当前位置:文档之家› 地球物理反演理论综述

地球物理反演理论综述

地球物理反演理论综述
地球物理反演理论综述

目录

摘要 (1)

一、反演问题基本概念 (1)

二、线性反演问题 (2)

三、线性反演问题的求解 (4)

3.1适定和超定问题 (4)

3.2欠定问题 (4)

3.3混定问题 (4)

四、非线性反演方法 (5)

4.1线性化迭代算法 (5)

4.2最速下降法 (5)

4.3 共轭梯度法 (6)

4.4遗传算法 (7)

4.5模拟退货法 (7)

4.6人工神经网络法 (8)

总结: (8)

地球物理反演理论综述

摘要

在地球物理学中,其核心问题就是如何根据地面上的观测信号推测地球内部与信号有关部分的物理状态。不同的地球物理问题,其数学物理是不同的;同一个物理问题,应为观测方式不同,也会有不同的物理模型。在地球物理学中,大多数的观测数据核模型参数之间是不满足线性关系的。但是在一定近似条件想均可简化或近似简化为线性关系。因此线性反演是地球物理的关键问题。

关键词:反演;线性反演;非线性反演

一、反演问题基本概念

把数据模型中的一个点定义为m,把数据空间中的一个点定义为d,两者的关系可以成:

d=

Gm

式中,G为模型空间M到数据空间D的一个映射,也称反函数算子,反应了模型m与数据d之间的物理规律

从空间映射来看,如果存在一个映射A,使得

m=

Ad

则A为有数据空间D到模型空间M的映射,即A为G的逆映射,称逆算子。也可以写成

=

m1-

d

G

我们把给定模型m求解数据d的过程称为正演;把给定数据d求解模型参数m的过程称为繁衍问题。

图1.1模型空间域数据空间之间的映射关系示意图

反演问题的研究归纳为四个方面的问题:

1) 解的存在性:给定数据d ,按照物理定律,能否找到满足要求的模型参

数m ;

2) 模型构制:若解存在,如何让构制问题的数学模型使得反演问题的解能

迅速而准确地确定;

3) 解的非唯一性:若解存在,其是否唯一;

4) 解的评价:若解的非唯一性的,如何从非唯一解中获取真实解的信息。 关于上述四方面问题的研究就构成了地球物理反演的基本理论。

二、线性反演问题

为了使问题简单明了而又不失一般性,我们在此讨论一维问题。设有积分方程

()()()?=b

a

d m x G x d ξ

ξξ,

式中,()[]b a m ,∈ξ。在观测数据数目有限的情况下,为便于书写,我们把各参量表示成如下形式

()j

j d x d =

()()j

j j G G x G ==ξξ, ()m m =ξ

?=b

a

j j md G d ξ

()M j ,,2,1 =

由于()ξm 与()ξ,x G 线性无关,则式(2-2)可以表示成内积形式

()

m G d j j ,= ()M j ,,2,1 =

我们先用核函数

j

G 构造另一组正交函数,即

∑==M

j j

kj k G 1

αψ ()M k ,,2,1 = 以

kj

a 为系数对观测数据

j

d 作一个线性组合,并令其为

k

E ,则

()()()

m m G a m G a d a E k j M

j kj M

j j M

j kj j kj k ,,,1

1

1

ψ====∑∑∑===

由此可见,

k

E 是m 在正交基

k ξ轴上的投影。

()∑∑∞

=∞===1

1

k k

k k k k m ?βξ?β

这里

()ξ?k 是Hilbert 空间的任意坐标基,可以正交,也可以是不正交。若

将其分成两部分,并取

k k ψ?= ()M k ,,2,1 = k ?为其他任意坐标基 M k > 则式(2-8)可写成

()∑∑∞

+=∞

=+

=1

1M k k

k

k k k m ?

βξ?β 可以证明

k k E =β。因

()

?

?? ??+=?

?

? ??+==∑∑∑∑∞

+==∞

+==1111,,M l l k l M l l k l M l l l M l l l k k k m E ?ψβψψβ?βψβψψ

∑∞

==1

l k

l

k

l

βψ

ψβ

∑∞

+==1

M l l k

l

β

所以有

k

k E β=。第二项

∑∞

+=1

M l k

l

?

β是无限维空间中一个向量投影之和,且该

向量在M 维正交基k ψ中的投影为零,则对于问题中的模型m ,它可视为零向量,即

()∑∞

+==

1

M k k

k

m ?

βξ

()∑∞

=+=1

k k k m E m ψξ

()()j

j

M

l kj M

k kj

l M

l kl M

k M

i j

j

ki

l

M

l kl

j

d d a a d a G G a d a m G ===+=∑∑∑∑∑∑======1

2

1111

10

,,

讨论:

1) 对于给定的观测数据总是能找到与之对应的数据模型,即解是存在的; 2) 模型的构制本质上就是对线性无关的核函数实行正交变换,求得相应的

新正交坐标基及模型在这个正交坐标基上投影的过程;

3) 反演问题是在特征解上加以任何零化子向量所得的模型,都可拟合观测

数据,所以姐是非唯一的。

三、线性反演问题的求解

3.1适定和超定问题

在线性反演问题中,如果观测数据的个数多于模型参数的个数,我们想得到一组与观测系统之间误差平方和最小的观测数据所对应的模型参数,也就是适用最小二乘法。

3.2欠定问题

欠定问题中假设方程数比未知的模型参数少,则可以找到很多的最小方差解。即,虽然数据能提供有关模型参数的信息,但是由于信息不足所以不能唯一确定模型参数。为了唯一确定解,可以把某些为引入的信息附加到该问题上,这些附加信息称为先验信息。它是不依赖实际数据使解以某种定量的形式出现。

3.3混定问题

混定问题是一种混合模式,观测数据个数多于模型参数的个数,但特征值接近或等于零,具有欠定性质。混定问题可以引入2

ε求解,2

ε取决于预测误差E 与模型长度L 在极小化过程中的相对重要性,称为阻尼因子或加权因子。

四、非线性反演方法

4.1线性化迭代算法

我们所遇到的问题中都是求解多远函数的最优化问题,即寻找目标函数极小点或极大点所对应的数学实现过程。

迭代算法在给定一个初始点b0 后按照一定的规则产生一个新的点b 1 ,如此迭代产生k 个点,形成一个序列{b k } ,并使得bk 不断逼近极值点b*,最终得到最优化问题的解。

对于迭代酸度最重要的是极小化序列的收敛性和收敛速度问题。线性化迭代反应过程中包含有分辨率的快速、慢速提高,方差的急增和混沌的相态,数据误差的大小会影响相态的转变速度。在解估计方差急增之前停止迭代就可以得到分辨率高而方差不大的反问题。

线性迭代算法的主要问题是可能陷入空间的局部极小区,因此建议把所有可能的模型都作为初始模型输入,然后再反演结果中找出拟合误差最小的解估计。

4.2最速下降法

最速下降法是一种运用梯度与极值的性质,综合数值计算方法寻找局部极值。 基本思想:任一点的负梯度方向是函数值在该点下降最快的方向。将维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法。

图4.1:最快下降法

具体步骤:

Step 1 给定初始点,允许误差,令。 Step 2 计算搜索方向

n 0n

x R ∈0ε≥1k =()k k d f x =-?

Step 3 若

,则为所求的极值点,否则,求解最优步长,使得。

Step 4 令

最速下降方向是反映了目标函数的局部性质,它只是局部目标函数值下降最快的

方向。

4.3 共轭梯度法

基本思想:将共轭性与最速下降法相结合利用已知迭代点的梯度方向构造一组共轭方向,并沿此方向搜索,求出函数的极小值。例如:

其中,

,是对称正定矩阵

具体步骤:

Step 1 取初始点,取第一次搜索方向为。

Step 2 设已求得,若,令,则下一个搜

索方向

由于与关于共轭,所以给(1)两边同

时乘以,即:

解得:

Step 3 搜索步长的确定,已知迭代点,和搜索方向,确定步长,

即:

解得:

共轭梯度法是对最速下降法的一种改进,减少了迭代次数从而提高了程序运

行效率。

k d ε≤ k x k λ()min ()

k k k k k f x d f x d λ

λλ+=+1k k k

k x x d λ+=+1k k =+1

min ()2T T f x x Ax b x

=+0n

x R ∈A (0)

x (0)

(0)()d f x =-?(1)k x +(1)

()0k f x

+?≠(1)()()k g x f x +=?(1)()

1k k k k d g d β++=-+(1)

k d

+()

k d

A ()T

k d

A ()(1)

()()()10

T

T

T

k k k k k k k d

d d

g d

d β++A =-A +A =()1

()()

k T k k k T k d A g d Ad β+=()k x ()k d k λ()()min

()

k k f x d λ

λ+()

()()

T

k k k k T k g d d Ad λ=-

4.4遗传算法

遗传算法设计步骤如下: Step0 设置迭代参数

Step1 确定进化代数,0←n 随机产生规模为N 且满足约束条件的群体A 0。 Step2 对群体A n 中的个体进行评价,如果个体A i 不满足约束条件,则随机生成一个满足约束条件的个体来替换,并保存当前最好的个体

Step3 采用比例选择算子对当前群体进行选择操作,选择群体规模为N 的个体。

Step4 对群体中的个体进行两两随机配对。以概率Pc 交换部分基因。 Step5 对群体中个体的每一个基因以概率Pm 进行变异,未变异的个体直接进入新群体。

Step6 变异后的新群体取代上一代群体,并对当前群体

1

+n A 中的个体进行评

价。倘若当前群体中最大适应值大于上一代群体中的最大适应值,则当前群体中的最好个体取代上一代保留下的最好个体,否则不取代。

Step7 条件判断,如满足条件,则停止迭代。否则,1+←n n ,转回Step3。 遗传算法的核心是由“繁殖”,“杂交”,“变异”三步组成的转移过程。同时计算繁殖杂交概率与变异概率用于控制迭代过程并使数据进一步拟合。

4.5模拟退货法

模拟退火的原理:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火的基本思想:

(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T 值的迭代次数L

(2) 对k=1,……,L做第(3)至第(6)步:

(3) 产生新解S′

(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数

(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.

(6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

模拟退火法是用于求解非线性地球物理反问题的一种好方法,对于模型参数较小的情况下计算很方便,但实际应用上其反演结果还是依赖于初始参数选择和降温方式选择等问题。

4.6人工神经网络法

地球物理反演实际上是将地球物理观测数据映射为模型参数的一种运算。这种映射既可以用模式识别的方式实现、也可以用数字的方式定量的实现。人工神经网络在反演中的应用,大多数是基于模式识别的原理。

和常规反演一样,基于BP回传理论建立起来的反演方法,也要有目标函数。此时的目标函数定义为所有输入模式对上输出单元之希望输出与实际输出之误差的平方和。和常规的反演不同,基于BP回传理论,可将反演过程分为学习(训练)和反演(测试)两个阶段。先学习后反演。学习就是对网络进行训练。

神经网络的基本特征:巨量并行,运用多方面知识和经验同事并发,迅速做出解答;信息存储和信息处理和在一起;自组织,自学习的功能。

总结:

目前地球物理反演的主要应用是在三维结构的研究,地球物理迭代反应的线性化迭代方法具有较好的数学物理基础随着计算机软硬件的快速发展,还将会出现更多的新变化。遗传算法只要繁殖杂交概率和变异概率选择合适总能收敛到较优化的解估计。但是某些地球物理反问题不适宜会出现传代太快,不能收敛全局的极值。所以要选择适宜的方法解决反问题。人工神经网络算法是发展比较迅速

的信息处理技术,但在物探方面还局限于模式识别,开发人工神经网络的潜能石下一阶段反演研究的重要方向。

参考文献

[1]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997.

[2]姚姚.地球物理反演基础理论与应用方法[M].武汉:中国地质大学出版社.2002.

[3]王家映.地球物理反演理论[M].北京:高等教育出版社2002.

[4]周明, 孙树栋. 遗传算法原理及其应用[M]. 北京: 国防工业出, 1999

[5]杨文采.地球反演的遗传算法[J].石油物探.1995.

[6]杨文采.非线性地震反演方法的补充及比较[J].石油物探.1995

[7] 侯格贤, 吴成柯. 遗传算法的性能分析[J]. 控制与决策, 1999.

[8]秦浩宇. 遗传算法的改进研究及其在酵母扩培系统中的应用[D]. 中南大学, 2010.

[9]石耀霖.遗传算法在地球物理反演中的一些应用[J].地球物理学报.1992.

[10]栾文贵.地球物理中的反问题[M].北京:科学出版社.1989.

[11]杨文采.神经网络算法在地球物理反演中的应用[]J].石油物探.1995.

地球物理反演成像方法综述

地球物理反演概述 地球物理反演是近年来发展很快的地球物理学中利用地球表面及钻孔中观测到的物理数据推测地球内部介质物理参数分布和变化的方法。其目的就是根据观测数据等已知信息求取地球物理模型。众所周知,地球物理学中有地震学、电磁学、重力学、地磁学、地热学、放射性学和井中地球物理等学科。尽管地球物理学家研究地球所依据的物性参数不同,方法各异,但就工作程序而言,一般都可分为数据采集,资料处理和反演解释等三个阶段。 数据采集就是按照一定的观测系统、一定的测线、测网布置,在现场获得第一手、真实可靠的原始资料。所以数据采集是地球物理工作的基础,是获得高质量地质成果的前提和条件;资料处理的目的是通过各种手段,去粗取精,去伪存真,压制干扰,提高信噪比,使解释人员能从经过处理的资料(异常或响应)中,较准确的提取出测区的地质、地球物理信息。所以,资料处理是从原始观测数据到地球物理模型之间的必不可少的手段和过渡阶段;反演解释的目的,用地球物理的术语来说,就是实现从地球物理异常(或响应)到地球物理模型的映射,使解释人员能从经过处理的地球物理资料(异常或响应)中提取出获得最接近真实情况的地质、地球物理模型,圆满的完成提出的地质任务。 虽然各种地球物理方法的原理、使用的仪器设备和资料采集方式有很大的不同,但是它们资料处理和反演解释的基础确有许多共同之处。前者的基础是时间(空间)序列分析,后者的基础是反演理论。在本文中只涉及地球物理资料的反演解释,地球物理反演是地球物理资料定量解释的理论和算法基础,也是地球物理资料处理技术的基础之一。 1 地球物理反演概述 地球物理反演理论是近二三十年来才发展起来的地球物理学的一门重要分支,它是研究从地球物理观测数据向量,到地球物理模型参数向量映射理论和方法的一门学科。虽然地球物理问题千差万别,但把地球物理观测数据和地球物理模型参数联系起来的数学表达式,却只有线性和非线性两大类。如以d 表示观测数据向量,m 表示模型参数向量,f 是表示联系d 和m 的函数或泛函表达式,则凡满足 (1)d m f m f m m f =+=+)()()(2121

地球物理反演理论

地球物理反演理论 一、解释下列概念 1.分辨矩阵 数据分辨矩阵描述了使用估计的模型参数得到的数据预测值与数据观测值的拟合程度,可以表示为[][]pre est g obs g obs obs d Gm G G d GG d Nd --====,其中,方阵g N GG -=称为数据分辨矩阵。它不是数据的函数, 而仅仅是数据核G (它体现了模型及实验的几何特征)以及对问题所施加的任何先验信息的函数。 模型分辨矩阵是数据核和对问题所附加的先验信息的函数,与数据的真实值无关,可以表示为()()est g obs g true g ture ture m G d G Gm G G m Rm ---====,其中R 称为模型分辨矩阵。 2.协方差 模型参数的协方差取决于数据的协方差以及由数据误差映射成模型参数误差的方式。其映射只是数据核和其广义逆的函数, 而与数据本身无关。 在地球物理反演问题中,许多问题属于混定形式。在这种情况下,既要保证模型参数的高分辨率, 又要得到很小的模型协方差是不可能的,两者不可兼得,只 有采取折衷的办法。可以通过选择一个使分辨率展布与方差大小加权之和取极小的广义逆来研究这一问题: ()(1)(cov )u aspread R size m α+- 如果令加权参数α接近1,那么广义逆的模型分辨矩阵将具有很小的展布,但是模型参数将具有很大的方差。而如果令α接近0,那么模型参数将具有相对较小的方差, 但是其分辨率将具有很大的展布。 3.适定与不适定问题 适定问题是指满足下列三个要求的问题:①解是存在的;②解是惟一的;③解连续依赖于定解条件。这三个要求中,只要有一个不满足,则称之为不适定问题 4.正则化 用一组与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法。对于方程c Gm d =,若其是不稳定的,则可以表述为

《地球物理勘探》基本特点

《地球物理勘探》基本特点 (1)地球物理勘探是一种间接的勘探方法 用钻机或其它的机械手段从地下取出岩样来认识地质构造是直接的勘探方法(或称为侵入方法,invasive method)。 地球物理勘探无须从地下取出岩样,而是通过使用专门的仪器在地面(或钻孔中)观察由地下介质引起的某种物理场的分布状态,

收集和记录某些物理信息随空间或时间的变化,并对这些信息的分布特征作出解释和推断,从而揭示地球内部介质物理状态的空间变化和分布规律,以此来了解矿产资源的分布及赋存状态、查明地质构造。

(2)地球物理勘探工作具有效率高、成本低的特点以往的地球物理勘探工作为矿产资源的调查、水文地质及工程地质工作提供了大量的、获得实践检验的重要资料;尤其是在覆盖地区对研究地质构造、指导勘探、成井等方面发挥了重要作用,加快了勘探速度,降低了施工成本,提高了水文地质钻孔的成井率。

(3)地球物理勘探能更全面了解勘探目标的全貌,避 免钻孔勘探‘一孔之见’的弱点 在工程勘察中,尤其是在浅层岩溶勘察中,地球物理勘探工作能提供勘探区域内二维、甚至三维的地下岩溶分布状态,克服钻孔‘一孔之见’的局限性。 跨孔声波、电磁波透视法能了解两孔之间的岩体的完整性,能从整体上评价岩体的完整性与基础的稳定性。

(4)地球物理勘探的应用具有一定的前提条件(一)必要条件: 要有物性差异; (二)充分条件: 1、目前仪器技术条件下,能测出异常: (1)场源体要有一定的规模, (2)场源体要有一定的埋深比, (3)仪器灵敏度要高; 2、干扰要小或能分辨异常; 3、环境条件允许。

(5)反演解释具有多解性 同一物理现象(或者说同一性质的物理场的分布)可以由多种不同的因素引起。 例如,在电法勘探中,视电阻率的变化可以由被测目标体电阻率值的变化引起;也可能由于地形,产状等其他因素的变化引起。这反映了地球物理勘探资料解释具有多解性。 要克服地球物理勘探资料解释的多解性,就必须将其与钻井资料或地质资料相结合进行推断解释,必须掌握一定的地层岩矿石的物性参数。

地震波层析成像反演方法及其研究综述

No.13,2010 现代商贸工业 Modern Bus iness Trade Industry2010年第13期 地震波层析成像反演方法及其研究综述 冯 微 (长江大学物理科学与技术学院,湖北荆州434025) 摘 要:通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。 关键词:速度建模;层析成像;初至波 中图分类号:TB 文献标识码:A 文章编号:1672 3198(2010)13 0368 01 地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及静校正的精度等地震勘探的各个环节和最终的勘探成果。 1 地震面波及波形反演 利用面波进行结构反演一直是了解地球介质结构的重要途径。近几年来,在面波理论和面波反演方面做了大量工作。陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。张碧星等(2000,2002)对瑞利波勘探中 之字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对 之字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构作了反演,揭示了横向结构差异的广泛存在。 根据走时反演地下结构是获取结构信息的经典做法。刘伊克等(2001)根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型。同时,采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算。李录明等(2000)针对地震勘探中的复杂地表问题,提出了一套地震初至波表层模型层析反演方法.它利用地震直达波、回折波、折射波以及三者组合的初至波和层析反演方法具有的纵、横向变速优势,实现适应速度任意变化的复杂表层模型反演。 在利用远震体波接收函数反演地下结构方面。钱辉等(2001)对接收函数反演地壳结构速度的算法作了分析,使之适应正演参数的变化,并利用天然地震接收函数揭示了青藏高原东部地壳结构。 近年来,非线性反演越来越受到重视,许多研究者把新的最优化理论引入地震学反演中。孟洪鹰和刘贵忠(1999)提出了多尺度地震波形反演的小波变换方法。对于一维非线性地震波形反演问题,此方法和已有的简单迭代法及多重网格法比较表明,此方法更为有效。杨峰和聂在平(2000)提出了用于二维轴对称非均匀介质结构的反演和成像的一种新的反演迭代方法变分玻恩迭代方法.与传统的玻恩迭代方法相比,其收敛速度和成像质量均有较大改善。 2 地震勘探、测井问题中的地震波研究及其它 在地震勘探和测井方面,许多研究者针对实际问题,提出了新的方法。沈建国和张海澜(2000)计算了井内靠近井壁的偏心声源激发的声场,得到了在井壁不同位置的接收波形,分析了直达波、井壁反射波、纵波、横波和面波在这些波形中的反映。为了处理横向强变速介质中的深度成像问题,程玖兵等(2001)提出一种基于共炮道集的优化系数的傍轴近似方程叠前深度偏移算子,在基于反射系数估算的成像条件下,可实现叠前深度偏移成像。陈生昌等(2001)实现了一种基于拟线性Born近似的叠张海明等:地震波研究前深度偏移方法,扩大了拟线性Born近似的应用范围,使其能够适应更强的横向速度变化。张美根和王妙月(2001)利用有限元法和最小走时射线追踪的界面点法,实现了各向异性弹性波的叠前逆时偏移.陈志德等(2002)利用叠前深度域地震成像对速度模型变化的敏感性,采用偏移迭代逐次逼近最佳成像速度,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术。顾汉明等(2002)在频率-波数域中采用解析法,解出多层条件下海底实测的多分量地震数据分解成上行和下行P波和S波的算法,导出海底各层地震反射系数随入射角变化(简称RVA)的递推计算公式。金胜汶等(2002)给出了一种高效率、高精度的炮检距域叠前深度偏移方法,并得到各个不同照射角下的成像结果。 3 讨论和结论 地震波理论是固体地球物理学研究的重要基础.地震波研究领域的任何实质性进展都会促进固体地球物理学的发展.在过去的4年里,中国地球物理学家在该领域做了很多有意义的研究工作,其中不乏创新性的理论工作.当前地震波研究领域的重要课题包括: (1)复杂地球介质中地震波激发与传播理论; (2)高效计算三维介质中地震波传播的数值方法; (3)利用先进的地震波数值模拟方法,开展设定地震与强地面运动的数值模拟研究,为精细的地震危险分析与预测奠定基础。 参考文献 [1]周庆凡.我国天然气发展前景广阔[J].中国石化,2009. [2]刘英祥.我国天然气价格与天然气发展问题研究[J].企业经济, 2009. [3]牛建娣.我国天然气市场供需状况及发展对策分析[D].对外经济 贸易大学,2007. ! 368 !

磁性界面反演方法

第九节 磁性界面反演方法 具有一定磁性差异的地质界面,如结晶基底面、大岩体的上顶面等,是找矿勘探与基础地质研究中常见的地质现象。磁性界面反演方法是确定这一类地质模型界面深度的方法。磁性界面反演方法有空间域和频率域两大类。在磁性界面反演中,常常把磁性界面划分成大量的离散二度水平棱柱体或三度直立棱柱体组合模型,由于未知参数太多不能采用直接解法,往往采用迭代法或其他方法。空间域方法未知参数多、计算时间长、效率低。Parker (1972,1973,1974)采用了连续模型,得出了频率域重磁位场正反演的理论公式,Oldenburg (1974)把它推广成迭代形式并做了二维计算。由于引入快速傅立叶变换,在相同精度下,频率域方法比空间域方法反演速度至少要快一个数量级以上。因此,频率域磁性界面的反演方法成为界面反演的一种常用方法,用于区域磁测资料解释与油气勘探中研究基底构造。 一、磁性界面异常的正演 如图7-9-1所示的磁性界面,其上下界面磁化强度差为M ,为简单起见,设M 垂直向下。 图7-9-1 磁性界面示意图 若磁化率为常数,考虑n=0时,即泰勒展开式第一项在空间域为常数项,略去n=0项则有: 01()(,)2!n n Hs n s Z u v M e h n μ∞-=??-?=???? ∑ (7-9-13) 上式表示,当给定了平均深度H 及平均深度上的起伏 (),h ξη,取泰勒展开式 有限项数n=3~8,就可以计算出 n h 和 (,)Z u v ?,利用快速傅立叶变换即可得到空间域的磁异常值Z ?(x,y,0)。 二、磁性界面异常的反演 式(7-9-13)是磁性界面正演计算公式,稍作一下变化,就可以当作反演迭代公式。我们把和式中n=1的项写出并移项得

峨眉山地质概况及地球物理特征

峨眉山地质概况及地球物理特征 地质概况及地球物理特征 第一节地质概况 一、地层 井田内地层(见表1)有上二叠统峨眉山玄武岩组(PB)龙谭组(Pl)、下三22叠统飞仙关组(Tf)、永宁镇组(Tyn)及第四系Q。其岩性特征由新至老分述11 如下: 1、第四系(Q) 厚0,41m,以残积物、坡积物,崩积物滑坡堆积体为主。坡积物、残积物主要分布在同向坡及单斜谷中,崩积物分布于陡崖脚下,另外在井田内分布有大小6个滑坡区。冲积物主要分布在北盘江、发耳河两岸。与下伏基岩呈角度不整合接触。 2、三叠系下统永宁镇组(Tyn) 1 本区出露三段,四段被剥蚀,总厚平均405m。 3 第三段(Tyn):灰色薄至厚层状石灰岩夹泥质灰岩。区内可见残厚约100m1 左右。 2第二段(Tyn):以黄灰、灰绿争钙质泥岩及泥灰岩为主,夹钙质粉砂岩及细砂 1 岩,顶部25m左右为薄层泥灰岩,厚154-185m,平均厚160m。 1第一段(Tyn):以浅灰,灰色薄至中厚层状泥质灰岩,下部夹钙质泥岩薄层。1 厚144-150m,平均厚145m。 永宁镇组产:Tirolites SPinosus(刺提罗菊石)Pteria cf.murchisoni(莫氏翼蛤相似种)、Entoliun discites microtis(小耳海扇)等化石。 3、三叠系下统飞仙关组(Tf) 1

总厚约629m。分上、下两段,其上段分三个亚段。 2-3上段三亚段(Tf):黄灰色薄层状泥质灰岩夹钙质粉砂岩。底部20m左右为紫1 红色钙质泥岩,厚约161m。 发耳矿井地层简表表1 厚 地 度 (m 层 ) 0- 第四系(Q) 41 0- 90下第三系(E) 二上 桥1 统 三叠系(T) 组6 ( (6 T) 3

地震波阻抗反演方法综述

地震波阻抗反演方法综述 一、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959年美国人Edwin Laurentine Drake在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI)是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20世纪70年代加拿大Roy Lindseth博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80年代,Cooke等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90年代,在基于前人对地质统计学研究的基础上Bortoli和Haas提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用,以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996年,李宏兵等人将宽频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999年,任职于英国石油公司的Connolly在《弹性波阻抗》一文中介绍了弹性波阻抗(EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002年,Whitcombe通过修正Patrick Connolly的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003年,西北大学马劲风教授从Zoeppritz方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

岩体参数的反演方法综述

岩体参数的反演方法综述1 费文平,马亢 四川大学水利水电学院,成都 (610065) E-mail:wpfei7206@https://www.doczj.com/doc/7f17265997.html, 摘要:岩体参数的反演分析是水电工程的设计与数值计算的基础,直接影响到计算结果的真实性。归纳总结了岩体参数的各种反演方法,分析比较了其优缺点和适用条件,提出了岩体参数反演分析方法的发展趋势。 关键词:岩体,参数,反演方法 1.引言 岩体参数(如弹模、泊松比等)的反演分析是根据少数的已知测点的位移值或应力值等,来反演分析岩体的材料参数的过程,是水电工程的设计与数值计算的基础。岩体力学参数的确定是岩土工程数值计算中的关键问题。由于岩体的参数往往难以确定,对数值计算的结果会造成很大的影响,而实验室内对岩体参数的测定均存在尺度效应问题,且考虑到经济成本,现场取样的数量往往不多,因而无法得到整个工程区的岩体真实参数。采用反演分析的方法可以综合考虑诸多地质因素的影响,更加经济准确地得到岩体的参数[1-3]。 岩体参数反演计算的方法主要有[4-30]:①正反分析法;②逆反分析法;③局部最优化方法;④人工神经网络法;⑤遗传算法;⑥粒子群算法;⑦梯度类方法;⑧混合算法。 2.岩体参数反演分析方法的分类及特点 2.1 正反分析法 正反分析法先假定待反演的岩体参数,通过正演分析得到岩体结构的位移或应力等,然后将其与实际观测值相比较,并按一定方式修改调整待反演参数,逐步逼近实测值,从而确定待反演的岩体参数。正反分析法程序编制简单,计算方法灵活,可适用于线性或非线性的岩体参数反演问题,但需要大量的调整试算。 2.2 逆反分析法 逆反分析法通过求逆直接建立待反演参数与实测值之间的关系式,求解这些关系式组成的方程组就可得到反演计算结果。该法计算原理直观简明,但程序编制复杂,只适用于线性的岩体参数反演分析。 2.3 局部最优化方法 优化分析法致力于寻找使计算结果与观测结果之间的误差为最小的解答。局部最优化方法包括单纯形法、模式搜索法、鲍威尔法、变量轮换法、混合罚函数法、复合形法等,它们对初值的依赖性较强,在选用时应注意参数先验信息的确定,因而需要有一定的工程经验。否则,需采用以下的优化反演分析方法。 2.4 人工神经网络法 人工神经网络法对人类大脑的一种物理结构上的模拟,通过网络训练,调整网络内部权1本课题得到高等学校博士学科点专项科研基金(项目编号:20040610095)的资助。

时频分析方法综述

几种时频分析方法简介 1.傅里叶变换(Fourier Transform) 1 2/ 2 1 22/ ()() ()() 1 ()()()( : : ::) N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT π π ππ - - ∞- -∞ ∞- -∞ ? = ??=??? ???????→ ?? ??=?= ?? ? ∑ ? ?∑ 离散化(离散取样) 周期化(时频域截断) 2.小波变换(Wavelet Transform) a.由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f)只能反映其在整个实轴的性态,不能反映h(t)在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t∈[a,b]与函数 [] [] 1 1,t, () 0,t, a b t a b χ ?∈ ? =? ∈ ?? ,然后考察 1 ()() h t t χ傅里叶变换。但是由于 1 ()t χ在t= a,b处突然 截断,导致中 1 ()() h t t χ出现了原来h(t)中不存在的不连续,这样会使得 1 ()() h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor在1944年引入了“窗口” 傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 2 2 (,)()() ()()(,) ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T π π ττ τττ +∞- -∞ +∞+∞ -∞-∞ =- =- ? ?? : : 图:STFT示意图 STFT算例

地球物理反演-邹志辉

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 地球物理反演是地球物理学科的一个重要组成部分,地球物理反演的思路和方法不仅可以用于解决固体地球问题,还能够用于解决其它领域(如气象预报、经济预测等)的问题,具有广泛适用性。本课程将介绍地球物理反演的基本概念、原理和应用方法基础。 2.设计思路: 本课程将以介绍地球物理反演理论的基本概念为基础,重点阐述方法的原理和应用思路,并在介绍实例的基础上帮助学生理解实际应用中反问题的提取、分析和求解的思路。课程内容涉及地球物理反演基本理论、位场反演基础、地震反演基础等主要方面。 3. 课程与其他课程的关系: 本课程将在学生已经学习的勘探方法基础上传授学生通过反演的方法求解实际问题的手段,使学生理解和加深对各种勘探方法的理解。本课程的方法可以方便地用作学生科研和毕业设计等的手段。学生还可以结合前期选修的计算机语言类课程编写简单的反演程序,用于求解地球物理反问题。 二、课程目标 - 1 -

本课程目标是使学生掌握地球物理反演的基本概念,理解地球物理反演的基本方法和处理实际问题的思路,能够将常规的地球物理问题转化为反演问题进行求解。 三、学习要求 学生在选修过程中需要按照开课前的教学安排简单预习课程内容。授课过程中,学生要按时上课并积极参与教学过程,可以随时举手提问,也可以将问题组织好课下提问;学生需要在讨论环节积极发言,提高科技交流能力。学生在课后需要按照要求在规定时间内完成布置的作业和课程论文。 四、教学进度 - 1 -

五、参考教材与主要参考书 姚姚,地球物理反演基本理论与应用方法,武汉:中国地质大学出版社 王家映,地球物理反演理论(第2版),北京:高等教育出版社 Menke, W. (2012). Geophysical Data Analysis: Discrete Inverse Theory. Academic Press. 六、成绩评定 (一)考核方式 A :A.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他 (二)成绩综合评分体系: - 1 -

地震反演方法概述

地震反演方法概述 地震反演:由地震信息得到地质信息的过程。 地震反射波法勘探的基础在于:地下不同地层存在波阻抗差异,当地震波传播有波阻抗差异的地层分界面时,会发生反射从而形成地震反射波。地震反射波等于反射系数与地震子波的褶积,而某界面的法向入射发射系数就等于该界面上下介质的波阻抗差与波阻抗和之比。也就是说,如果已知地下地层的波阻抗分布,我们可以得到地震反射波的分布,即地震反射剖面。即由地层波阻抗剖面得到地震反射波剖面的过程称为地震波阻抗正演,反之,由地震反射剖面得到地层波阻抗剖面的过程称为地震波阻抗反演。 叠前反演主要是指AVO反演,通过AVO反演,可以获得全部的岩石参数,如:岩石密度、纵横波速度、纵横波阻抗、泊松比等。叠前反演与叠后反演的根本区别在于叠前反演使用了未经叠加的地震资料。多道叠加虽然能够改善资料的品质,提高信噪比,但是另一方面,叠加技术是以东校正后的地震反射振幅、波形等特征不随炮检距变化的假设为基础的。实际上,来自同一反射点的地震反射振幅在不同炮检距上是不同的,并且反射波形也随炮检距的变化而发生变化。这种地震反射振幅、波形特征随炮检距的变化关系很复杂,主要原因就在于不同炮检距的地震波经过的地层结构、弹性性质、岩性组合等许多方面都是不同的。叠加破坏了真实的振幅关系,同时损失了横波信息。叠前反演通过叠前地震信息随炮检距的变化特征,来揭示岩性和油气的关系。叠前反演的理论基础是地震波的反射和透射理论。理论上讲,利用反射振幅随入射角的变化规律可以实现全部岩性参数的反演,提取纵波速度、横波速度、纵横波速度比、岩石密度、泊松比、体积模量、剪切模量等参数。 叠后地震剖面相当于零炮检距的自激自收记录。与叠前反演不同,叠后反演只能得到纵波阻抗。虽然叠后反演与叠前反演想必有很多不足之处,但由于其技术方法成熟完备,到目前为止,叠后反演仍然是主流的反演类型,是储层预测的核心技术。 介绍几种叠后反演方法: 1)道积分:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。因为它是在地层波阻抗随深度连续可微的条件下推导出来的,因而又称为连续反演。 原理简述: 上述公式表示,反射系数的积分正比于波阻抗Z的自然对数,这是一种简单的相对波阻抗概念。 适用条件及优缺点 与绝对波阻抗反演相比,道积分的优点:1.递推时累积误差较小;2.计算简单,不需要反射系数标定;3.无需钻井控制,在勘探储气即可推广使用。 缺点:1.由于这种方法受到地震固有频宽的限制,分辨率低,无法适用于薄层解释的需要;2.需要地震记录经过子波零相位化处理;3.无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数;4.这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而结果比较粗略。 2)递推反演方法:根据反射系数进行递推计算地层波阻抗或层速度,其关键在于由原始地震记录估算反射系数和波阻抗,测井资料不直接参入反演,只起到标定和质量控制的作用。因此又称为直接反演。 原理简述: 利用以上公式,可以从声波时差曲线及密度曲线上(没有密度曲线时可以利用Gardnar 公式进行换算)选择标准层波阻抗作为基准波阻抗,将反褶积得到的反射系数转为波阻抗。

第四节 地球物理异常特征

第四节地球物理异常特征 一、物探异常确定原则 1、岩矿石电性参数测定 矿区内震旦系灯影组四段是铅锌矿的主要含矿地层,矿体顶、底板围岩主要为白云岩、含硅质条带白云岩。围岩与铅锌矿石的物性差异较大,且无炭质层和石墨化层干扰,实践证明选择物探测量中的电法测量是可行的。物探测量之前,对矿区不同岩矿石样品进行了物性测定,以了解岩、矿石的电性背景参数,岩矿石物性参数见表1。 从表1可以看出,铅锌矿与围岩白云岩的物性差异明显,铅锌矿的幅频率为1.2~22.3%。而白云岩幅频率为0.1~2.3%。测试数据表明铅锌矿为高幅频率;白云岩为低幅频率。铅锌矿与围岩幅频率差异甚大,选取幅频率作为圈定物探异常参数。 岩矿石样品物性参数测量统计表表1

区内幅频率测量值经统计全样本231件,其中最小值为-32.5%,最大值99.8%,剔除其中的特高、特低值,保留Fs在0-15%作为计算样本,计算平均值X为5.52%,样本标准离差Sx为4.16,结合物性测量参数值特征,确定幅频率异常下限为C A=X+2Sx=13.84,Fs异常下限定为14.0%。以14.0-20.0%为异常外带,20.0-30.0%为异常中带,大于30.0%为异常内带。 2、物探工作方法选择 山水沟铅锌矿采用1:5000幅频激电中梯短导线测量,根据矿体分布及地形地貌特征,垂直矿体走向,测线平行布设,测线间距为400米,AB距为510~850米,测量点距MN为20米。大致按220~310度方向布线。 二、中间梯度法物探异常特征 (一)异常总体特征 1、SF0 2、SF05、SF06、SF07、SF08、SF09六线多表现为低背景值下的低缓异常,高值异常没有或较少,Fs通常在14以下,以2.1-7居多。而SF01、SF0 3、SF0 4、SF10四线异常较好,FS值表现为低背景值下的连续中、高值异常,梯度明显,同一测线异常值多达数个。 2、异常点连续,异常大都与矿层倾方呈反向偏移。 3、异常波动幅度大,级别明显,受硫铁矿层、铅锌矿层影响,异常来源复杂,不同级别的异常可能对应不同的激化体。 4、在一定测深范围内,幅频率值(Fs)具有随深度递增而升高的

推理方法综述

智能控制导论大作业 学院:电子工程学院 专业:智能科学与技术

推理方法综述 一、推理的定义: 推理是人类求解问题的主要思维方法。所谓推理就是按照某种策略从已有事实和知识推出结论的过程。通过一个或几个被认为是正确的陈述、声明或判断达到另一真理的行动,而这真理被相信是从前面的陈述、声明或判断中得出的直接推理。 二、推理方式及其分类: 1.演绎推理、归纳推理、默认推理 (1). 演绎推理:一般→个别 演绎推理是从全称判断推出特称判断或单称判断的过程,即从一般到个别的推理。最常用的形式是三段论法。 例如: 1)所有的推理系统都是智能系统; 2)专家系统是推理系统; 3)所以,专家系统是智能系统。 (2). 归纳推理: 个别→一般 是从足够多的事例中归纳出一般性结论的推理过程,是一种从个别到一般的推理过程,分为完全归纳推理,又称为必然性推理,不完全归纳推理,又称为非必然性推理。 例如:

(3). 默认推理: 默认推理又称缺省推理,它是在知识不完全的情况下假设某些条件已经具备所进行的推理。 例如: 2.确定性推理、不确定性推理 如果按推理时所用的知识的确定性来分,推理可分为确定性推理与不确定性推理。 (1)确定性推理(精确推理)。 如果在推理中所用的知识都是精确的,即可以把知识表示成必然的因果关系,然后进行逻辑推理,推理的结论或者为真,或者为假,这种推理就称为确定性推理。(如归结反演、基于规则的演绎系统等) (2)不确定性推理(不精确推理)。 在人类知识中,有相当一部分属于人们的主观判断,是不精确的和含糊的。由这些知识归纳出来的推理规则往往是不确定的。基于这种不确定的推理规则进行推理,形成的结论也是不确定的,这种推理称为不确定推理。(在专家系统中主要使用的方法)。 例如: 3.单调推理、非单调推理 如果按推理过程中推出的结论是否单调增加,或者说推出的结论是否越来越接近最终目标来划分,推理又可分为单调推理与非单调推理。 (1)单调推理。(基于经典逻辑的演绎推理) 是指在推理过程中随着推理的向前推进及新知识的加入,推出的结论呈单调增加的趋势,并且越来越接近最终目标。(演绎推理是单调推理。)

历年地球物理试题总结

地球物理基础历年真题总结(按频率高低) 一、名词解释 1、惠更斯原理(5) 2、地球重力位(4) 3、叠加速度(4) 4、视电阻率(4) 5、磁场强度(4) 6、地震波传播介质的品质因子(Q值) (3) 7、磁化率(3) 8、时距曲线(3) 9、DMO(2) 10、地震勘探中的4D和4C(2) 11、虚反射(2)

12、磁法勘探(2) 13、重力勘探(2) 14、岁差和章动(2) 15、勒夫数(h, k)、志田数(l) (1) 16、地心纬度和天文纬度(2) 17、米兰科维奇旋回(2) 18、相干合成孔径雷达(INSAR) 19、地震子波 20、地震波阻抗 21、相干噪声 22、相干加强 23、均方根速度 24、地球重力场

25、全球海平面变化 26、布格重力异常 27、自由震荡 28、古地磁学 29、频散曲线 30、群速度 二、问答题 1、地壳、地幔界面和内核界面存在的地震学证据有那些?简述研究地球内部速 度结构的几种方法的原理,所需资料及已取得的成果。

2、试述全球板块构造学说的地球物理和地质方面的主要依据。 3、从地震资料解编到水平叠加有哪些主要处理环节。他们的作用是什么?为什 么要进行叠前深度偏移?(3) 4、怎样根据地震波速度变化和地震波的衰减特性研究地下的热状态?怎样根 据大地电磁测深结果研究地下的热状态。(3)

5、试述地壳上地幔内低速高导层的可能成因。(3) 6、解释下面几种重力校正的目的,并说明这些校正通常是加到勘测重力值还是 从勘测重力值中减去(即校正值的正、负)(3) (1)自由空气校正(2)布格校正 (3)地下校正(4)均衡校正 7、请简要叙述大洋中脊扩张的地球物理证据。(2)

时频分析方法综述

几种时频分析方法简介 1. 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2. 小波变换(Wavelet Transform ) a. 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数 [][] 11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由于1()t χ在t= a,b 处突 然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ+∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

地球物理反演复习资料

复习 第一章 一、什么是正问题?(概念、特点)适定性问题的一般特点。 正问题:给定一个问题,寻找答案 适定性问题的特点:解一定存在;解的唯一性;问题发生一些小的变动仅导致问题的解发生 小的变动(解稳定性) 第二章 二、什么是数字正演模拟?什么是物理正演?各自的特点(优缺点)? 数字模拟:利用计算机建立地质模型并模拟其地震波传播响应的一种方法 物理模拟:在实验室内将野外的地质构造和地质体按照一定的模拟相似比制作成物理模型, 并用超声波或激光超声波等方法对野外地震勘探方法进行模拟的一种地震模拟方法。 各自特点:物理模拟:拟结果的真实性,不受计算方法、假设条件的限制;震源和检波器的 尺度,参数变化困难。(真实、可靠、费用高) 数字模拟:简单、运算快、费用低 三、地震正演的应用(5个应用) 地震波理论研究(声波介质、弹性介质、各向异性介质和双相介质中弹性波传播理论研究)、复杂构造研究(盐下构造成象)、特殊沉积现象研究(河道砂预测)、裂缝带检测、井间地震研究、油藏动态监测 四、数字正演有哪些算法? 有限差分法、有限元法、虚谱法 第三章 五、直接反演的分类(两类),每一类的概念,不同的计算方法(相位、波阻抗) 以及其公式; 道积分反演:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。 计算: 递推反演:基于反射系数递推计算地层波阻抗(速度)的地震反演方法称为递推反演。 计算: 六、稀疏脉冲反演的概念,基本假设条件,适用范围,主要步骤,如何获得低 频信息(测井、叠加速度) 稀疏脉冲反演:基于稀疏脉冲反褶积基础上的递推反演方法。 基本假设:地层的强反射系数是稀疏分布的,即地层反射系数由一系列迭加于高斯背景上的 强轴组成。 ?=t dt t r t 0)(20e Z )(Z ∏ =-++=j i r r i i Z 11101j Z

分频反演方法及应用

分频反演方法及应用 引言 通常进行地震资料反演时,根据研究工区钻井数量确定反演方法。一般来说,井较少时采用稀疏脉冲反演方法,井较多时以模型反演为主。稀疏脉冲反演是在地震主频控制下得到反演结果,而地震资料有效频带中的相对高频和相对低频的潜力没有充分利用,并且子波的提取对反演结果影响很大。由于子波很难提准,它受到标定、子波计算方法、子波时、空变的影响,所以反演中所谓的一些“细节”往往是由子波的旁瓣抖动或相位的变化所引起的,而不是实际地质现象造成的。模型反演的关键是用层位,测井曲线,沉积模式建立准确合理的初始模型,才能得到好的反演结果。但层位解释因人而异,沉积模式先入为主且无法建立复杂的地层接触关系,所以容易抹杀上倾尖灭,地层超覆等地质现象,对隐蔽油气藏的识别非常不利。 反演问题本质上是通过地震资料同时求取子波和反射系数的过程,从数学上讲是一个病态问题,所以稀疏脉冲反演方法需先求一个子波,而模型反演依赖一个初始模型。分频反演则是依靠测井和地震资料研究振幅与频率(AVF)的关系,将AVF作为独立信息引入反演,合理利用地震资料有效频带的低,中,高频信息,减少薄层反演的不确定性,得到一个分辨率较高的反演结果。同时它也是一种无子波提取,无初始模型的高分辨率非线性反演,可以更真实地反映地层接触关系,与井具有更高的吻合度,更准确反映砂体厚度变化及展布关系。 基本原理 1、AVF关系 对于一个楔状模型,用不同主频的雷克子波与其褶积,得到一系列合成地震剖面,从而得到振幅与厚度在不同频率时的调谐曲线,见图1。对图1进行转换,就可以得到在不同时间厚度下振幅随频率变化(AVF)的关系,见图2。 我们知道,某一地震波形是波阻抗(AI)和时间厚度(H)的函数。也就是说,反演时仅根据振幅同时求解AI和H,即已知一个参数求解两个未知数,结果是多解的。AVF向我们展示了一个重要规律:同一地层在不同的主频频率子波下会展现不同的振幅特征。但从图2中可以看出AVF关系非常复杂,很难用一个显示函数表示,需用支持向量机(SVM)非线性影射的方法在测井和地震子波分解剖面上找到这种关系,利用AVF信息进行反演。

浙江省区域地球物理化学特征

一、区域地球物理场(重磁)特征、分区及地质解释 (一)我国东南沿海重磁场特征 1. 物性特征与物性层划分 (1)密度特征 由表1可知,浙闽粤三省各地层和侵入岩的密度参数主要有两个特点 密度参数单位:g/cm3 ①新老地层的密度值有明显的差异,地层时代越老,其密度值越大。平均密度值在地层学的“界”之间存在显著差异,相应形成4个大的物性层。新生界密度值最小约2.3g/cm3;中生界内部白垩与侏罗系之间也存在一密度界面;古生界内部志留系为一低密度层。具有较为明显密度差异的层位有:a 以元古界变质岩为主的层位,密度值在2.71g/cm3左右;部分岩性密度值低,接近古生代沉积岩的密度值;b以古生界沉积岩为主的层位,密度值在2.65 g/cm3左右;c本区地表大片分布的中生界侏罗系火山岩密度值在2.58 g/cm3左右;白垩系是本区密度值较低的地层,其密度值在2.50 g/cm3,但方岩组密度值比较大,由于其

分布范围有限,对重力区域场影响不大。变质岩和古生界地层以及中生界潜山常形成局部正异常。 ②侵入岩的密度值差异也较大。一般是来自地壳深度较大的侵入体密度值较大,而浅成侵入体密度值较小。如基性侵入岩的密度值为2.90 g/cm3左右,中性侵入岩和中酸性侵入岩的密度值分别在2.70 g/cm3和2.65 g/cm3左右,酸性侵入岩的密度值在2.58 g/cm3左右。 (2)磁性特征(表2图1) 表 2 磁性参数表 单位:K10-6×4πsi、r10-3A/M

3 h t t p ://g m c 886 .t a o b a o . c o m

① 以中生界为主的火山岩,除部分火山沉积岩外,大部分基性、中性和酸性火山岩有较强的磁性,并以有较强的剩余磁性为特征。 ② 以古生界为主的沉积岩,除部分受矿化蚀变影响的岩石有一定磁性外(如角岩化),大部分沉积岩没有磁性或仅有微弱磁性。 ③ 以元古界为主的变质岩,除部分大理岩,石英岩,浅粒岩等岩石有微弱磁性外,相当一部分变质岩有一定的磁性,并以剩余磁性较弱,磁化率相对较强为特征。 ④ 侵入岩中除部分酸性侵入岩磁性较弱外,其他侵入体都有一定的磁性,基性、中性侵入岩的磁性最强。 ⑤ 根据物性资料较详细的浙江地区按地层顺序编制的磁性参数变化曲线中也可以看出,有磁性的地层主要分布在中生界的侏罗系和白垩系,古生界的磁性很弱,元古界有一 定的磁性。由此形成一个时间顺序上,新、老地层磁性强,新、老地层之间的中间地层磁 性弱的特性。这一特性对从磁场信息中提取隐伏于火山岩下古生界沉积岩分布与厚度信息是重要的依据。 (3)磁性、密度参数的综合特征 为了研究不同地层和岩石的磁性与密度参数之间的关系,根据浙江较详细的物性资料,编制了各类岩石磁性、密度参数关系图 (图2)。 图中可见岩石类型从综合参 数可分为五类。基性侵入岩是磁性和密 度参数值最大的物性体,很容易与其它 物性体加以区别。古生代沉积岩是弱磁 性、中等密度的物性体。元古界变质岩 中和中酸性侵入岩体都是具有中等磁性 中等密度的物性体,两者的差异是变质 岩磁性弱一些,密度高一些,中酸性侵 入岩磁性强一些,密度小一些。中生代 火山岩和酸性侵入岩都是有一定磁性而 密度值较低的物性体,两者很难区分, 说明两者在成因上有密切的关系。它们磁性变化很大,从弱磁性到强磁性的都有,而密度值变化不大,一般在2.58 g/cm 3左右;部分火山岩和酸性侵入岩由于磁性较弱,常常与沉积岩不易区分,表明它们在成因的性质和物质的来源上与沉积岩有一定的相似性和相关性。 h t t p ://g m c 886.t a o b a o .c o m

相关主题
文本预览
相关文档 最新文档