当前位置:文档之家› (完整版)志愿填报三种方法:分差法、位次法、位次线差综合法(报考指南)

(完整版)志愿填报三种方法:分差法、位次法、位次线差综合法(报考指南)

(完整版)志愿填报三种方法:分差法、位次法、位次线差综合法(报考指南)
(完整版)志愿填报三种方法:分差法、位次法、位次线差综合法(报考指南)

志愿填报三种方法:分差法、位次法、位次线差综合法

(报考指南)

当前,在高考志愿填报研究领域逐渐分化出三种主张。一种是“位次法择校”,一种是“线差法择校”,还有一种是“位次线差综合法择校”。其实,筛选学校的指标有很多,每一种主张都有产生背景和一定的适用范围,是报考专家在长期的报考实践中的经验总结,都有一定的可行性。

对于不同层次的考生灵活使用位次法和分差法,能更有效地提高报考的成功率。1、“位次择校法”“位次择校法”就是用自己高考成绩所对应的省(市)位次与上述位次对比,从而决定是否填报目标院校的方法。从全国范围来看,考生总人数比较少并且教育资源丰富的地区,比如北京和天津,家长和考生可以着重运用一下“位次择校法”。这些地区地区重点大学的录取率较高,位次的参考意义更大。从各省市区来看,高分段考生运用“位次择校法”的价值更大,分数越低,参考价值越小。为什么这么说呢?每个院校录取的人数是有定额的,考生的位次在此时显得至关重要。查到考生所处的位次之后,应该查看往年哪些院校在这个位次录取,如果院校往年没有在这个位次录取过考生,那么填报此院校比较危险。2、“线差择校法”同时,有的指标是核心的,必须遵循;有的指标是

参考的,可以遵循,也可以不遵循。下面就介绍一个最重要的核心指标,供大家参考。这个指标称为录取平均分的线差均值。这个指标有两个要点:录取平均分、线差均值。什么是录取平均分?首先,我讲一下为什么要用录取平均分。高校录取时会生成很多数据,有提档分、录取最低分、录取最高分和录取平均分等,到底要用哪一种数据呢?提档分是一个虚线,它是按高校预先设定的提档比例而划定的一条资格线。比如,某校要录取10人,预设提档比例为120%,则该校提档分为报考该校考生中第12名的成绩,而这12人中还要依据一定的录取规则淘汰2人,所以说提档分是一条虚线。录取最低分和录取最高分是极端值,以它们为依据要么会冒很大风险,要么会高分低就、吃很大的亏。录取平均分是所有被录取考生的平均成绩,以它为依据,则把握较大,且选择专业也有了一定的余地。所以可以说这几种数据中录取平均分参考价值最大。对比院校往年录取的平均分,可以较准确地掌握院校录取的考生大概在什么分数水平,根据考生成绩选择院校,预估被录取的可能性比较准确。比如2013年这位北京考生,高考成绩576分,经过筛选,他的分数高于青海大学、成都中医药大学、燕山大学等院校的录取平均分,很有可能被这些院校录取。什么叫线差均值?线差就是录取平均分与该校所在批次最低控制线之间的差值,线差

均值就是最近几年该校线差的平均值。那么,为什么要这样处理呢?因为每年由于高考题目难度和录取人数等的差异,每年各高校的录取分数和各批次最低控制线都会有所波动,有时还会很大,使很多家长和考生都无从下手,不知道怎么去用这些数据。但经过大量的数据证实,它们之间的差值是很稳定的,有很大的参考价值,可以作为我们填报志愿的一条很优良的指标。3、“位次线差综合法择校”每个位次对应一个分数,每个分数对应一个线差,所以位次和线差是一个硬币的两面。它们是不能被割裂开来的,任何只强调一点而否认另一点的论调都是片面的。考生的线差是考生选院校的资本,院校的线差相当于院校当年的“价格”,线差均值就相当于院校近几年的“平均价格”,它代表了院校的实力及在人们心目中的认知度。线差是一个相对分,通过大量的数据统计表明其波动不会太大,恒定性很强。考生的线差超过院校的线差均值,则录取的几率就比较大。值得家长和考生志愿填报决策时参考。而我们可以比较容易地发现,历年院校录取的对应排名波动较大,特别是在成绩中等或以下的考生录取中,动辄上千名,少则几百名。从使用范围来看,大多数人都在使用线差,而非排名。线差法适合各个层次的考生,不管是重点批次,还是普通批次。而通过数据统计表明,排名法在层次靠前的考生中更适用,并不适合所有

层次的考生,越往后面这种方法的失效程度越高。另外,平行志愿和部分省市考后知分填报的实行对高校生源扁平化形成的叠加影响,提高了录取平均分线差均值在筛选学校时的参考价值。所以应该以使用录取平均分线差均值筛选学校为主,以位次法为辅。桃子提醒:不管是位次法,分差法,还是位次分差综合法,都需要家长对历年高考录取信息有全面的了解。除此之外,家长和考生还要系统地学习志愿填报方法技巧。但是,现在离高考只有两个多月,让考生抽出精力去学习志愿填报如此复杂的工作,考生珍贵的备考时间来说无疑对是一种浪费。考生没时间,全得靠家长,很多家长在此之前没有接触过志愿填报,面对志愿表也是一头雾水,害怕填报失误耽误孩子一生。

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

Allegro差分线走线规则

SOFER TECHNICAL FILE Allegro 15.x 差分线布线规则设置 Doc Scope : Cadence Allegro 15.x Doc Number : SFTCA06001 Author :SOFER Create Date :2005-5-30 Rev : 1.00

Allegro 15.x差分线布线规则设置 文档内容介绍: 1.文档背景 (3) 2.Differential Pair信号介绍 (3) 3.如何在Allegro中定义Differential Pair属性 (4) 4.怎样设定Differential Pair在不同层面控制不同线宽与间距 (8) 5.怎样设定Differential Pair对与对之间的间距 (11)

1.文档背景 a)差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,差分线 大多为电路中最关键的信号,差分线布线的好坏直接影响到PCB板子信号质量。 b)差分线一般都需要做阻抗控制,特别是要在多层板中做的各层的差分走线阻抗都 一样,这个一点要在设计时计算控制,否则仅让PCB板厂进行调整是非常麻烦的 事情,很多情况板厂都没有办法调整到所需的阻抗。 c)Allegro版本升级为15.x后,差分线的规则设定与之前版本有很大的改变。虽然 Allegro15.0版本已经发布很长时间了,但是还是有很多人对新版本的差分线规 则设置不是很清楚。 2.Differential Pair信号介绍 差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关 键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值 来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差分走线。 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎 是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可 以被完全抵消。 b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场 可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端 信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差, 同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。 …… 由于篇幅问题,这里对差分信号不做深入介绍了。

UG有限元分析

UG有限元分析 第1章有限元分析方法及NX Nastran的由来 1.1 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 1.1.1 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。 (1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法; (2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格; (3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

PCBLayout中的直角走线、差分走线和蛇形线

布线(Layout)是PCB设计工程师最基本的工作技能之一。走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout 得以实现并验证,由此可见,布线在高速PCB 设计中是至关重要的。下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。 主要从直角走线,差分走线,蛇形线等三个方面来阐述。 1.直角走线 直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。 直角走线的对信号的影响就是主要体现在三个方面: 一是拐角可以等效为传输线上的容性负载,减缓上升时间; 二是阻抗不连续会造成信号的反射; 三是直角尖端产生的EMI。 传输线的直角带来的寄生电容可以由下面这个经验公式来计算: C=61W(Er)[size=1]1/2[/size]/Z0 在上式中,C 就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr 指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量: T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps 通过计算可以看出,直角走线带来的电容效应是极其微小的。 由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数: ρ=(Zs-Z0)/(Zs+Z0) 一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到

电磁仿真算中的有限元法

1电磁仿真算法中的有限元法 1.1常规的电磁计算方法简介 从上世纪50年代以来,伴随着计算机技术的进步,电磁仿真算法也蓬勃发展起来,这其中主要包括:单矩法、矩量法和有限元法等属于频域技术的算法; 传输线矩阵法、时域积分方程法以及时域有限差分法等属于时域技术的算法。除了这些以外, 还有属于高频技术的集合衍射理论等。本文根据国内外计算电磁学的发展状况,对日常生活中比较常用的电磁计算方法做了介绍,并对有限元法做了重点说明。 ⑴矩量法 矩量法属于电磁场的数值计算方法中频域技术的一种, 它的基本原理是利用把待解的微积分方程转化成的算子方程, 然后将由一组线性组合表示的待求函数代入第一步中的算子方程, 然后将算子方程转化成矩阵方程, 最后再通过计算机进行大量的数值计算从而得到数值结果。该方法在求解非均勻和不规则形状对象时,面很广,但会生成病态矩阵,所以会在一定程度上受到限制。矩量法的特点就是适用于求解微积分方程, 并且求解方法统一简单。但缺点就是会占用大量计算机内存,影响计算速度。 (2)单矩法 单矩法是一种解析方法和数值方法相结合的混合数值算法法,该方法的关键在于,如何合理的选择一个球面最小的半径,使得能够将分析对象的结构全部包含在内,以便将内外场进行隔离。外边的散射场单独使用其他函数表示,而包围的内部区域使用有限元法亥姆赫兹(Helmholtz)方程。此方法对于计算复杂形体乃至复杂埋入体内的电磁散射是种极为有效的手段。 (3)时域有限差分法 时域有限差分法(FDTD)近几年来越来越受到各方的重视, 因为一方面它处理庞大的电磁福射系统方面和复杂结构的散射体时很突出,另外一方面则在于它不是传统的频域算法, 它是种时域算法, 直接依靠时间变量求解麦克斯韦方程组,可以在有限的时间和体积内对场进行数据抽样, 这样同时也能够保证介质边界

有限差分法求解偏微分方程MATLAB教学教材

有限差分法求解偏微分方程M A T L A B

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 115104000545 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2 100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

差分信号线的原理和优缺点分析

差分信号线的原理和优缺点分析 随着近几年对速率的要求快速提高,新的总线协议不断的提出更高的速率。传统的总线协议已经不能够满足要求了。串行总线由于更好的抗干扰性,和更少的信号线,更高的速率获得了众多设计者的青睐。而串行总线又尤以差分信号的方式为最多。所以在这篇中整理了些有关差分信号线的设计和大家探讨下。 1.差分信号线的原理和优缺点 差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差分走线。 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 b. 能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,如图在A-A‘的电流是从右到左,那B-B‘的是从左到右,那么按右手螺旋定则,那他们的磁力线是互相抵消的。耦合的越紧密,互相抵消的磁力线就越多。泄放到外界的电磁能量越少。 c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differenTIal signaling)就是指这种小振幅差分信号技术。 2.差分信号的一个实例:LVDS

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

有限差分、有限元区别

有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 有限体积法(Finite V olume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

有限差分法求解偏微分方程复习进程

有限差分法求解偏微 分方程

有限差分法求解偏微分方程 摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的 理论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及操作可行性。 关键词:计算力学,偏微分方程,有限差分法 Abstract:This dissertation mainly focuses on solving the mathematic model of computation mechanics with finite-difference method. The theoretical basis of finite-difference is derived in the second part of the dissertation, and then I use MATLAB to program the algorithms to solve some partial differential equations to confirm the correctness of the derivation and the feasibility of the method. Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method

1 引言 机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析的前提就是建立工程问题的数学模型。通过对机械系统应用自然的基本定律和原理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了系统的数学模型。 求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或近似解。另一方面,计算机技术的发展使得计算更精确、更迅速。因此,对于绝大多数工程问题,研究其数值解法更具有实用价值。对于微分方程而言,主要分为差分法和积分法两种,本论文主要讨论差分法。 2 有限差分法理论基础 2.1 有限差分法的基本思想 当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。有限差分法求解偏微分方程的步骤主要有以下几步: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点;

差分信号走线原则

设计规则1 我们处理差分信号的第一个规则是:走线必须等长。有人激烈地反对这条规则。通常他们的争论的基础包括了信号时序。他们详尽地指出许多差分电路可以容忍差分信号两个部分相当的时序偏差而仍然能够可靠地进行翻转。根据使用的不同的逻辑门系列,可以容忍500 mil 的走线长度偏差。并且这些人们能够将这些情况用器件规范和信号时序图非常详尽地描绘出来。问题是,他们没有抓住要点!差分走线必须等长的原因与信号时序几乎没有任何关系。与之相关的仅仅是假定差分信号是大小相等且极性相反的以及如果这个假设不成立将会发生什么。将会发生的是:不受控的地电流开始流动,最好情况是良性的,最坏情况将导致严重的共模EMI问题。 因此,如果你依赖这样的假定,即:差分信号是大小相等且极性相反,并且因此没有通过地的电流,那么这个假定的一个必要推论就是差分信号对的长度必须相等。差分信号与环路面积:如果我们的差分电路处理的信号有着较慢的上升时间,高速设计规则不是问题。但是,假设我们正在处理的信号有着有较快的上升时间,什么样的额外的问题开始在差分线上发生呢?考虑一个设计,一对差分线从驱动器到接收器,跨越一个平面。同时假设走线长度完全相等,信号严格大小相等且极性相反。因此,没有通过地的返回电流。但是,尽管如此,平面层上存在一个感应电流! 任何高速信号都能够(并且一定会)在相邻电路(或者平面)产生一个耦合信号。这种机制与串扰的机制完全相同。这是由电磁耦合,互感耦合与互容耦合的综合效果,引起的。因此,如同单端信号的返回电流倾向于在直接位于走线下方的平面上传播,差分线也会在其下方的平面上产生一个感应电流。 但这不是返回电流。所有的返回电流已经抵消了。因此,这纯粹是平面上的耦合噪声。问题是,如果电流必须在一个环路中流动,剩下来的电流到哪里去了呢?记住,我们有两根走线,其信号大小相等极性相反。其中一根走线在平面一个方向上耦合了一个信号,另一根在平面另一个方向上耦合了一个信号。平面上这两个耦合电流大小相等(假设其它方面设计得很好)。因此电流完全在差分走线下方的一个环路中流动(图3)。它们看上去就像是涡流。耦合电流在其中流动的环路由(a)差分线自身和(b)走线在每个端点之间的间隔来定义。 设计规则2 现在EMI 与环路面积已是广为人知了3。因此如果我们想控制EMI,就需要将环路面积最小化。并且做到这一点的方法引出了我们的第二条设计规则:将差分线彼此靠近布线。有人反对这条规则,事实上这条规则在上升时间较慢并且EMI 不是问题时并不是必须的。但是在高速环境中,差分线彼此靠得越近布线,走线下方所感应的电流的环路就越小,

偏微分方程求解-有限差分法解析

--以有限差分法为例偏微分方程数值求解 1. 偏微分方程求解问题的描述 教材P653[12.1.1]椭圆型 教材P653[12.1.2] 教材P664[12.2.1]双曲型 教材P665[12.2.4]拉普拉斯泊松 对流 波动 教材P684[12.3.1]抛物型 教材P685[12.3.6]扩散 对流扩散 教材P686[12.3.8]二维扩散 教材P678[12.2.23]二维对流

??????????????????????≥≤≤==≥≤≤==≤≤=>≥≤≤≤≤???? ????+??=??0,0, ),(),,(),(),0,(0,0,),(),,(),(),,0(,0,),()0,,(0,0 , 0 , 0 21212222t L x t x v t L x u t x v t x u t L y t y t y L u t y t y u L y x y x y x u b t L y L x y u x u b t u μμ?Ω 求解域初值条件边值条件) ,,(t y x u 未知函数

????? ? ????????????????????≥<<-==≥<<==≥≤≤-==≥≤≤==≤≤==≤≤≤≤≤≤???? ????+??=??0 , 50 , sin 255sin ),(),5,(0 , 50 , 0),(),0,(0 , 50 , 5sin sin 25),(),,5(0 , 50 , 0),(),,0(5,0,0),()0,,( 10000 , 50 , 50 001.022********t x x x t x v t x u t x t x v t x u t y y y t y t y u t y t y t y u y x y x y x u t y x y u x u t u μμ?Ω 求解域初值条件边值条件以具体问题为例演示具体的求解过程) ,,(t y x u 未知函数

第九章 偏微分方程差分方法

170 第9章 偏微分方程的差分方法 含有偏导数的微分方程称为偏微分方程。由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。偏微分方程的数值方法种类较多,最常用的方法是差分方法。差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。 9.1椭圆型方程边值问题的差分方法 9.1.1 差分方程的建立 最典型的椭圆型方程是Poisson (泊松)方程 G y x y x f y u x u u ∈=??+??-≡?-),(),,()(2222 (9.1) G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。当f (x ,y )≡0时,方程 (9.1)称为Laplace(拉普拉斯)方程。椭圆型方程的定解条件主要有如下三种边界条件 第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件 ),(y x n u β=??Γ (9.3) 第三边值条件 ),()( y x ku n u γ=+??Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。 用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。 设G ={0

差分信号PCB规则

什么是差分信号? 一个差分信号是用一个数值来表示两个物理量之间的差异。从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。在某些系统里,系统'地'被用作电压基准点。当'地'当作电压测量基准时,这种信号规划被称之为单端的。我们使用该术语是因为信号是用单个导体上的电压来表示的。 另一方面,一个差分信号作用在两个导体上。信号值是两个导体间的电压差。尽管不是非常必要,这两个电压的平均值还是会经常保持一致。我们用一个方法对差分信号做一下比喻,差分信号就好比是跷跷板上的两个人,当一个人被跷上去的时候,另一个人被跷下来了- 但是他们的平均位置是不变的。继续跷跷板的类推,正值可以表示左边的人比右边的人高,而负值表示右边的人比左边的人高。0 表示两个人都是同一水平。 图1 用跷跷板表示的差分信号 应用到电学上,这两个跷跷板用一对标识为V+和V-的导线来表示。当V+>V-时,信号定义成正极信号,当V+

有限差分,有限元,有限体积等的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍 1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。 对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高

相关主题
文本预览
相关文档 最新文档