当前位置:文档之家› 第八章组合变形习题集

第八章组合变形习题集

第八章组合变形习题集
第八章组合变形习题集

8-2 人字架及承受的荷载如图所示。试求m-m 截面上的最大正应力和A 点的正应力。

m

解:(1)外力分析,判变形。由对称性可知,A 、C 两处的约束反力为P/2 ,主动力、约束反力均在在纵向对称面内,简支折将发生压弯组合变形。引起弯曲的分力沿y 轴,中性轴z 过形心与对称轴y 轴垂直。

截面关于y 轴对称,形心及惯性矩

1122123

122

32

8444

A A 20010050200100(100100)

125A +A 200100+200100

200100200100(12550)12100200100200(300125100)12

3.0810 3.0810C z z

z

y y y I I I -+??+??+=

==???=+=+??-?++??--=?=?mm

mm m

(2)内力分析,判危险面:沿距B 端300毫米的m-m 横截面将人字架切开,取由左边部分为研究对象,受力如图所示。梁上各横截面上轴力为常数:

,m-m 250(1.80.3sin )(1.80.3202.5(k 22250cos =100(k )

22y N P M P F ??=

?-=?-=?=?=N m)

N

(3)应力分析,判危险点,如右所示图

①m-m 截面上边缘既有比下边缘较大的弯曲压应力,还有轴力应力的压应力,故该面上边缘是出现最大压应力。

m m

max

33410010202.510(0.30.125)(Pa) 2.5115.06MPa 117.56MPa 2(0.20.1) 3.0810

N z

F M y A I σ

---=

+?-??=-?-=--=-???上② A 点是压缩区的点,故

m m

334

10010202.510(0.30.1250.1)(Pa) 2.549.31MPa 51.83MPa 2(0.20.1) 3.0810N a a z

F M y A I σ--=

+?-??=-?--=--=-???注意:最大拉应力出现在下边缘

m m

max

3

3

4

10010202.510

0.125(Pa) 2.582.18MPa 79.68MPa

2(0.20.1) 3.0810N z

F M y A I σ

---=+?-??=

+?=-+=???下

8-3 图示起重机的最大起吊重量为W=35kN ,横梁AC 由两根NO.18槽钢组成。 材料为Q235,许用应力[σ]=120MPa 。试校核横梁的强度。

(a )

Ay

(b)

解:〈1〉外力分析:外力在纵向对称面内与轴斜交,故梁AC 发生压弯组合变形。对C 取矩BA 杆所受拉力为:

70(3.5)

()0sin 30 3.535(3.5)070203.5

C AB AB x m

F F x F x ?-=→?-?-=→=

-∑=kN

2〉内力分析: 轴力、弯矩均是x 的函数

2

max

cos30(7020)cos30=60.6217.32(sin 30(7020)sin 303510(kN),kN m)

AB B N A F M

F x x F x x x x x =--=-?===-

(3)应力分析判危险点:

①由于发生的是发生压弯组合变形,轴力、弯矩两者均在横截面上引起正应力,x 截面的上边缘具有最大压应力。查表可知NO.18槽钢的A=29.299 cm 2,Wz=152 cm 3

32322x ,max

46Pa 22229.2991021521010.345 2.9(60.6217.32)10(3510)10115.13232.895(3256MPa)=10.345112.17.895(6MPa)

N x z F M A W x x x x x x x x σ

---=-=+??-?-?+--??=-+

② 对应力关于x 的函数求导,求应力极值

,max

112.165.790 1.705m 76x d d x x

x σ-

-=→==

故:当 1.705m x =,起吊重物处的横截面上边缘应力到达极值:

2max 2

10.345112.176MPa)

10.34532.895(1.70532.8915 1.705112.176MPa 098)

5.(x x σ--=-?==++?

(4)校核横梁的强度

[]max MPa)1120M 05a .98(P σσ-≤==

故,两根18号槽钢能满足强度要求。

8-5 单臂液压机机架及立柱的横截面尺寸如图所示。F=1800kN ,材料的许用应力

[σ]=120MPa 。试校核机架立柱的强度。

解:〈1〉外力分析:将P 力平移到立柱的轴线上,需附加一力偶f M F e =?,F 使立柱产

生轴向拉伸,f M 使立柱产生平面弯曲,故立柱产生拉弯组合变形。立柱横截面是前后对称的,形心在图示y 轴上,形心及惯性矩:

222121122123

122

32

A A +A 14008601334828994489.94510A A 14008607001334828(50667)

511A +A 14008601334828

86014008601400(700511)12

82813348281334(50667511)12

2.9C z z

z

y y y I I I -==?-?==?+??-??+=

==?-??=+=+??-?--??+-=?mm m mm

10424

10 2.910-=?mm m 。

〈2〉内力分析:将立柱假想截开,取上端为脱离体,由平衡条件不难求得立柱的轴力F N 和弯矩M 。

1800kN,1800(0.5110.9)2539.8kN m N F F M P e ===?=?+=?

(3)应力分析:载荷作用面为关于前后对称的面,故中性层应为过形心的铅垂面。中性层的左侧为拉缩区,右侧为压伸区。立柱离轴线最远的左侧各点的具有最大拉应力,右侧各点的具有最大压应力,均有可能成为危险点。

max max ,N N z z

F F M M y y A I A I σσσσ+-

==

+?==-?左右左边缘右边缘 〈3〉校核强度

[]33max 22

max 33

22

1800102539.8100.511(Pa) 9.94510 2.910

18.099544.753MPa 62.85MPa 160MPa

1800102539.810(1.40.511)(Pa)9.94510 2.91018.099577.858N z N z

F M y A I F M

y A I σ

σσσσ+

-----??==+?=+???=+=≤===

-???=-?-??=-左左边缘

右右边缘()([]MPa 59.76MPa 160MPa

σ=≤=)

故立柱强度足够。

8-7:矩形截面悬臂梁受力如图所示。确定固定端截面上中性轴的位置,应力分布图及A 、B 、C 、D 四点的应力值。

解:(1)外力分析,判变形。5kN 作用下构件在xy 平面内左右弯曲; 25kN 作

用下构件发生轴向压缩的同时,还将在xz 平面内前后弯曲。结构将发生双向偏心压缩组合变形。

(2)内力分析,判危险面:5kN 作用下构件将使M z 在固定端面达到最大值弯矩

,max 50000.63000N m z M =?=?;25kN 作用下使构件各横截面具有相同的内力,

3325000N ,25102510625N m N y F M -==???=?。故该固定端横截面为偏心压缩的危

险面。

(3) 应力分析:

z M 使固定端横截面左拉右压的弯曲正应力,F N 使每一点具有均匀分布的压应力,y M 使固

定端横截面前拉后压的弯曲正应力。

①应力分布图及A 、B 、C 、D 四点的应力值。

32

25103000625

++=+Pa 1.6678 2.5MPa 8.83MPa 0.150.1020.10.150.150.166

+- 1.6678 2.5MPa 3.83MPa

-- 1.6678 2.5MPa 12.17MPa

-+ 1.667y N z D K

z y y

N z A z y

y

N z B z y

y

N z C z y

M F M y A W W M F M A W W M F M A W W M F M A W W σσσσ?=---?=-++=???=-=-+-==-=-+-=-=-

=-8 2.5MPa 7.17MPa

-+=-故,固定端截面第一象限的K 任意点的应力K σ ②确定固定端截面上中性轴的位置

33

366625103000625

-+=+0.10.15

0.150.100.150.11212

1.66710106.667105010y N z K K K K K

z y K K

M F M y z y z A I I y z σ?=-??--?????=-?-?+?33

1.667106.66750063.98729.994=1

111115.631033.341063.98729.994

K K K K K K K K K

y z y z y z y z σ=--+=→-+→

+=→+=-??-

8-13 电动机功率P=10kN ,转速n=715r/min,带轮直径D=250mm ,主轴外伸部分长度为l =120mm ,主轴直径d=40mm 。若材料的许用应力[σ]=65MP ,试用第三强度理论校核轴的强度。

M y 图(N·m)

M T 图

(N·m)

(e )

-

(d )

(c )

+

(b )

N

384.63

解:(1)外力分析,判变形。 ①计算外力偶矩:

109549

9549133.55N m 715

e P M n ==?=? ②0.25

0(2)133.55=01068.4N 222e D D F m M F F F ?=→-?-?=-

→=∑ ③主轴外伸部分可以简化为成悬臂梁,自由端受水平向前的集中力3F=3205.2N 和作用面

在横截面的外力偶133.55N m ?作用。计算简图如图示,轴发生弯扭组合变形。

(2)内力分析,判危险面:

扭矩图、弯矩图如图所示,轴固定端面是危险面:,max 384.63 133.55y M T =?=?N m N m (3) 应力分析:

y M 使轴固定端横截面前后边缘点弯曲正应力和扭转剪应力同时到达最大值,是强度理论

的危险点。

(4)按第三强度理论校核强度

[]364.8653P 2

32

a MPa r y

σσ=

=

=

=≤=

故,按第三强度理论校核强度满足。

8-14 图为操纵装置水平杆,截面为空心圆形,内径d=25mm ,外径D=30mm 。材料为Q235钢,许用应力[σ]=60MP 。控制片受力F 1=600N 。试用第三强度理论校核杆的强度

F

M y 图(g )

M T 图(d )

(c )

(b )

(f )

(e )

M Z 图(N·m)

1

解:(1)外力分析,判变形。

①由轴的平衡求F 2的两分量的大小:

2

2

20600200sin803000sin80

400N =z m F F F =→?-?=→=∑

22ctan80400ctan8070.531N y z F F ===

②操纵杆可以简化为成外伸梁,计算简图如图示,轴发生弯扭组合变形。 (2)内力分析,判危险面: 扭矩图、弯矩图如图所示。

40.62C B M M =??===?m =71.35N m >N m

故C 才是危险面: 120C C M T =?=?71.35N m N m (3)按第三强度理论校核强度

[]3101.710032

Pa MPa r σσ=

=

=>=

101.7100

=1.7%<5%100

-

故,按第三强度理论校核强度满足

8-16 分析: (1)本题除F z 外使轴前后弯,其它的力都使轴上下弯。(2)引起扭转的外力偶由F z 来平衡,从而可以求出F z 的大小。(3)轴在铅锤面、水平内均可简化为两段外伸的外伸梁。(略)

补充1 构架如图所示,梁ACD 由两根槽钢组成。已知a=3m,b=1m,F=30kN 。梁的材料的许用应力[σ]=170MPa 。试选择槽钢的型号。

69.28M kN ·m)

(d )(c )

F N kN)

+

30

-

(a )

解:〈1〉外力分析:梁的计算简图如图(b)所示,外力在纵向对称面内与轴斜交,故梁AC 段发生拉弯组合变形。对A 取矩BC 杆所受压力为:

3

(31)3010()0sin 30()08030.5A CB CB m F F a a b F F +??=→-+=→==?∑N kN

2〉内力分析: 轴力图、弯矩图如图。C 左截面轴力和弯矩同时达到最大,是危险面。

max 69.28kN ,30kN m N F M ==?

(3)应力分析判危险点:

由于发生的是发生拉弯组合变形,加之截面有有两个对称轴,危险面的上边缘具有最大拉应力,比下边缘的最大压应力的绝对值大,上边缘上各点正应力最大。

(4)强度计算选择槽钢的型号:

[]33max max

69.28103010170MPa 2222N z z

M F A W A W σ

σ+??=+=+≤= 1)忽略轴力项的正应力,仅由弯曲项选槽钢的型号:

3

33010170MPa 88.242z z

W W ?≤→≥cm 。 查表可知,的23

21.95cm ,108.3cm z A W ==

2)对所选槽钢进行校核:

[]33

max

46

69.2810301015.781138.504154.29170MPa 221.95102108.310

σ

σ+--??=+=+=≤=????故,所选择16号槽钢能满足强度要求。

补充2 如图所示,轴上安装两个圆轮,P 、Q 分别作用在两轮上,并沿竖直方向。轮轴处于平衡状态。若轴的直径d=110mm, 许用应力[σ]=60MPa 。试按第四强度理论确定许用荷载P 。

P

M Z 图

M T 图

2.25P

1.95P

-P

(e )

(d )

(c )

(b )

+

解:(1)外力分析,判变形。

力P 、Q 向轴线平移,必附加引起扭转的力偶,受力如图所示;平移到轴线的外力使轴在铅锤面平面内上下弯曲。外力沿竖直方向与轴异面垂直,使轴发生弯扭组合变形。

1) 由于轴平衡,故::

()010.502x

m F P Q Q P =→-?+?=→=∑

2) 将轴进行简化,计算简图如图所示,研究铅垂面内梁的求其约束反力

()0 1.5 3.550 1.31.5 3.550 1.7()0A B B A A B m F Q P F F P

P Q F F P

m F ?=--+==??????

??++-===????∑∑ (2)内力分析,判危险面:

扭矩图、弯矩图如图所示,C 的右截面是危险面:,max 2.25P P z T M M == (3) 应力分析:

z M 使C 横截面上下边缘点弯曲正应力最大,同时又有最大的扭转剪应力,故C 的右截面

上下边缘点是强度理论的危险点。 (4)按第四强度理论求许可荷载

[]646010 2.91kN 32

32

r z

P σσ=

=

=≤=?→≤

补充3 图示铁路圆信号板,装在外径为D=60mm 的空心柱上。若信号板上所受的最大风载p=2000N/m 2

。若许用应力[σ

]=60MPa 。应力。试按第三强度理论选择空心柱

的壁厚。

T

(N m)

(N m)

解:(1)外力分析,判变形。

风作用的合力22

20000.25329.5(N)

P p R

ππ

=?=??=与立柱的轴线异面垂直,使立柱发生弯扭变形。合力P向立柱平移,必附加一个引起扭转的力偶,受力如图所示;平移到轴线的外力使立柱在xy平面内前后弯曲。

(2)内力分析,判危险面:

立柱固定端达到最大值弯矩

,max

329.50.8314N m

z

M=?=?; 各横截面具有相同的扭矩。立柱的固定端是危险面。

(3)应力分析:

z

M使固定端横截面前拉后压的弯曲正应力,T使固定端横截面产生扭转剪正应力。固定端横截面最前a、最后a’两点是弯扭变形立柱的强度理论危险点。

(4)按第三强度理论选择空心柱的壁厚。

[]6 3

60100.912

3232

r

z

σσα===≤=?→=

内径d:0.9120.0654.712(mm)

d D

α

==?=

壁厚t:6054,712 2.644(mm)

22

D d

t

--

===

补充4直径d =40mm的实心钢圆轴,在某一横截面上的内力分量如图所示。已知此轴的许用应力 [σ]=150 MPa。试按第四强度理论校核轴的强度。

M M x =F N =

解:(1)内力分析:

轴向拉伸使横截面有轴力N ,而圆轴发生上下弯曲才会产生前后纵向对称面的M y ,而圆轴发生扭转变形才会产生力偶作用面与横截面平行的扭矩M x 。故,此圆轴发生拉弯扭组合变形。

(2) 应力分析:

M y 使圆轴上下弯曲,A 、B 两点分别拥有最大的拉、压弯曲正应力;M x 使圆轴横截面上距圆心最远的周周上各点具有最大的扭转剪应力;N 圆轴横截面上各点具有大小相同的拉应力。故,A 是拉弯扭组合变形的强度理论危险点

33

24100100.310=Pa 79.6247.77MPa 127.39MPa 0.040.04432y N A y

M F A W σππ??+=+=+=??

3

40.510=Pa 39.81MPa 0.0416

x A t

M W τπ?==?

(3) 按第四强度理论校核轴的强度。

[]63144.85MPa 15010r σσ===≤=?

故,强度足够。

第八章组合变形构件的强度习题

第八章组合变形构件的强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形。 二、计算题 1、如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离l=80cm,轴的许用应力[]σ=80Mpa。试按第三强度理论设计轴的直径d。 2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[σ]=80 MPa。试按第三强度理论选择铰车的轴的直径。 3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。轴直径d=0.1m,材料许用应力[σ]=50MPa。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于

平衡状态。若[σ]=80MPa。试按第四强度理论选定轴的直径d。 5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F 的作用,许用应力[σ]=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D=1m的皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[σ]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[σ]。

第八章组合变形练习题

组合变形练习题 一、选择 1、应用叠加原理的前提条件是:。 A:线弹性构件; B:小变形杆件; C:线弹性、小变形杆件; D:线弹性、小变形、直杆; 2、平板上边切h/5,在下边对应切去h/5,平板的强度。 A:降低一半; B:降低不到一半; C:不变; D:提高了; 3、AB杆的A处靠在光滑的墙上,B端铰支,在自重作用下发生变形, AB杆发生变形。 A:平面弯曲 B:斜弯; C:拉弯组合; D:压弯组合; 4、简支梁受力如图:梁上。 A:AC段发生弯曲变形、CB段发生拉弯组合变 形 B:AC段发生压弯组合变形、CB段发生弯曲变形 C:两段只发生弯曲变 形 D:AC段发生压弯组合、CB段发生拉弯组合变形 5、图示中铸铁制成的压力机立柱的截面中,最合理的是。

6、矩形截面悬臂梁受力如图,P2作用在梁的中间截面处,悬臂梁根部截面上的最大应力为:。 A:σ max =(M y 2+M z 2)1/2/W B:σ max =M y /W y +M Z /W Z C:σ max =P 1 /A+P 2 /A D:σ max =P 1 /W y +P 2 /W z 7、塑性材料制成的圆截面杆件上承受轴向拉力、弯矩和扭矩的联合作用,其强度条件是。 A:σ r3 =N/A+M/W≤|σ| B:σ r3 =N/A+(M2+T2)1/2/W≤|σ| C:σ r3 =[(N/A+M/W)2+(T/W)2]1/2≤|σ| D:σ r3 =[(N/A)2+(M/W)2+(T/W)2]1/2≤|σ| 8、方形截面等直杆,抗弯模量为W,承受弯矩M,扭矩T,A点处正应力为σ,剪应力为τ,材料为普通碳钢,其强度条件为:。 A:σ≤|σ|,τ≤|τ| ; B: (M2+T2)1/2/W≤|σ| ; C:(M2+0.75T2)1/2/W≤|σ|; D:(σ2+4τ2)1/2≤|σ| ; 9、圆轴受力如图。该轴的变形为: A:AC段发生扭转变形,CB段发生弯曲变形 B:AC段发生扭转变形,CB段发生弯扭组合变形 C:AC段发生弯扭组合变形,CB段发生弯曲变形

8-第八章组合变形时的强度概论

第八章组合变形 8.1 组合变形和叠加原理 一、组合变形的概念 1. 简单基本变形:拉、压、剪、弯、扭。 2. 组合变形:由两种或两种基本变形的组合而成的变形。 例如:烟囱、传动轴、吊车梁的立柱等。 烟囱:自重引起轴向压缩+ 水平方向的风力而引起弯曲; 传动轴:在齿轮啮合力的作用下,发生弯曲+ 扭转 立柱:荷载不过轴线,为压缩= 轴向压缩+ 纯弯曲

P h g 水坝 q P h g 二、组合变形的计算方法 1. 由于应力及变形均是荷载的一次函数,所以采用叠加法计算组合变形的应力和变形。 2. 求解步骤

①外力分解和简化 ②内力分析——确定危险面。 ③应力分析:确定危险面上的应力分布,建立危险点的强度条件。 §8.2 斜弯曲 一、 斜弯曲的概念 1. 平面弯曲:横向力通过弯曲中心,与一个形心主惯性轴方向平行,挠曲线在纵向对称面内。 2. 斜弯曲:横向力通过弯曲中心,但不与形心主惯性轴平行挠曲线不位于外力所在的纵向平面内。 二、斜弯曲的应力计算 1. 外力的分解 对于任意分布横向力作用下的梁,先将任意分布的横向力向梁的两相互垂直的形心主惯性矩平面分解,得到位于两形心主惯性矩平面内的两组力。位于形心主惯性平面内的每组外力都使梁发生平面弯曲。如上所示简支梁。 2. 内力计算 形心主惯性平面 xOy 内所有平行于y 轴的外力将引起横截面上的弯矩z M ,按弯曲内力的计算方法可以列出弯矩方程z M 或画出z M 的弯矩图。同样,形心主惯性平面xOz 内所有平行于z M 矩方程y M 或画出其弯矩图。 合成弯矩:2 Z 2y M M M += 合成弯矩矢量M 与y 轴的夹角为: y z M M tan =? 以上弯矩z M 和y M 均取绝对值计算, 由力偶的矢量表示法可知,合成弯矩M 3. 计算 x

材料力学组合变形习题

材料力学组合变形习题

L 1AL101ADB (3) 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案: (A ) e=d; (B ) e>d; (C ) e越小,d越大; (D ) e越大,d越小。 正确答案是______。 答案(C ) 1BL102ADB (3) 三种受压杆件如图。设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案: (A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ; (C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。 正确答案是______。 答案(C ) 1BL103ADD (1) 在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案: (A )A点; (B )B点; (C )C点; (D )D点。 正确答案是______。 答案(C )

(A )max1σ<max 2σ<max3σ; (B )max1σ<max 2σ=max3σ; (C )max1σ<max3σ<max 2σ; (D )max1σ=max3σ<max 2σ。 正确答案是______。 答案(C ) 1AL108ADB (3) 图示正方形截面直柱,受纵向力F的压缩作用。则当F力作用点由A点移至B点 时柱内最大压应力的比值()max A σ/()max B σ有四种答案: (A )1:2; (B )2:5; (C )4:7; (D )5:2。 正确答案是______。 答案(C ) 1AL109ADC (2) 一空间折杆受力如图所示,则AB杆的变形有四种答案: (A )偏心拉伸; (B )纵横弯曲; (C )弯扭组合; (D )拉、弯、扭组合。 正确答案是______。

组合变形 习题及答案

组合变形 一、判断题 1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。( ) 2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。( ) 3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。( ) 4.正方形杆受力如图1所示,A点的正应力为拉应力。( ) 图 1 5. 上图中,梁的最大拉应力发生在B点。( ) 6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。( ) 图 2 7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。( ) 8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。( )

图 3 9. 矩形截面的截面核心形状是矩形。( ) 10.截面核心与截面的形状与尺寸及外力的大小有关。( ) 11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。( ) 12.计算组合变形的基本原理是叠加原理。() 二、选择题 1.截面核心的形状与()有关。 A、外力的大小 B、构件的受力情况 C、构件的截面形状 D、截面的形心 2.圆截面梁受力如图4所示,此梁发生弯曲是() 图 4 A、斜弯曲 B、纯弯曲 C、弯扭组合 D、平面弯曲 三、计算题 1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 5 2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。 3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为 ,试校核挡土墙的强度。 图 6 图 7 4.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。 5.如图8所示,短柱横截面为2a×2a的正方形,若在短柱中间开一槽,槽深为a,问最大应力将比不开槽时增大几倍?

第八章组合变形构建的强度习题答案_百度文库.

- 1 - 第八章组合变形构件的强度习题答案 一、填空题 1、组合 二、计算题 1、解:317888010157.610(N m m 4M =???=??3 36 78810141.8410(N m m 2 T =? ?=?? 3 3 80 0.10.1r d d

σ = = ≤ 解得 d ≥30mm 2 、解:(1 轴的计算简图 画出铰车梁的内力图: 险截面在梁中间截面左侧, P T P M 18. 02. 0max

== (2 强度计算第三强度理论:( ([]σπσ ≤+= += 2 2 3 2 2 3 18. 02. 032 P P d W T M Z r [] (

( ( ( mm m d 5. 320325. 010 118. 01012. 010 8032 10 118. 01012. 032 3 2 3 2 3 6 3 2 3 2

3 ==??+????= ??+??≥ πσπ 所以绞车的轴的最小直径为32.5mm 。 3、解: - 2 - m kN 8. 1? m kN 2. 4? (1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b .传动轴受竖向主动力: kN 1436521=++=++=F F G F ,此力使轴在竖向平面内弯曲。附加力偶为: ((m kN 8. 16. 03621?=?-=-=R F F M e ,此外力偶使轴发生变形。 故此轴属于弯扭组合变形。(2)内力分析 分别画出轴的扭矩图和弯矩图如图(c )、(d )危险截面上的弯矩m kN 2. 4?=M ,扭矩m kN 8. 1?=T (3)强度校核

第十一章组合变形(习题解答)

第十一章组合变形(习题解答)

————————————————————————————————作者:————————————————————————————————日期:

10-3 试求图示[16a 简支梁由于自重作用所产生的最大正应力及同一截面上AB 两点的正应力。 (-) (-) (-) q q y 4.2m C φ o =20 (+) (+ ) ( +) q q z A B 解:(1)查表可矩[16a 的理论重量为17.24kg/m ,故该梁重均布载荷的集度为172.4N/m 。截面关于z 轴对称,而不关于y 轴称,查表可得: 364 6 4 0108cm 10810, 73.3cm 0.73310m ,63mm =0.063m , 1.8cm =0.018m z y W I b z --==?==?== ⑴外力分析: cos 172.4cos 20162.003/sin 172.4sin 2058.964/y z q q N m q q N m ??======o o ⑵内力分析:跨中为危险面。 32,max 32,max 11 162.003 4.2357.21788 11 58.964 4.2130.01688 z y y z M q l N m M q l N m ==??=?==??=? ⑶应力分析:A 、B 点应力分析如图所示。A 点具有最大正应力。 ,max ,max max 66 ,max ,max max 066 357.217130.016 (0.0630.018)11.29MPa 108100.73310 357.217130.016 0.018 6.50MPa 108100.73310y z A A z y y z B z y M M z W I M M z W I σσσ σ- --+ --==- -?=--?-=-??==+ + ?= +?=??max 11.29MPa A σσ==-

《材料力学》第8章-组合变形及连接部分的计算-习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

第八章组合变形构建的强度习题答案.

第八章 组合变形构件的强度习题答案 一、填空题 1、组合 二、计算题 1、解:31 7888010157.610(N mm)4M =???=?? 336 78810141.8410(N mm)2T =??=?? 33 800.1r d σ= =≤ 解得 d ≥30mm 2 、解:(1) 轴的计算简图 画出铰车梁的内力图: 险截面在梁中间截面左侧,P T P M 18.02.0max == (2) 强度计算 第三强度理论:() ()[]σπσ≤+=+= 2 2 322318.02.032 P P d W T M Z r []()()()() mm m d 5.320325.010118.01012.010 8032 10118.01012.032 3 2 32 36 32 32 3==??+????=??+??≥πσπ 所以绞车的轴的最小直径为32.5mm 。 3、解:

m kN 8.1? m kN 2.4? (1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b . 传动轴受竖向主动力: kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。 附加力偶为: ()()m kN 8.16.03621?=?-=-=R F F M e , 此外力偶使轴发生变形。 故此轴属于弯扭组合变形。 (2)内力分析 分别画出轴的扭矩图和弯矩图如图(c )、(d ) 危险截面上的弯矩m kN 2.4?=M ,扭矩m kN 8.1?=T (3)强度校核 ()() []σπσ≤=??+?= += MPa W T M Z r 6.4632 1.0108.110 2.43 2 32 32 23 故此轴满足强度要求。 4、解:1)外力分析 kN F Q Q F 625 .01==∴?=?Θ 2)内力分析,做内力图

第八章组合变形构件的强度习题

第八章 组合变形构件得强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上得变形,称为( )变形。 二、计算题 1、如图所示得手摇绞车,最大起重量Q =788N,卷筒直径D =36cm ,两轴承间得距离l =80cm ,轴得许用应力=80Mpa 。试按第三强度理论设计轴得直径d 。 2、图示手摇铰车得最大起重量P =1kN,材料为Q 235钢,[σ]=80 MPa 。试按第三强度理论选择铰车得轴得直径。 3、图示传动轴AB 由电动机带动,轴长L =1、2m ,在跨中安装一胶带轮,重G =5kN,半径R =0、6m ,胶带紧边张力F 1=6kN ,松边张力F 2=3kN 。轴直径d =0、1m,材料许用应力[σ]=50MPa 。试按第三强度理论校核轴得强度。 kN 8.1? kN 2.4? 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F =3kN 及重物Q ,该轴处于平衡状态。若[σ]=80MPa 。试按第四强度理论选定轴得直径d 。

5、图示钢质拐轴, AB轴得长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F得作用,许用应力[σ]=160Mpa,若AB轴得抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴得强度条件确定此结构得许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动得轴上,装有一直径D=1m得皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2、5KN,轮重F P=2KN,已知材料得许用应力[σ]=80Mpa,试按第三强度理论设计轴得直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆得一端固定,一端自由,在自由端B处固结一圆轮,轮得半径为R,并于轮缘处作用一集中得切向力P。试按第三强度理论建立该圆杆得强度条件。圆杆材料得许用应力为[σ]。

第十四章组合变形杆件强度计算

第十四章 14-4试分别求出图示不等截面杆的绝对值最大的正应力,并作比较。 解题思路: (1)图(a )下部属偏心压缩,按式(14-2)计算其绝对值最大的正应力,要正确计算式中 的弯曲截面系数; (2)图(b )是轴向压缩,按式(7-1)计算其最大正应力值; (3)图(a )中部属偏心压缩,按式(14-2)计算其绝对值最大的正应力,要正确计算式中 的弯曲截面系数。 答案:2a 34)(a F =σ,2 b )(a F =σ,2 c 8)(a F =σ 14-6某厂房一矩形截面的柱子受轴向压力1F 和偏心荷载2F 作用。已知kN 1001=F , kN 452=F ,偏心距mm 200=e ,截面尺寸mm 300,mm 180==h b 。 (1)求柱内的最大拉、压应力;(2)如要求截面内不出现拉应力,且截面尺寸b 保持不变,此时h 应为多少?柱内的最大压应力为多大? 解题思路: (1)立柱发生偏心压缩变形(压弯组合变形); (2)计算立柱I-I 截面上的内力(轴力和弯矩); (3)按式(14-2)计算立柱截面上的最大拉应力和最大压应力,要正确计算式中的弯曲截 面系数;

(4)将b 视为未知数,令立柱截面上的最大拉应力等于零,求解b 并计算此时的最大压应 力。 答案:(1)MPa 648.0m ax t =σ,MPa 018.6m ax c =σ (2)cm 2.37=h ,MPa 33.4m ax c =σ 14-9旋转式起重机由工字钢梁AB 及拉杆BC 组成,A 、B 、C 三处均可简化为铰链约束。起 重荷载kN 22P =F ,m 2=l 。已知MPa 100][=σ,试选择AB 梁的工字钢型号。 解题思路: (1)起重荷载移动到AB 跨中时是最不利情况; (2)研究AB 梁,求BC 杆的受力和A 支座的约束力。AB 梁发生压弯组合变形; (3)分析内力(轴力和弯矩),确定危险截面; (4)先按弯曲正应力强度条件(12-27)设计截面,选择AB 梁的工字钢型号; (5)再按式(14-2)计算危险截面的最大应力值,作强度校核。 答案:选16.No 工字钢 14-11图示圆截面悬臂梁中,集中力P1F 和P2F 分别作用在铅垂对称面和水平对称面内,并且 垂直于梁的轴线。已知N 800P1=F ,kN 6.1P2=F ,m 1=l ,许用应力MPa 160][=σ,试确定截面直径d 。 解题思路: (1)圆截面悬臂梁发生在两个互相垂直平面上的平面弯曲的组合变形; (2)分析弯矩y M 和z M ,确定危险截面及计算危险截面上的y M 和z M 值; (3)由式(14-15)计算危险截面的总弯矩值; (4)按弯曲正应力强度条件(12-27)设计截面,确定悬臂梁截面直径d 。 答案:mm 5.59≥d 14-13功率kW 8.8=P 的电动机轴以转速min /r 800=n 转动,胶带传动轮的直径

第八章组合变形及连接部分的计算习题测验选解

习题 [8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l8.0 =,kN F5.2 1 =,kN F0.1 2 =,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压性能相同,故只计算最大拉应力: y z y y z z W l F W l F l F W M W M 2 1 1 max 2+ + ? = + = σ 式中, z W, y W由14号工字钢,查型钢表得到3 102cm W z =,3 1. 16cm W y =。故 MPa Pa m m N m m N 1. 79 10 1. 79 10 1. 16 8.0 10 0.1 10 102 2 8.0 10 5.2 3 6 3 6 3 3 6 3 max = ? = ? ? ? + ? ? ? ? ? = - - σ [8-2]矩形截面木檩条的跨度m l4 =,荷载及截面尺寸如图所示,木材为杉木,弯曲许用正应力MPa 12 ] [= σ,GPa E9 =,许可挠度200 / ] [l w=。试校核檩条的强度和刚度。

图 习题?-2 8 解:(1)受力分析 )/(431.13426cos 6.1cos '0m kN q q y ===α )/(716.03426sin 6.1sin '0m kN q q z ===α (2)内力分析 )(432.14716.081 8122max ,m kN l q M z y ?=??=== )(864.24432.18 1 8122max ,m kN l q M y z ?=??=== (3)应力分析 最大的拉应力出现在跨中截面的右上角点,最大压应力出现在左下角点。 z z y y W M W M max ,max ,max + = + σ 式中,32 232266*********mm hb W y ≈?== 32 24693336 1601106mm bh W z ≈?== MPa mm mm N mm mm N 54.1046933310864.232266710432.13 636max =??+??=+ σ (4)强度分析 因为MPa 54.10max =+σ,MPa 12][=σ,即][max σσ<+,所以杉木的强度足够。 (5)变形分析 最大挠度出现在跨中,查表得: z y cy EI l q w 38454 = ,y z cz EI l q w 38454 =

第八章-组合变形及连接部分的计算-习题选解

习 题 [8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因 钢材的拉压性能相同,故只计算最大拉应力: y z y y z z W l F W l F l F W M W M 211max 2++? =+= σ 式中,z W ,y W 由14号工字钢,查型钢表得到3102cm W z =,31.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [8-2] 矩形截面木檩条的跨度m l 4=,荷载及截面尺寸如图所示,木材为杉木,弯曲许用正应力MPa 12][=σ,GPa E 9=,许可挠度200/][l w =。试校核檩条的强度和刚度。

图 习题?-2 8 解:(1)受力分析 )/(431.13426cos 6.1cos '0m kN q q y ===α )/(716.03426sin 6.1sin '0m kN q q z ===α (2)内力分析 )(432.14716.081 8122max ,m kN l q M z y ?=??=== )(864.24432.18 1 8122max ,m kN l q M y z ?=??=== (3)应力分析 最大的拉应力出现在跨中截面的右上角点,最大压应力出现在左下角点。 z z y y W M W M max ,max ,max + = + σ 式中,32 232266*********mm hb W y ≈?== 32 24693336 1601106mm bh W z ≈?== MPa mm mm N mm mm N 54.1046933310864.232266710432.13 636max =??+??=+ σ (4)强度分析 因为MPa 54.10max =+σ,MPa 12][=σ,即][max σσ<+,所以杉木的强度足够。 (5)变形分析 最大挠度出现在跨中,查表得: z y cy EI l q w 38454 = ,y z cz EI l q w 38454 =

第09章组合变形题解

第 9 章 组 合 变 形 9-1 试分析下列构件在指定截面A 的内力分量(判断基本变形) 解:(a )拉伸与弯曲; (b )压缩、扭转与两个方向的弯曲; (c )压缩、扭转与两个方向的弯曲。 9-2 木制矩形截面悬臂梁受力如图,已知 F 1 = 0.8 kN ,F 2 = 1.65 kN ,木材的许用应力 [ σ ] =10 MPa ,若矩形 h /b = 2 ,试确定其截面尺寸。 解:显然固定端是危险截面。 kNm 6.128.01=?==l F M y kNm 65.1165.12 2 =?==l F M z =+=+=2 2max 66bh M hb M W M W M z y z z y y σ ][)2 3 3(1 3 σ≤+ = z y M M b 代入数据得到 363mm 7275001010 65 .15.16.13=??+?≥ b , mm 180h ,mm 90≥≥b 。 9-3 工字钢简支梁受力如图,已知 F = 7 kN ,[ σ ] =160 MPa ,试选择工字钢型号。(提示:先假定 W z /W y 的比值进行试选,然后校核。) 解:显然中间截面是危险截面。 kNm 74 1 max == l F M kNm 394.220sin max == M M y , kNm 578.620cos max == M M z (b )车刀 (a )机械 构件

][max σσ≤+ = z z y y W M W M 选 6=y z W W 试算 33cm 8.2110160 6394 .26578.6] [66=???+= +≥ σy z y M M W 查表取 16 号工字钢 W y = 21.2 cm 3 ,W z = 141 cm 3 校核强度 ][M Pa 15910)2 .21394 .2141578.6(3max σσ≤=?+=+ = z z y y W M W M 强度刚好够,所以选定 16 号工字钢。 9-4 证明斜弯曲时横截面仍然绕中性轴转动(提示:证明截面形心位移垂直于中性轴)。 证明:假设在任意相距很近 dx 的截面之间作用两个M y ,M z ,其中下标 y ,z 为截面 形心主惯性轴,中性轴方程由 0=- = y I M z I M z z y y σ 确定为 ?tan ==y z z y I M I M z y 两截面之间由M z 和M y 产生的相对位移分别为 2)(dx EI M dx d Y z z z =?=θ,2)(dx EI M dx d Z y y y -=?=θ, tan =-=z y y z I M I M Z Y 显然 tan α tan ? = -1 ,α = ?±90° 即截面形心位移与中性轴互相垂直。 [反证法] 假设斜弯曲时横截面绕非中性轴转动,则中性轴上的纵向纤维将有伸长或缩短,这与斜弯曲时横截面存在有中性轴的结论是相矛盾的。故斜弯曲时横截面绕中性轴转动。 9-5 证明对正多边形截面梁,横向力无论作用方向如何偏斜,只要力的作用线通过截面形心,都只产生平面弯曲。 证明:只要证明任意正多边形的形心坐标轴为形心主惯轴即可。现以正三角形为例,图中y 、z 轴为一对正交形心主轴,y 和y 1轴为对称轴,显然,I y = I y 1,I yz = 0;由式(A-13)有 β2cos 221y z y z y y I I I I I I -++== 即 z y y z y z I I I I I I =?=-?=--00)2cos 1(2β 设Y 、Z 为一对任意正交形心轴,由式(A-15)有 02cos 2sin 2 =+-=ααyz y z YZ I I I I 即任意形心轴都是主惯性轴,其惯性矩都相等,只可能发生平面弯曲,不会发生斜弯曲。 z

材料力学组合变形习题概要

L 1AL101ADB (3) 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案: (A ) e=d; (B ) e>d; (C ) e越小,d越大; (D ) e越大,d越小。 正确答案是______。 答案(C ) 1BL102ADB (3) 三种受压杆件如图。设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案: (A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ; (C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。 正确答案是______。 答案(C ) 1BL103ADD (1) 在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案: (A )A点; (B )B点; (C )C点; (D )D点。 正确答案是______。 答案(C )

1AL104ADC (2) 一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案: (A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合; (C )斜弯曲; (D )平面弯曲。 正确答案是______。 答案(B ) 1BL105ADC (2) 铸铁构件受力如图所示,其危险点的位置有四种答案: (A )①点; (B )②点; (C )③点; (D )④点。 正确答案是______。 答案(D ) 1BL106ADC (2) 图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处 的最大应力的增大倍数有四种答案: (A )2倍; (B )4倍; (C )8倍; (D )16倍。 正确答案是______。 答案(C ) 1BL107ADB (3) 三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:

第八章组合变形习题集

8-2 人字架及承受的荷载如图所示。试求m-m 截面上的最大正应力和A 点的正应力。 m 解:(1)外力分析,判变形。由对称性可知,A 、C 两处的约束反力为P/2 ,主动力、约束反力均在在纵向对称面内,简支折将发生压弯组合变形。引起弯曲的分力沿y 轴,中性轴z 过形心与对称轴y 轴垂直。 截面关于y 轴对称,形心及惯性矩 1122123 122 32 8444 A A 20010050200100(100100) 125A +A 200100+200100 200100200100(12550)12100200100200(300125100)12 3.0810 3.0810C z z z y y y I I I -+??+??+= ==???=+=+??-?++??--=?=?mm mm m (2)内力分析,判危险面:沿距B 端300毫米的m-m 横截面将人字架切开,取由左边部分为研究对象,受力如图所示。梁上各横截面上轴力为常数: ,m-m 250(1.80.3sin )(1.80.3202.5(k 22250cos =100(k ) 22y N P M P F ??= ?-=?-=?=?=N m) N (3)应力分析,判危险点,如右所示图 ①m-m 截面上边缘既有比下边缘较大的弯曲压应力,还有轴力应力的压应力,故该面上边缘是出现最大压应力。

m m max 33410010202.510(0.30.125)(Pa) 2.5115.06MPa 117.56MPa 2(0.20.1) 3.0810 N z F M y A I σ ---= +?-??=-?-=--=-???上② A 点是压缩区的点,故 m m 334 10010202.510(0.30.1250.1)(Pa) 2.549.31MPa 51.83MPa 2(0.20.1) 3.0810N a a z F M y A I σ--= +?-??=-?--=--=-???注意:最大拉应力出现在下边缘 m m max 3 3 4 10010202.510 0.125(Pa) 2.582.18MPa 79.68MPa 2(0.20.1) 3.0810N z F M y A I σ ---=+?-??= +?=-+=???下 8-3 图示起重机的最大起吊重量为W=35kN ,横梁AC 由两根NO.18槽钢组成。 材料为Q235,许用应力[σ]=120MPa 。试校核横梁的强度。 (a ) Ay (b) 解:〈1〉外力分析:外力在纵向对称面内与轴斜交,故梁AC 发生压弯组合变形。对C 取矩BA 杆所受拉力为: 70(3.5) ()0sin 30 3.535(3.5)070203.5 C AB AB x m F F x F x ?-=→?-?-=→= -∑=kN 2〉内力分析: 轴力、弯矩均是x 的函数

第二章组合变形.

第十一章组合变形 2.5 组合变形 一、教学目标 1、掌握组合变形的概念。 2、掌握斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的概念和区分、危险截面和危险点的确定、应力计算、强度计算、变形计算、中性轴的确定等。 3、正确区分斜弯曲和平面弯曲。 4、了解截面核心的概念、常见截面的截面核心计算。 二、教学内容 1、讲解组合变形的概念及组合变形的一般计算方法:叠加法。 2、举例介绍斜弯曲和平面弯曲的区别。 3、讲解斜弯曲的应力计算、中性轴位置的确定、危险点的确立、强度计算、变形计算。 4、讲解弯曲和扭转组合变形内力计算,确定危险截面和危险点,强度计算。 5、讲解拉伸(压缩)和弯曲组合变形的危险截面和危险点分析、强度计算。 6、讲解偏心拉伸(压缩)组合变形的危险截面和危险点分析、应力计算、强度计算。 7、简单介绍截面核心的概念和计算。 三、重点难点 重点:斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的应力和强度计算。 难点: 1、解决组合变形问题最关键的一步是将组合变形分解为两种或两种以上的基本变形: 斜弯曲——分解为两个形心主惯性平面内的平面弯曲;

弯曲和扭转组合变形——分解为平面弯曲和扭转; 拉伸(压缩)和弯曲组合变形——分解为轴向拉伸(压缩)和平面弯曲(因剪力较小通常忽略不计); 偏心拉伸(压缩)组合变形——单向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和一个平面弯曲,双向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和两个形心主惯性平面内的平面弯曲。 2、组合变形的强度计算,可归纳为两类: ⑴危险点为单向应力状态:斜弯曲、拉(压)弯、偏心拉伸(压缩)组合变形的强度计算时只需求出危险点的最大正应力并与材料的许用正应力比较即可; ⑵危险点为复杂应力状态:弯扭组合变形的强度计算时,危险点处于复杂应力状态,必须考虑强度理论。 四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 五、学时:2学时 六、讲课提纲 (一)斜弯曲 斜弯曲梁的变形计算 仍以矩形截面的悬臂梁为例:

组合变形习题解答

第12章组合变形的强度计算 主要知识点:(1)弯曲与拉伸(压缩)组合变形的强度计算; (2)弯曲与扭转组合变形的强度计算。 1. 试判断图中杆AB、BC和CD各产生哪些基本变形? 答:如图12-1a所示,将力F平移到B点,可知图中杆AB 产生弯曲变形; 如图12-1b所示,将力F平移到C点,可知杆BC产生 压缩和弯曲组合变形; 如图12-1c所示,杆CD产生(横力)弯曲变形。 a) b) c) 图12-1 2. 若在正方形截面短柱的中间处开一个槽,如图所示,使横截面面积减少为原截面面积的一半。试求最大正应力比不开槽时增大几倍? 解:正方形短柱截面不开槽时最大正应力 2 04a F A F= = σ 正方形短柱截面开槽时,BC段受偏心压缩,偏心距e=0.5a, 抗弯截面系数3/3a W Z =,最大正应力 2 3 2 1 max 2 3 5.0 2a F a a F a F W Fe A F Z = ? + = + = σ max σ/8 = σ,所以开槽后最大正应力比不开槽时增大7倍。 3.如图所示的支架,已知载荷F=45kN,作用在C处,支架材料的许用应力 [] a MP 160 = σ,试选择横梁AC的工字钢型号。 解:(1)外力分析 作ABC梁的受力图,如图12-3a所示。 平衡方程 30 sin ,0 ) (0 1 = ? - ? = ∑ = AC F AB F F M B n i i A

图12-3 解得kN F B 120=。由受力图可知,梁的AB 段为拉伸与弯曲的组合变形,而BC 段为弯曲变形。 (2)内力分析,确定危险截面的位置 AB 段受到拉力,kN F F B N 10430cos 0==,作出图12-3b 所示轴力图。 梁的AB 段、BC 段剪力均为常数,弯矩图均为斜直线,算得m kN M B ?-=45,作出图12-3c 所示弯矩图。故危险截面是B -截面,即B 截面左侧。 危险截面上的轴力kN F N 104=、弯矩m kN M B ?-=45 (3)应力分析,确定危险点的位置 危险截面上拉伸正应力A F N =1σ,弯曲正应力y I M Z max 2=σ(见图12-3d )。根据危险截面上的应力分布规律可知,危险点在危险截面的上侧边缘。其最大应力值为 Z N W M A F max max +=σ (4)强度计算 因危险点的应力为单向应力状态,所以其强度条件为 []σσ≤?+?=+=Z Z N W A W M A F 33max max 104510104a MP 160= (a) 因上式中有截面面积A 和抗弯截面系数W Z 两个未知量,故要用试凑法求解。用这种方法求解时,可先不考虑轴力N F 的影响,仅按弯曲强度条件初步选择槽钢的型号,然后再按(a)式进行校核。由 []a Z Z P W W M 63max max 101601045?=≤?==σσ 得336328110 1601045cm m W Z =??≥。查表得22a 工字钢3309cm W Z =,代入(a)式进行校核

第十五章 组合变形

第十五章 组合变形 一、内容提要 1. 组合变形的概念及计算原理 组合变形 由两种以上的基本变形组合而成的变形 计算原理 叠加原理 2. 组合变形的计算步骤 (1) 简化或分解外力。 (2) 分析内力。 (3) 分析应力。 3. 强度条件 斜弯曲 强度条件为 σmax = z z W M max + y y W M max ≤[σ] 拉(压)与弯曲组合 强度条件为 σmax =A F N ±z W M max ≤ [σ] 单向偏心压缩(拉伸) 强度条件为 z z N M M A F ±± =max σ≤[σ] 双向偏心压缩(拉伸) 强度条件为 y y z z N W M W M A F ±±±=max σ≤][σ 二、典型例题解析 例15-1 某柱如图15-1所示,由屋架传来的压力F P1=100kN ,由吊车传来的压力F P2=30kN ,柱的单位体积重量γ=25kN/m (牛腿部分自重略去),柱高l =4m ,偏心距e y =0.2m ,已知截面宽度b=0.2m ,试求: (1)截面高度h ≥?时截面上不出现拉应力。 (2)计算在确定的截面高度时柱中的最大压应力。 图15-1 知识点 压弯组合变形的应力 解 (1)固定端截面为危险截面 将偏心压力向截面形心平移后,危险截面上的内力为 轴心压力 F N = F P1+F P2+W=-(130+20h) kN 弯矩 M= F P2×e y =6kN ·m 截面上不出现拉应力时应满足 σt max =-A F N +z W M max ≤0

即 Pa h Pa h h 2332.061062.010)20130(??+?+-≤0 h ≥0.27m (2)取 h =0.28m 此时 σ c max =-A F N -z W M max = Pa Pa 2 3328.02.0610628.02.010)28.020130(???-???+-=-4.72MPa 三、思考题提示或解答 15-1 图示各杆的AB 、BC 、CD 各段截面上有哪些内力,各段产生什么组合变形? 思15-1图 提示 a) AB 段产生弯、扭变形; BC 段产生弯、拉变形;CD 段产生弯、扭变形。 b) AB 段产生弯曲变形; BC 段产生弯、压变形;CD 段产生弯曲变形。 c) AB 段产生弯、压变形; BC 段产生弯、扭变形;CD 段产生弯曲变形。 15-2 图示各杆的组合变形是由哪些基本变形组合成的?并判定在各基本变形情况下A 、B 、C 、D 各点处正应力的正负号。 思15-2图 提示 a) 由轴向拉伸与两个平面内的弯曲变形组合成。 b) 由两个平面内的弯曲变形组合成。 c) 由轴向压缩与两个平面内的弯曲变形组合成。 15-3 图示三根短柱受压力F 作用,图b 、c 的柱各挖去一部分。试判断在a 、b 、c 三种情况下,短柱中的最大压应力的大小和位置。 思15-3图 解答 a) 柱产生轴向压缩变形。 σ c max =-2a F A F N -= 位于柱横截面上的任意点 b) 未挖去段柱产生轴向压缩变形,挖去段柱产生弯、压变形。 σ c max =-A F N -z W M max =-238a F 位于削弱截面右边缘上的任意点 c)柱产生轴向压缩变形。

相关主题
文本预览
相关文档 最新文档