当前位置:文档之家› 地球物理反演成像方法综述

地球物理反演成像方法综述

地球物理反演成像方法综述
地球物理反演成像方法综述

地球物理反演概述

地球物理反演是近年来发展很快的地球物理学中利用地球表面及钻孔中观测到的物理数据推测地球内部介质物理参数分布和变化的方法。其目的就是根据观测数据等已知信息求取地球物理模型。众所周知,地球物理学中有地震学、电磁学、重力学、地磁学、地热学、放射性学和井中地球物理等学科。尽管地球物理学家研究地球所依据的物性参数不同,方法各异,但就工作程序而言,一般都可分为数据采集,资料处理和反演解释等三个阶段。

数据采集就是按照一定的观测系统、一定的测线、测网布置,在现场获得第一手、真实可靠的原始资料。所以数据采集是地球物理工作的基础,是获得高质量地质成果的前提和条件;资料处理的目的是通过各种手段,去粗取精,去伪存真,压制干扰,提高信噪比,使解释人员能从经过处理的资料(异常或响应)中,较准确的提取出测区的地质、地球物理信息。所以,资料处理是从原始观测数据到地球物理模型之间的必不可少的手段和过渡阶段;反演解释的目的,用地球物理的术语来说,就是实现从地球物理异常(或响应)到地球物理模型的映射,使解释人员能从经过处理的地球物理资料(异常或响应)中提取出获得最接近真实情况的地质、地球物理模型,圆满的完成提出的地质任务。

虽然各种地球物理方法的原理、使用的仪器设备和资料采集方式有很大的不同,但是它们资料处理和反演解释的基础确有许多共同之处。前者的基础是时间(空间)序列分析,后者的基础是反演理论。在本文中只涉及地球物理资料的反演解释,地球物理反演是地球物理资料定量解释的理论和算法基础,也是地球物理资料处理技术的基础之一。

1 地球物理反演概述

地球物理反演理论是近二三十年来才发展起来的地球物理学的一门重要分支,它是研究从地球物理观测数据向量,到地球物理模型参数向量映射理论和方法的一门学科。虽然地球物理问题千差万别,但把地球物理观测数据和地球物理模型参数联系起来的数学表达式,却只有线性和非线性两大类。如以d 表示观测数据向量,m 表示模型参数向量,f 是表示联系d 和m 的函数或泛函表达式,则凡满足

(1)d m f m f m m f =+=+)()()(2121

(2))()(m af am f =

两个条件时,称f 为线性函数或线性泛函,故这类问题叫线性问题,其中a 为常数。相反,不满足上面两个条件之一的所有问题都统称为非线性问题。

在地球物理中,不分线性和非线性,从模型参数m 到观测数据d 的变换(或映射),统称为正演或正问题,并记为:)(m f d =;反之,由观测数据d 反推模型参数m 的变换(或映射),叫反演或反问题,并记为:)(1d f m -=。大多数反演方法都是基于最优化的原理,即从大量已知模型的正演结果中,选出方差(或其它范数规则)为最小的那个模型作为待求模型的解。因此,正演是反演的前提和瓶颈,成了提高反演速度的关键。

一般说来,地球物理反演的目标函数都是高次非线性函数,有多个极值。反演时,如初始模型选取不当,不靠近目标函数的全局极小,因而在迭代过程中,只能在局部极小点附近搜索,很难跳出局部极小的阱,这时,只能获得局部最优解;有的反演方法,由于初始模型选取和参数修改的随机性,在搜索的过程中,可能在模型空间全局寻优,其解就是全局最优解。所以也有的学者主张将地球物理反演问题分为局部寻优和全局寻优两类。

正如反演理论家R .L .Parker 在其著名的论文‘Understanding Inverse Theory ’中提出,地球物理反演理论必须回答以下4个问题:

(1)解的存在性(Existence)。即给定一组地球物理观测数据i d ,i=1,2,3,…,M 之后,是否存在一个能拟合观测数据的地球物理模型m?

(2)解的非唯一性(Non-uniqueness)。如能求得能拟合观测数据的地球物理模型,解是唯一的还是非唯一的?

(3)模型构制(Model Construction)。如何求得能拟合观测数据的一个地球物理模型?

(4)解的评价(Appraisa1)。既然解是非唯一,地球物理反演所获得的任一解又有何意义?

理论严格证明,给定一组地球物理观测数据以后,总可以找到一个能拟合它的地球物理模型。由于观测数据的个数并非无限,不构成一个数据的完备群,加之每一个观测数据均有误差,这就决定了地球物理反问题的解是非惟一的。虽然反演问

题的解是非惟一的,但这个非惟一解仍然是有意义的。

如前所说,地球物理反演理论是近二三十年来才发展起来的,在上世纪70年代以前,地球物理资料的定量解释从属于各种单一的观测方法,没有形成适用于各种地球物理方法的统一的反演理论。60年代末至70年代初以美国Backus和Gilbert为首的一批地球物理学家和应用数学家研究了地球物理数据和地球模型的共性,揭示了地球物理反问题内在的非唯一性,并提出用算子谱分析构成反问题解估计的方法,以及评价解估计的各项准则。这一时期的研究成果为地球物理反演建立了基本理论框架:即地球模型在数学上可以用有限个有序的函数集合来表示,它们与线性抽象空间的元相对应;地球物理数据是有限个不精确实数组成的集合,它们与地球模型的联系表示为有限个泛函方程式组成的方程组;由于零空间的存在和数据的有限性,地球物理反问题不存在唯一解,而只能根据某些准则求取解的某种平均(称为解估计);由于反问题高度的非唯一性,对求取的解估计必须进行评价,评价的准则之一是在分辨率和方差之间取最佳折衷。应用这种理论于离散的地球模型,在70年代发展了针对非线性地球物理反问题的所谓“广义线性反演”方法,在解决地球振荡、地震波与地球波速结构、大地电磁和重磁反问题中迅速得到了广泛应用。

随着偏微分算子理论等现代数学工具的发展和计算机科学的飞速进步,在80年代地球物理反演研究的中心迅速地转移到偏微分方程反问题的轨道上来。根据运动方程和本构方程,大多数地球物理现象都可以用二阶双曲型、椭圆型或抛物型偏微分方程的边值问题描述,因此地球物理反问题本质上是相应类型的偏微分方程系数项或源项的反演。例如,地震反问题可表为声波或弹性波方程系数项的反演,重磁反问题表为泊松方程源项的反演,地热反问题表为热传导方程系数项反演等。与正问题研究相反,由于零空间造成的多解性最为严重,泊松方程反问题的求解最为困难,而波动方程反问题研究的相对比较充分,并且已经证实,一维波动方程反问题存在精确解。高维波动方程反演采用的主要方法包括基于优化理论的方法、逆散射、层析成像反演、摄动法、纯数值方法等。

2 非线性反演及其线性化

地球物理反演研究的是如何根据各种地球物理观测数据推测地球内部的结构形态和物质性质。地球内部物质组成及结构的复杂性决定了这类问题的非线性属性。

即使在经典物理学的线性理论框架上,一些地球物理现象也会表现出非线性。因此,求解非线性问题在地球物理反演的研究中有着十分重要的地位。

地球物理反演的出发点是反映地球内部现象的数学物理方程。通常情况下,这些方程都是非线性的,只能用数值法求解,如有限元法、有限差分法等。然而,这些纯数值法计算量很大,即使利用最现代的计算设备,也难以在高维问题中得到实际应用。因此,在某些条件下,常采用近似方法求解。相对而言,线性反演比较简单,所需内存小,计算工作量也不大;非线性反演问题则不同,它要比线性反演问题困难得多、复杂得多。解决非线性问题有两种办法,一是把非线性问题线性化,按线性问题解决,然后通过迭代的办法,逐次逼近,求得反演问题的近似解;一是不走线性化的路子,而按非线性的办法进行反演。实践证明,非线性问题线性化的办法,简单、易行,在许多情况下也可以取得较好的结果,但是在目标函数具多极值的情况下,在反演迭代中,容易陷入局部极小,而且反演结果极大的取决于初始模型,也可能使反演出现不稳定,甚至无解。

近年来,对非线性反演问题的研究已有了长足的进步,国内外学者先后发表并实现了一些具有巨大潜力和应用价值的非线性反演方法的文章。如蒙特卡洛法(Mont e-Carlo Method),模拟退火法(Simulated Annealing),人工神经元法(Artificial Neural Network),遗传算法(Genetic Algorithm),多尺度反演法(Multi-Scale Inversion),同伦反演法(Homotopy Method),非线性共轭梯度法(Non-Linear Conjugate Gradient M ethod),原子跃迁法(Atomic Transition Algo-rithm),量子退火法(Quantum Annealin g),量子遗传法(Quantum Genetic Algorithm),蚂蚁觅食法(Ant Colony Optimization Algorithm),免疫算法(Immune algorithm),离子群算法(Particle Swarm Optimizatio n),演化博弈算法(Evolution-ary Game)等等。这些方法的原理各不相同,基础也不一样,有的基础是数学,如蒙特卡洛法,同伦反演法,非线性共轭梯度法;有的基础是物理,如多尺度反演法,模拟退火法,原子跃迁法,量子退火法,量子遗传法;有的是生物,基于仿生原理,如人工神经元法,遗传算法,蚂蚁觅食法,免疫算法,演化博弈算法等等。即便是基于仿生的各种方法,其原理也不一样。正由于此,目前还没有一种各家都可接受的非线性反演的分类方法。

虽然非线性反演的方法有很多,但是从实用角度出发,比较常用的方法还是线性化,即用一系列的线性过程来逼近,用迭代过程来求解,在每一次迭代中都用线性方法将积分方程化为线性泛函来求解,实现线性化的基础是泛函的泰勒级数展开。

这种迭代方法被称为广义线性反演方法,这种近似方法在研究弱散射问题上仍然有着很强的优势。从数学的角度来讲,线性近似方法是最基本的近似方法,由于原理简单、运算时间短,而被广泛应用。其中最常用的线性化方法有Born近似和Rytov近似。Born近似方法是基本的线性方法,在实际应用中,根据不同的情况又发展出了一些变形。

Born近似方法假设在异常体内的散射场为零,用入射场来近似总场,从而使非线性积分方程线性化。在反演问题中,常常利用最小二乘法和Born近似方法进行反复迭代。这种迭代的优点是概念简单、易于实现、抗噪声能力强及每次迭代时间短,其缺点是收敛速度慢。

变形Born近似方法也是在反演中常用的方法,在每次迭代中,背景介质的参数都要根据上次迭代结果做相应的修正。这种方法的特点是收敛速度快,但是每次迭代都要计算更新的背景介质的格林函数,计算工作量较Born近似方法大得多。

在研究三维电阻率层析成像方法时,A.Lumbangh等人对传统的Born迭代成像方法进行了改进。这种方法不需要与真实电阻率结构有关的初始模型,同时在正演时没有使用Born近似,避免了处理大对比度问题时将出现的困难。该算法也不必计算雅可比矩阵,节省了时间也降低了对机器内存的要求。

后来杨峰、聂在平又提出了变分Born近似方法,并将其应用在二维轴对称非均匀介质结构的反演和成像研究中。这种方法首先利用Born近似将非线性积分方程线性化,然后应用变分方法导出用于反演的电场积分方程。与Born 近似方法相比,这种方法的收敛速度快,成像质量也得到了改善;与变形Born 近似方法相比,由于不需要在每次迭代中重新计算格林函数,所以计算效率有很大提高。

Born近似方法的应用条件是在异常体内部入射场要远远小于散射场,这个条件成立的前提是异常体和背景介质的参数对比度较小,且异常体的尺寸也较小。

在地震反演的研究中,较多的人倾向于Rytov近似方法,而在电磁散射的研究中更广泛应用的则是Born近似方法。基于Born 近似和Rytov近似的一阶近似方法构成了波动方程的线性反演理论。这种近似是弱散射近似,忽略了多次反射及折射效应等异常体之间及其与背景间的相互作用,只适用于均匀或小扰动的非均匀介质的情况。然而,满足这种近似条件的情况并不是普遍存在的,更多的是异常体与背景介质的参数对比度较大的大扰动情况,例如,在地震勘探中,工程危体或天然气层等探测目标的波速与参考波速之差可能很大。对于这种情况,多次反射及折射效应在

总的散射中占很大比例。若将这些多次散射效应忽略掉,仍然采用线性近似方法,则可能出现不稳定、迭代次数多和误差大等问题。因此,对于非弱散射情况,需要采用非线性理论或新的近似方法来研究。

备注:本文对地球物理反演进行了综合性论述,前面是概述,后面着重介绍了非线性反演及其线性化,看似与课程无直接关系,但是地球物理问题最终还是要解决反问题,求取地球物理模型是地球物理勘探的最终目标,然而地震波理论及其方法是反演的理论基础和指导,从某种角度上说,反演是正演的迭代。或者相对来说,本文与第八章的联系更密切一些。

地球物理反演成像方法综述

地球物理反演概述 地球物理反演是近年来发展很快的地球物理学中利用地球表面及钻孔中观测到的物理数据推测地球内部介质物理参数分布和变化的方法。其目的就是根据观测数据等已知信息求取地球物理模型。众所周知,地球物理学中有地震学、电磁学、重力学、地磁学、地热学、放射性学和井中地球物理等学科。尽管地球物理学家研究地球所依据的物性参数不同,方法各异,但就工作程序而言,一般都可分为数据采集,资料处理和反演解释等三个阶段。 数据采集就是按照一定的观测系统、一定的测线、测网布置,在现场获得第一手、真实可靠的原始资料。所以数据采集是地球物理工作的基础,是获得高质量地质成果的前提和条件;资料处理的目的是通过各种手段,去粗取精,去伪存真,压制干扰,提高信噪比,使解释人员能从经过处理的资料(异常或响应)中,较准确的提取出测区的地质、地球物理信息。所以,资料处理是从原始观测数据到地球物理模型之间的必不可少的手段和过渡阶段;反演解释的目的,用地球物理的术语来说,就是实现从地球物理异常(或响应)到地球物理模型的映射,使解释人员能从经过处理的地球物理资料(异常或响应)中提取出获得最接近真实情况的地质、地球物理模型,圆满的完成提出的地质任务。 虽然各种地球物理方法的原理、使用的仪器设备和资料采集方式有很大的不同,但是它们资料处理和反演解释的基础确有许多共同之处。前者的基础是时间(空间)序列分析,后者的基础是反演理论。在本文中只涉及地球物理资料的反演解释,地球物理反演是地球物理资料定量解释的理论和算法基础,也是地球物理资料处理技术的基础之一。 1 地球物理反演概述 地球物理反演理论是近二三十年来才发展起来的地球物理学的一门重要分支,它是研究从地球物理观测数据向量,到地球物理模型参数向量映射理论和方法的一门学科。虽然地球物理问题千差万别,但把地球物理观测数据和地球物理模型参数联系起来的数学表达式,却只有线性和非线性两大类。如以d 表示观测数据向量,m 表示模型参数向量,f 是表示联系d 和m 的函数或泛函表达式,则凡满足 (1)d m f m f m m f =+=+)()()(2121

地球物理反演理论

地球物理反演理论 一、解释下列概念 1.分辨矩阵 数据分辨矩阵描述了使用估计的模型参数得到的数据预测值与数据观测值的拟合程度,可以表示为[][]pre est g obs g obs obs d Gm G G d GG d Nd --====,其中,方阵g N GG -=称为数据分辨矩阵。它不是数据的函数, 而仅仅是数据核G (它体现了模型及实验的几何特征)以及对问题所施加的任何先验信息的函数。 模型分辨矩阵是数据核和对问题所附加的先验信息的函数,与数据的真实值无关,可以表示为()()est g obs g true g ture ture m G d G Gm G G m Rm ---====,其中R 称为模型分辨矩阵。 2.协方差 模型参数的协方差取决于数据的协方差以及由数据误差映射成模型参数误差的方式。其映射只是数据核和其广义逆的函数, 而与数据本身无关。 在地球物理反演问题中,许多问题属于混定形式。在这种情况下,既要保证模型参数的高分辨率, 又要得到很小的模型协方差是不可能的,两者不可兼得,只 有采取折衷的办法。可以通过选择一个使分辨率展布与方差大小加权之和取极小的广义逆来研究这一问题: ()(1)(cov )u aspread R size m α+- 如果令加权参数α接近1,那么广义逆的模型分辨矩阵将具有很小的展布,但是模型参数将具有很大的方差。而如果令α接近0,那么模型参数将具有相对较小的方差, 但是其分辨率将具有很大的展布。 3.适定与不适定问题 适定问题是指满足下列三个要求的问题:①解是存在的;②解是惟一的;③解连续依赖于定解条件。这三个要求中,只要有一个不满足,则称之为不适定问题 4.正则化 用一组与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法。对于方程c Gm d =,若其是不稳定的,则可以表述为

应用地球物理复习题

应用地球物理复习题 1应用地球物理方法的物质基础 1、地球物理勘探的主要工作内容是:数据采集、数据处理、地质解释。 2、密度差异重力勘探的物质-——地球物理前提条件 3、决定岩石矿石的密度的主要因素是:①组成岩石的各种矿物成分及其含量的多少②岩石中孔隙度 的大小及孔隙中的充填物成分③岩石所承受的压力。 4.火成岩的密度 主要取决于矿物成分及其含量的百分比,由酸性→中性→基性→超基性岩,随密度大的铁镁暗色矿物含量的增多,密度逐渐增大(见图) 成岩过程中的冷凝、结晶分异作用也会造成不同岩相带的密度差异; 不同成岩环境(如侵入与喷发)会造成同一岩类的密度有较大差异。 5.沉积岩的密度密度主要取决于:沉积岩最大的特点是孔隙发育,一般具有较大的孔隙度,如灰岩、页岩、砂岩等,孔隙度可达30%一40%,密度主要取决于: 孔隙度:主要取决于孔隙度大小,干燥的岩石随孔隙度减少密度值呈线性增大; 孔隙充填物成分与含量:充填物的成分(如水、油、气等)及充填

孔隙占全部孔隙的比例(饱和度、泥质含量); 地质年代与埋深:成岩时代久、埋深大、上覆岩层对下伏岩层的压力加大,这种压实作用也会使密度值变大。 6.物质宏观磁性 各类物质,因原子结构不同,在外磁场作用下,呈现不同的宏观磁性 抗磁性(逆磁性) 在外磁场H作用下,磁化率为负值、数值很小,约为10-5数量级 抗磁性物质没有固有原子磁矩,仅有电子旋进产生附加磁矩 附加磁矩方向与外磁场相反,形成抗磁性 顺磁性 顺磁性物质受外磁场作用,其磁化率为不大的正值 其原子具有固有磁矩,无外磁场,原子磁矩取向混乱。 有外磁场,原子磁矩(电子自旋磁矩所作的贡献)顺着外磁场方向排列,显示顺磁性。 顺磁性物质其磁化率与绝对温度成反比,称为居里定律 铁磁性 铁磁性物质磁化率大,在弱外磁场中即可达到磁化饱和 磁化强度与磁化场呈非线性关系——不可逆性 磁滞回线——铁磁性物质在外磁场中的磁化特性曲线 矫顽磁力——磁化强度归零所需外磁场强度值Hc

地震波层析成像反演方法及其研究综述

No.13,2010 现代商贸工业 Modern Bus iness Trade Industry2010年第13期 地震波层析成像反演方法及其研究综述 冯 微 (长江大学物理科学与技术学院,湖北荆州434025) 摘 要:通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。 关键词:速度建模;层析成像;初至波 中图分类号:TB 文献标识码:A 文章编号:1672 3198(2010)13 0368 01 地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及静校正的精度等地震勘探的各个环节和最终的勘探成果。 1 地震面波及波形反演 利用面波进行结构反演一直是了解地球介质结构的重要途径。近几年来,在面波理论和面波反演方面做了大量工作。陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。张碧星等(2000,2002)对瑞利波勘探中 之字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对 之字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构作了反演,揭示了横向结构差异的广泛存在。 根据走时反演地下结构是获取结构信息的经典做法。刘伊克等(2001)根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型。同时,采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算。李录明等(2000)针对地震勘探中的复杂地表问题,提出了一套地震初至波表层模型层析反演方法.它利用地震直达波、回折波、折射波以及三者组合的初至波和层析反演方法具有的纵、横向变速优势,实现适应速度任意变化的复杂表层模型反演。 在利用远震体波接收函数反演地下结构方面。钱辉等(2001)对接收函数反演地壳结构速度的算法作了分析,使之适应正演参数的变化,并利用天然地震接收函数揭示了青藏高原东部地壳结构。 近年来,非线性反演越来越受到重视,许多研究者把新的最优化理论引入地震学反演中。孟洪鹰和刘贵忠(1999)提出了多尺度地震波形反演的小波变换方法。对于一维非线性地震波形反演问题,此方法和已有的简单迭代法及多重网格法比较表明,此方法更为有效。杨峰和聂在平(2000)提出了用于二维轴对称非均匀介质结构的反演和成像的一种新的反演迭代方法变分玻恩迭代方法.与传统的玻恩迭代方法相比,其收敛速度和成像质量均有较大改善。 2 地震勘探、测井问题中的地震波研究及其它 在地震勘探和测井方面,许多研究者针对实际问题,提出了新的方法。沈建国和张海澜(2000)计算了井内靠近井壁的偏心声源激发的声场,得到了在井壁不同位置的接收波形,分析了直达波、井壁反射波、纵波、横波和面波在这些波形中的反映。为了处理横向强变速介质中的深度成像问题,程玖兵等(2001)提出一种基于共炮道集的优化系数的傍轴近似方程叠前深度偏移算子,在基于反射系数估算的成像条件下,可实现叠前深度偏移成像。陈生昌等(2001)实现了一种基于拟线性Born近似的叠张海明等:地震波研究前深度偏移方法,扩大了拟线性Born近似的应用范围,使其能够适应更强的横向速度变化。张美根和王妙月(2001)利用有限元法和最小走时射线追踪的界面点法,实现了各向异性弹性波的叠前逆时偏移.陈志德等(2002)利用叠前深度域地震成像对速度模型变化的敏感性,采用偏移迭代逐次逼近最佳成像速度,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术。顾汉明等(2002)在频率-波数域中采用解析法,解出多层条件下海底实测的多分量地震数据分解成上行和下行P波和S波的算法,导出海底各层地震反射系数随入射角变化(简称RVA)的递推计算公式。金胜汶等(2002)给出了一种高效率、高精度的炮检距域叠前深度偏移方法,并得到各个不同照射角下的成像结果。 3 讨论和结论 地震波理论是固体地球物理学研究的重要基础.地震波研究领域的任何实质性进展都会促进固体地球物理学的发展.在过去的4年里,中国地球物理学家在该领域做了很多有意义的研究工作,其中不乏创新性的理论工作.当前地震波研究领域的重要课题包括: (1)复杂地球介质中地震波激发与传播理论; (2)高效计算三维介质中地震波传播的数值方法; (3)利用先进的地震波数值模拟方法,开展设定地震与强地面运动的数值模拟研究,为精细的地震危险分析与预测奠定基础。 参考文献 [1]周庆凡.我国天然气发展前景广阔[J].中国石化,2009. [2]刘英祥.我国天然气价格与天然气发展问题研究[J].企业经济, 2009. [3]牛建娣.我国天然气市场供需状况及发展对策分析[D].对外经济 贸易大学,2007. ! 368 !

磁性界面反演方法

第九节 磁性界面反演方法 具有一定磁性差异的地质界面,如结晶基底面、大岩体的上顶面等,是找矿勘探与基础地质研究中常见的地质现象。磁性界面反演方法是确定这一类地质模型界面深度的方法。磁性界面反演方法有空间域和频率域两大类。在磁性界面反演中,常常把磁性界面划分成大量的离散二度水平棱柱体或三度直立棱柱体组合模型,由于未知参数太多不能采用直接解法,往往采用迭代法或其他方法。空间域方法未知参数多、计算时间长、效率低。Parker (1972,1973,1974)采用了连续模型,得出了频率域重磁位场正反演的理论公式,Oldenburg (1974)把它推广成迭代形式并做了二维计算。由于引入快速傅立叶变换,在相同精度下,频率域方法比空间域方法反演速度至少要快一个数量级以上。因此,频率域磁性界面的反演方法成为界面反演的一种常用方法,用于区域磁测资料解释与油气勘探中研究基底构造。 一、磁性界面异常的正演 如图7-9-1所示的磁性界面,其上下界面磁化强度差为M ,为简单起见,设M 垂直向下。 图7-9-1 磁性界面示意图 若磁化率为常数,考虑n=0时,即泰勒展开式第一项在空间域为常数项,略去n=0项则有: 01()(,)2!n n Hs n s Z u v M e h n μ∞-=??-?=???? ∑ (7-9-13) 上式表示,当给定了平均深度H 及平均深度上的起伏 (),h ξη,取泰勒展开式 有限项数n=3~8,就可以计算出 n h 和 (,)Z u v ?,利用快速傅立叶变换即可得到空间域的磁异常值Z ?(x,y,0)。 二、磁性界面异常的反演 式(7-9-13)是磁性界面正演计算公式,稍作一下变化,就可以当作反演迭代公式。我们把和式中n=1的项写出并移项得

地球物理勘查名词术语

中华人民共和国国家标准 GB XXXX--XX 地球物理勘查名词术语 Terms Of geophysical exploration 1 主题内容及适用范围 本标准规定了地球物理勘查(包括重力勘查、磁勘查、电勘查、地震勘查、测井及核物探)中常用的、主要的、本学科专有的名词术语。 本标准适用于地球物理勘查工作的语言和文字交流。 2 基本术语 2.1 地球物理勘查geophysical exploration 运用物理学的原理、方法和仪器以研究地质情况或寻查埋藏物的一类勘查。 同义词物探;地球物理勘探:(勘探地球物理;地球物理探矿) 注:1.取决于使用场合,该术语可附加后缀“法”或“学”。 2.根据具体情况,可以使用“航空物探”,“海洋物探”,“地面物探”,“地下物探”,“深部物探”,“区域物探”, “工程物探”,“环境物探”,……等术语。 2.2 正常场normal field 物理场的相对平稳部分。 2.3 异常anomaly 物理场对正常场的偏离。 2.3.1 理论异常theoretical anomaly 正演所获得的异常。 同义词计算异常 2.4 物性physical properties 岩(矿)石或其它探测对象的物理性质。 2.5 异向性系数coefficient of anisotropy 描述介质垂直层理(片理、节理等)方向与平行层理方向的物性差异的一种参数。 同义词(各向异性系数;非各向同性系数) 2.6 地球物理正演geophysical direct problem 根据地质体或其它探测对象的几何参数和物理参数计算地球物理场值。 同义词物探正演 2.7 地球物理反演geophysical inversion 根据地球物理场值,计算地质体或其它探测对象的几何参数和物性参数。 同义词物探反演 国家技术监督局XXXX—XX—XX批准 XXXX—XX—XX实施

地震波阻抗反演方法综述

地震波阻抗反演方法综述 一、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959年美国人Edwin Laurentine Drake在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI)是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20世纪70年代加拿大Roy Lindseth博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80年代,Cooke等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90年代,在基于前人对地质统计学研究的基础上Bortoli和Haas提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用,以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996年,李宏兵等人将宽频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999年,任职于英国石油公司的Connolly在《弹性波阻抗》一文中介绍了弹性波阻抗(EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002年,Whitcombe通过修正Patrick Connolly的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003年,西北大学马劲风教授从Zoeppritz方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

岩体参数的反演方法综述

岩体参数的反演方法综述1 费文平,马亢 四川大学水利水电学院,成都 (610065) E-mail:wpfei7206@https://www.doczj.com/doc/0e9402441.html, 摘要:岩体参数的反演分析是水电工程的设计与数值计算的基础,直接影响到计算结果的真实性。归纳总结了岩体参数的各种反演方法,分析比较了其优缺点和适用条件,提出了岩体参数反演分析方法的发展趋势。 关键词:岩体,参数,反演方法 1.引言 岩体参数(如弹模、泊松比等)的反演分析是根据少数的已知测点的位移值或应力值等,来反演分析岩体的材料参数的过程,是水电工程的设计与数值计算的基础。岩体力学参数的确定是岩土工程数值计算中的关键问题。由于岩体的参数往往难以确定,对数值计算的结果会造成很大的影响,而实验室内对岩体参数的测定均存在尺度效应问题,且考虑到经济成本,现场取样的数量往往不多,因而无法得到整个工程区的岩体真实参数。采用反演分析的方法可以综合考虑诸多地质因素的影响,更加经济准确地得到岩体的参数[1-3]。 岩体参数反演计算的方法主要有[4-30]:①正反分析法;②逆反分析法;③局部最优化方法;④人工神经网络法;⑤遗传算法;⑥粒子群算法;⑦梯度类方法;⑧混合算法。 2.岩体参数反演分析方法的分类及特点 2.1 正反分析法 正反分析法先假定待反演的岩体参数,通过正演分析得到岩体结构的位移或应力等,然后将其与实际观测值相比较,并按一定方式修改调整待反演参数,逐步逼近实测值,从而确定待反演的岩体参数。正反分析法程序编制简单,计算方法灵活,可适用于线性或非线性的岩体参数反演问题,但需要大量的调整试算。 2.2 逆反分析法 逆反分析法通过求逆直接建立待反演参数与实测值之间的关系式,求解这些关系式组成的方程组就可得到反演计算结果。该法计算原理直观简明,但程序编制复杂,只适用于线性的岩体参数反演分析。 2.3 局部最优化方法 优化分析法致力于寻找使计算结果与观测结果之间的误差为最小的解答。局部最优化方法包括单纯形法、模式搜索法、鲍威尔法、变量轮换法、混合罚函数法、复合形法等,它们对初值的依赖性较强,在选用时应注意参数先验信息的确定,因而需要有一定的工程经验。否则,需采用以下的优化反演分析方法。 2.4 人工神经网络法 人工神经网络法对人类大脑的一种物理结构上的模拟,通过网络训练,调整网络内部权1本课题得到高等学校博士学科点专项科研基金(项目编号:20040610095)的资助。

时频分析方法综述

几种时频分析方法简介 1.傅里叶变换(Fourier Transform) 1 2/ 2 1 22/ ()() ()() 1 ()()()( : : ::) N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT π π ππ - - ∞- -∞ ∞- -∞ ? = ??=??? ???????→ ?? ??=?= ?? ? ∑ ? ?∑ 离散化(离散取样) 周期化(时频域截断) 2.小波变换(Wavelet Transform) a.由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f)只能反映其在整个实轴的性态,不能反映h(t)在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t∈[a,b]与函数 [] [] 1 1,t, () 0,t, a b t a b χ ?∈ ? =? ∈ ?? ,然后考察 1 ()() h t t χ傅里叶变换。但是由于 1 ()t χ在t= a,b处突然 截断,导致中 1 ()() h t t χ出现了原来h(t)中不存在的不连续,这样会使得 1 ()() h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor在1944年引入了“窗口” 傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 2 2 (,)()() ()()(,) ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T π π ττ τττ +∞- -∞ +∞+∞ -∞-∞ =- =- ? ?? : : 图:STFT示意图 STFT算例

地球物理反演-邹志辉

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 地球物理反演是地球物理学科的一个重要组成部分,地球物理反演的思路和方法不仅可以用于解决固体地球问题,还能够用于解决其它领域(如气象预报、经济预测等)的问题,具有广泛适用性。本课程将介绍地球物理反演的基本概念、原理和应用方法基础。 2.设计思路: 本课程将以介绍地球物理反演理论的基本概念为基础,重点阐述方法的原理和应用思路,并在介绍实例的基础上帮助学生理解实际应用中反问题的提取、分析和求解的思路。课程内容涉及地球物理反演基本理论、位场反演基础、地震反演基础等主要方面。 3. 课程与其他课程的关系: 本课程将在学生已经学习的勘探方法基础上传授学生通过反演的方法求解实际问题的手段,使学生理解和加深对各种勘探方法的理解。本课程的方法可以方便地用作学生科研和毕业设计等的手段。学生还可以结合前期选修的计算机语言类课程编写简单的反演程序,用于求解地球物理反问题。 二、课程目标 - 1 -

本课程目标是使学生掌握地球物理反演的基本概念,理解地球物理反演的基本方法和处理实际问题的思路,能够将常规的地球物理问题转化为反演问题进行求解。 三、学习要求 学生在选修过程中需要按照开课前的教学安排简单预习课程内容。授课过程中,学生要按时上课并积极参与教学过程,可以随时举手提问,也可以将问题组织好课下提问;学生需要在讨论环节积极发言,提高科技交流能力。学生在课后需要按照要求在规定时间内完成布置的作业和课程论文。 四、教学进度 - 1 -

五、参考教材与主要参考书 姚姚,地球物理反演基本理论与应用方法,武汉:中国地质大学出版社 王家映,地球物理反演理论(第2版),北京:高等教育出版社 Menke, W. (2012). Geophysical Data Analysis: Discrete Inverse Theory. Academic Press. 六、成绩评定 (一)考核方式 A :A.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他 (二)成绩综合评分体系: - 1 -

地震反演方法概述

地震反演方法概述 地震反演:由地震信息得到地质信息的过程。 地震反射波法勘探的基础在于:地下不同地层存在波阻抗差异,当地震波传播有波阻抗差异的地层分界面时,会发生反射从而形成地震反射波。地震反射波等于反射系数与地震子波的褶积,而某界面的法向入射发射系数就等于该界面上下介质的波阻抗差与波阻抗和之比。也就是说,如果已知地下地层的波阻抗分布,我们可以得到地震反射波的分布,即地震反射剖面。即由地层波阻抗剖面得到地震反射波剖面的过程称为地震波阻抗正演,反之,由地震反射剖面得到地层波阻抗剖面的过程称为地震波阻抗反演。 叠前反演主要是指AVO反演,通过AVO反演,可以获得全部的岩石参数,如:岩石密度、纵横波速度、纵横波阻抗、泊松比等。叠前反演与叠后反演的根本区别在于叠前反演使用了未经叠加的地震资料。多道叠加虽然能够改善资料的品质,提高信噪比,但是另一方面,叠加技术是以东校正后的地震反射振幅、波形等特征不随炮检距变化的假设为基础的。实际上,来自同一反射点的地震反射振幅在不同炮检距上是不同的,并且反射波形也随炮检距的变化而发生变化。这种地震反射振幅、波形特征随炮检距的变化关系很复杂,主要原因就在于不同炮检距的地震波经过的地层结构、弹性性质、岩性组合等许多方面都是不同的。叠加破坏了真实的振幅关系,同时损失了横波信息。叠前反演通过叠前地震信息随炮检距的变化特征,来揭示岩性和油气的关系。叠前反演的理论基础是地震波的反射和透射理论。理论上讲,利用反射振幅随入射角的变化规律可以实现全部岩性参数的反演,提取纵波速度、横波速度、纵横波速度比、岩石密度、泊松比、体积模量、剪切模量等参数。 叠后地震剖面相当于零炮检距的自激自收记录。与叠前反演不同,叠后反演只能得到纵波阻抗。虽然叠后反演与叠前反演想必有很多不足之处,但由于其技术方法成熟完备,到目前为止,叠后反演仍然是主流的反演类型,是储层预测的核心技术。 介绍几种叠后反演方法: 1)道积分:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。因为它是在地层波阻抗随深度连续可微的条件下推导出来的,因而又称为连续反演。 原理简述: 上述公式表示,反射系数的积分正比于波阻抗Z的自然对数,这是一种简单的相对波阻抗概念。 适用条件及优缺点 与绝对波阻抗反演相比,道积分的优点:1.递推时累积误差较小;2.计算简单,不需要反射系数标定;3.无需钻井控制,在勘探储气即可推广使用。 缺点:1.由于这种方法受到地震固有频宽的限制,分辨率低,无法适用于薄层解释的需要;2.需要地震记录经过子波零相位化处理;3.无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数;4.这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而结果比较粗略。 2)递推反演方法:根据反射系数进行递推计算地层波阻抗或层速度,其关键在于由原始地震记录估算反射系数和波阻抗,测井资料不直接参入反演,只起到标定和质量控制的作用。因此又称为直接反演。 原理简述: 利用以上公式,可以从声波时差曲线及密度曲线上(没有密度曲线时可以利用Gardnar 公式进行换算)选择标准层波阻抗作为基准波阻抗,将反褶积得到的反射系数转为波阻抗。

(完整版)历年地球物理试题总结_byxucheng

地球物理基础历年真题总结(按频率高低) 一、名词解释 1、惠更斯原理(5) 惠更斯最早提出了由某时刻波前求另一时刻波前的原理,其基本点是:波前上所有的点,都可以看做广义绕射源,此源发出二次子波,下一时刻的波前即为这些二次子波前的包络。 2、地球重力位(4) 引力和离心力的合力是地面物质的重力。设有一个函数,它是单值连续的函数,并且它在不同坐标方向的导数正好等于重力在该方向的分量,这个函数叫重力场的位函数,简称为重力位。 3、叠加速度(4) 当地下介质不是水平层状介质时,相应的反射波时距曲线将更加复杂,在实际速度分析工作中,为了简化问题,常将复杂的反射波时距曲线看作双曲线,即t2=t02+x2/V2,式中V为叠加速度。 4、视电阻率(4) 电场作用范围内各种地层、各种地质体综合影响下得到的电阻率。 5、磁场强度(4) 单位正磁荷在磁场中某点所受的力,单位为奥斯特。 6、地震波传播介质的品质因子(Q值) (3) 无论是体波还是面波,在传播过程中其振幅都将衰减。这种衰减一部分是由于射线的扩散引起的,另一部分是能量被介质吸收而变成了热能。介质吸收振动能并将其变为热成为内摩擦。一般用无因次量“Q”值的大小来反映这种能量的衰减程度。通常把一个周期内振动所消耗的能量ΔE与总能量E之比(即相对消耗量)的倒数定义为品质因子Q,亦即:2π/Q=ΔE/E 7、磁化率(3) 表征物质在外磁场中被磁化程度的物理量。通常标记为,以方程定义为 ;

其中,是物质的磁化强度(单位体积的磁偶极矩),是辅助磁场。 8、时距曲线(3) 9、DMO(2) 10、地震勘探中的4D和4C(2) 11、虚反射(2) 12、磁法勘探(2) 13、重力勘探(2) 14、岁差和章动(2) 15、勒夫数(h, k)、志田数(l) (1) 16、地心纬度和天文纬度(2) 17、米兰科维奇旋回(2) 18、相干合成孔径雷达(INSAR) 19、地震子波

推理方法综述

智能控制导论大作业 学院:电子工程学院 专业:智能科学与技术

推理方法综述 一、推理的定义: 推理是人类求解问题的主要思维方法。所谓推理就是按照某种策略从已有事实和知识推出结论的过程。通过一个或几个被认为是正确的陈述、声明或判断达到另一真理的行动,而这真理被相信是从前面的陈述、声明或判断中得出的直接推理。 二、推理方式及其分类: 1.演绎推理、归纳推理、默认推理 (1). 演绎推理:一般→个别 演绎推理是从全称判断推出特称判断或单称判断的过程,即从一般到个别的推理。最常用的形式是三段论法。 例如: 1)所有的推理系统都是智能系统; 2)专家系统是推理系统; 3)所以,专家系统是智能系统。 (2). 归纳推理: 个别→一般 是从足够多的事例中归纳出一般性结论的推理过程,是一种从个别到一般的推理过程,分为完全归纳推理,又称为必然性推理,不完全归纳推理,又称为非必然性推理。 例如:

(3). 默认推理: 默认推理又称缺省推理,它是在知识不完全的情况下假设某些条件已经具备所进行的推理。 例如: 2.确定性推理、不确定性推理 如果按推理时所用的知识的确定性来分,推理可分为确定性推理与不确定性推理。 (1)确定性推理(精确推理)。 如果在推理中所用的知识都是精确的,即可以把知识表示成必然的因果关系,然后进行逻辑推理,推理的结论或者为真,或者为假,这种推理就称为确定性推理。(如归结反演、基于规则的演绎系统等) (2)不确定性推理(不精确推理)。 在人类知识中,有相当一部分属于人们的主观判断,是不精确的和含糊的。由这些知识归纳出来的推理规则往往是不确定的。基于这种不确定的推理规则进行推理,形成的结论也是不确定的,这种推理称为不确定推理。(在专家系统中主要使用的方法)。 例如: 3.单调推理、非单调推理 如果按推理过程中推出的结论是否单调增加,或者说推出的结论是否越来越接近最终目标来划分,推理又可分为单调推理与非单调推理。 (1)单调推理。(基于经典逻辑的演绎推理) 是指在推理过程中随着推理的向前推进及新知识的加入,推出的结论呈单调增加的趋势,并且越来越接近最终目标。(演绎推理是单调推理。)

地球物理勘探方法及应用范围

M D 模型空间数据空间地球物理探测空间变换示意图 球物理探测方法简介及应用范围 地球物理学是用物理学的原理和方法,对地球的各种物理场分布及其变化进行观测,探索地球本体及近地空间的介质结构、物质组成、形成和演化,研究与其相关的各种自然现象及其变化规律。在此基础上为探测地球内部结构与构造、寻找能源、资源和环境监测提供理论、方法和技术,为灾害预报提供重要依据。 地球物理学的研究内容总体上可分为应用地球物理和理论地球物理两大类。应用地球物理(又称勘探地球物理)主要包括能源勘探、金属与非金属勘探、环境与项目探测等。勘探地球物理学利用地球物理学发展起来的方法进行找矿、找油、项目和环境监测以及构造研究等,方法手段包括地震勘探、电法勘探、重力勘探、磁法勘探、地球物理测井和放射性勘探等,通过先进的地球物理测量仪器,测量来自地下的地球物理场信息,对测得的信息进行分析、处理、反演、解释,进而推测地下的结构构造和矿产分布。勘探地球物理学是石油、金属与非金属矿床、地下水资源及大型项目基址等的勘察及探测的主要学科。 从数学角度讲,地球物理勘 探的过程可以抽象成从模型空 间通过某种映射关系,映射成可 以感知的数据空间,再通过逆映 射变换到模型空间,其映射关系 见右图。这种映射关系遵循地球 物理学的两大模型原理:滤波器 模型原理和场效应模型原理。因 此地球物理数据处理:一是基于 信号分析理论的信号处理技术, 主要目的是去杂、增益、提取有效信号;二是基于物理场效应理论的反演技术。 地球物理反演,就是在模型空间寻找一组参数向量,这组向量通过某种映射关系,能再现数据空间的观测数据,因此在一定的假设条件下,反演问题可以表示为某种误差泛函的极小化问题 min ‖G cal (M)-D obs ‖2 也就是地球物理反演是利用模型参数和模型正演来获取合成数据,再通过合成数据与观测数据的匹配估算出最佳M 参数。由此可见,地球物理反演实质上是正

时频分析方法综述

几种时频分析方法简介 1. 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2. 小波变换(Wavelet Transform ) a. 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数 [][] 11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由于1()t χ在t= a,b 处突 然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点,D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ+∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

地球物理反演复习资料

复习 第一章 一、什么是正问题?(概念、特点)适定性问题的一般特点。 正问题:给定一个问题,寻找答案 适定性问题的特点:解一定存在;解的唯一性;问题发生一些小的变动仅导致问题的解发生 小的变动(解稳定性) 第二章 二、什么是数字正演模拟?什么是物理正演?各自的特点(优缺点)? 数字模拟:利用计算机建立地质模型并模拟其地震波传播响应的一种方法 物理模拟:在实验室内将野外的地质构造和地质体按照一定的模拟相似比制作成物理模型, 并用超声波或激光超声波等方法对野外地震勘探方法进行模拟的一种地震模拟方法。 各自特点:物理模拟:拟结果的真实性,不受计算方法、假设条件的限制;震源和检波器的 尺度,参数变化困难。(真实、可靠、费用高) 数字模拟:简单、运算快、费用低 三、地震正演的应用(5个应用) 地震波理论研究(声波介质、弹性介质、各向异性介质和双相介质中弹性波传播理论研究)、复杂构造研究(盐下构造成象)、特殊沉积现象研究(河道砂预测)、裂缝带检测、井间地震研究、油藏动态监测 四、数字正演有哪些算法? 有限差分法、有限元法、虚谱法 第三章 五、直接反演的分类(两类),每一类的概念,不同的计算方法(相位、波阻抗) 以及其公式; 道积分反演:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。 计算: 递推反演:基于反射系数递推计算地层波阻抗(速度)的地震反演方法称为递推反演。 计算: 六、稀疏脉冲反演的概念,基本假设条件,适用范围,主要步骤,如何获得低 频信息(测井、叠加速度) 稀疏脉冲反演:基于稀疏脉冲反褶积基础上的递推反演方法。 基本假设:地层的强反射系数是稀疏分布的,即地层反射系数由一系列迭加于高斯背景上的 强轴组成。 ?=t dt t r t 0)(20e Z )(Z ∏ =-++=j i r r i i Z 11101j Z

分频反演方法及应用

分频反演方法及应用 引言 通常进行地震资料反演时,根据研究工区钻井数量确定反演方法。一般来说,井较少时采用稀疏脉冲反演方法,井较多时以模型反演为主。稀疏脉冲反演是在地震主频控制下得到反演结果,而地震资料有效频带中的相对高频和相对低频的潜力没有充分利用,并且子波的提取对反演结果影响很大。由于子波很难提准,它受到标定、子波计算方法、子波时、空变的影响,所以反演中所谓的一些“细节”往往是由子波的旁瓣抖动或相位的变化所引起的,而不是实际地质现象造成的。模型反演的关键是用层位,测井曲线,沉积模式建立准确合理的初始模型,才能得到好的反演结果。但层位解释因人而异,沉积模式先入为主且无法建立复杂的地层接触关系,所以容易抹杀上倾尖灭,地层超覆等地质现象,对隐蔽油气藏的识别非常不利。 反演问题本质上是通过地震资料同时求取子波和反射系数的过程,从数学上讲是一个病态问题,所以稀疏脉冲反演方法需先求一个子波,而模型反演依赖一个初始模型。分频反演则是依靠测井和地震资料研究振幅与频率(AVF)的关系,将AVF作为独立信息引入反演,合理利用地震资料有效频带的低,中,高频信息,减少薄层反演的不确定性,得到一个分辨率较高的反演结果。同时它也是一种无子波提取,无初始模型的高分辨率非线性反演,可以更真实地反映地层接触关系,与井具有更高的吻合度,更准确反映砂体厚度变化及展布关系。 基本原理 1、AVF关系 对于一个楔状模型,用不同主频的雷克子波与其褶积,得到一系列合成地震剖面,从而得到振幅与厚度在不同频率时的调谐曲线,见图1。对图1进行转换,就可以得到在不同时间厚度下振幅随频率变化(AVF)的关系,见图2。 我们知道,某一地震波形是波阻抗(AI)和时间厚度(H)的函数。也就是说,反演时仅根据振幅同时求解AI和H,即已知一个参数求解两个未知数,结果是多解的。AVF向我们展示了一个重要规律:同一地层在不同的主频频率子波下会展现不同的振幅特征。但从图2中可以看出AVF关系非常复杂,很难用一个显示函数表示,需用支持向量机(SVM)非线性影射的方法在测井和地震子波分解剖面上找到这种关系,利用AVF信息进行反演。

《地球物理勘探》例题

《地球物理勘探》例题 一、填空题 1.沉积岩密度值主要取决于岩石中孔隙度大小,干燥的岩石随孔隙度减少密度呈线性__________。 2.按照导电机制可将固体矿物分为三种类型:金属导体、半导体和__________。3.电子导电矿物或矿石的电阻率随温度增高而上升,但__________岩石的电阻率随温度增高而降低。 4.在岩(矿)石的主要物理性质中,__________的变化范围是最大。 5.由不同地质体接触处由岩石的固相骨架与充满空隙空间的液相接触处的电荷自然产生的电动势的物理- 化学过程称为__________。 6.地球的重力场可分为正常重力场、重力随时间的变化及重力异常三部分,其中地球的正常重力是由赤道向两极逐渐__________。 7. 在重力测量重,由于负地形部分相对水准面缺少一部分物质,空缺物质产生的引力 可以认为是负值,其垂直分量也是向上的,使仪器读数__________。 8.电法勘探是根据所测得的地下__________________的分布规律来查明地下地质构造和寻找有用矿产的一种常用物探方法。 9.电阻率法是__________类电法勘探方法之一,它是建立在地壳中各种岩矿石之间具有导电性差异的基础上,通过观测和研究与这些差异有关的天然电场或人工电场的分布规律,达到查明地下地质构造或寻找矿产资源之目的。 10.根据地质任务的不同,重力勘探可分为预查、普查、详查和__________四个阶段。 二、名词解释 1、磁化率 2、视电阻率 3、有效磁化强度 4、二度体异常 三、简答题 1、简述地球物理学的组成及研究内容 2、什么是地球物理正演(正问题)和地球物理反演(反问题)? 3、什么是重磁场的解析延拓,向上和向下延拓分别有什么作用? 4、地磁要素主要有哪几部分组成?请画图说明。 5、影响视电阻率的主要因素有哪些?

地震波阻抗反演方法综述

地震波阻抗反演方法综述、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959 年美国人Edwin Laurentine Drake 在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI )是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20 世纪70 年代加拿大Roy Lindseth 博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70 年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80 年代,Cooke 等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour 等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90 年代,在基于前人对地质统计学研究的基础上Bortoli 和Haas 提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用, 以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996 年,李宏兵等人将宽 频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999 年,任职于英国石油公司的Connolly 在《弹性波阻抗》一文中介绍了弹性波阻抗 (EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002 年,Whitcombe 通过修正Patrick Connolly 的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003 年,西北大学马劲风教授从Zoeppritz 方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反 射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

相关主题
文本预览
相关文档 最新文档