,且两端点的连线与x 轴平行的不间断的曲线 )(x f 来说,至少存在一点C ,使得其切线平行于x 轴。 从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。为应用方便,先介绍费马(Fermat )引理 费马引理 设函数 )(x f 在点0x 的某邻域)(0x U 内有定义, 并且在0x 处可导, 如果对任 意)(0x U x ∈, 有)()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0'=x f . 证明:不妨设)(0x U x ∈时,)()(0x f x f ≤(若)()(0x f x f ≥,可以类似地证明). 于是对于)(00x U x x ∈?+,有)()(00x f x x f ≤?+, 从而当0>?x 时, 0 ) ()(00≤?-?+x x f x x f ; 而当0

根据函数 )(x f 在0x 处可导及极限的保号性的得 ==+)()(0'0'x f x f 0)()(lim 000≤?-?++ →?x x f x x f x ==-)()(0'0'x f x f 0)()(lim 000≥?-?+- →?x x f x x f x 所以0)(0'=x f , 证毕. 定义 导数等于零的点称为函数的驻点(或稳定点,临界点). 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即 0)('=ξf . 证明:由于)(x f 在],[b a 上连续,因此必有最大值M 和最小值m ,于是有两种可能的情形: (1)m M =,此时)(x f 在],[b a 上必然取相同的数值M ,即.)(M x f = 由此得.0)(='x f 因此,任取),(b a ∈ξ,有.0)(='ξf (2)m M >,由于)()(b f a f =,所以M 和m 至少与一个不等于)(x f 在区间],[b a 端点处 的函数值.不妨设)(a f M ≠(若)(a f m ≠,可类似证明),则必定在),(b a 有一点ξ使M f =)(ξ. 因此任取],[b a x ∈有)()(ξf x f ≤, 从而由费马引理有0)(='ξf . 证毕 例1 验证罗尔定理对32)(2--=x x x f 在区间]3,1[-上的正确性 解 显然 32)(2--=x x x f )1)(3(+-=x x 在]3,1[-上连续,在)3,1(-上可导,且 0)3()1(==-f f , 又)1(2)(-='x x f , 取))3,1(1(,1-∈=ξ,有0)(='ξf . 说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立; 2 使得定理成立的ξ可能多于一个,也可能只有一个. 例如 ]2,2[,-∈=x x y 在]2,2[-上除)0(f '不存在外,满足罗尔定理的一切条件, 但在区间]2,2[-内找不到一点能使0)(='x f . 例如 ?? ?=∈-=0 ,0]1,0(,1x x x y 除了0=x 点不连续外,在]1,0[上满足罗尔定理的一切条

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

北大版高等数学第四章 微分中值定理与泰勒公式答案 习题4.1

习题 4.1 3 2 12121.()32[0,1][1,2]R o lle 0,(0)(1)(2)0,()[0,1][1,2]R o lle 620,6 3 (0,1),(1,2),()()0. 332.f x x x x f f f f f x x x x x x f x f x =-+==='-+== = ''====2 验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x )=3x 讨论下列 解11 1 1 ()[1,1]R o lle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1) (1)(1)()0,(1,1),()0. 1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m m x n n x c f c m f x -----∈-'==+-=- '=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/3 2),(0). 33.()ln [1,],?11(),()(1)ln ln 11(1), 1. 4.L ag ran g e (1)|sin sin |||; (2)|tan tan |||,,(/2,/2);(3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=- =='= -=-== -=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解2 2 2 (0). (1)|sin sin ||(sin )|()||co s |||||.(2)|tan tan ||(tan )|()|sec ||||.(3) ln ln ln (ln )|()((,)). 5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-= ∈< =--证明多项式的导函数的证1,212,. ()1,2,R o lle ,,,()(2,1),(1,1),(1,2). 6.,,,:()co s co s 2co s (0,). n n P x P x c c c f x c x c x c n x π±±---=+++ 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

相关主题
文本预览
相关文档 最新文档