当前位置:文档之家› 磁性材料测量(2)—历史背景

磁性材料测量(2)—历史背景

磁性材料测量(2)—历史背景
磁性材料测量(2)—历史背景

磁性材料测量——历史背景

磁性和磁场时最早通过测量研究的物理现象之一。古代人类从冶铁开始,就已经知道了两块磁石之间吸引力(或排斥力)的影响。此外,人们观察到小磁石沿南北方向自发旋转,因此,无疑这种效果应用到指向北边方向的指南针——文字记载公元前300至公元前200年,中国古代就已经使用指南针(司南)。

根据其他文献记载,“哲学之父”泰勒斯时期的米利都(Miletus )(公元前640—前546年)研究了磁石和铁之间的吸引力。苏哥拉底(Socrates )(公元前470—前399年)写道:“铁磁石不仅仅吸引铁环,而且赋予他们一个类似的磁力”(Keithley 1999年)。

一个更详细记载磁性和指南针的研究是由德·马里孔特(Pierre de Maricourt )又名彼得·皮埃尔(Peter Peregrinus )完成的。1269年,他出版了《磁石书信(Epistola demagnete )》。在这部作品中,首次描述了磁铁极性(也证实了两种磁极——当磁铁分裂成两个较小部分之后,极性仍被保留)。他很可能是首次提出在机械结构中使用磁铁以获得永恒活动的人。威利·姆吉尔伯特(1544—1603年)继续了皮埃尔的工作,他第一次在著作《论磁石(De magnete )》(1600年出版)中,描述了一个由地球磁场引起的指南针运动——得出地球是一个巨大球形磁铁的结论。

夏尔·奥古斯丁·库仑(Charles-Augustin de Coulomb,1736—1806年)构建了一个扭秤(利用扭力测量微力的一种仪器),研究了静电和磁力之间的吸引力【约翰·米切尔(John Michell )1750年也独立完成】。他提出了库仑定律,用数学方法描述了距离为r 的假象磁极m 1、m 2之间的库仑力F (磁偶极子如图2.1a 所示)。

F = 221041

r m m πμ ……………………………………………(2.1) 式中,μ0是真空磁导率(μ0 = 4π×10-7Wb/Am )。

磁场产生促使磁偶极子平行方向的磁场转矩τ:τ = M × B …………………………(2.2)

1820年,汉斯·克里斯蒂安·奥斯特(Hans Christian Oersted )发现当一个磁针靠近一个带电流的金属线圈时,线圈周围会产生磁场。这个革命性的发现启发安德烈·玛丽·安培(Andre Marie Ampere )(1775—1836年)得出假设,任何磁场的产生可以来源于电流(也可由磁场产生)(见图2.1b )。1820年,他证明了两个并行载流导线相互吸引。

同年,让·巴蒂斯特(Jean-Baptiste Biot )和费利克斯·比(Felix Savart )提出了毕奥-萨伐尔定律,确定了通电导线周围磁场强度和电流的关系。一个通过电流为i 的无穷小长度δL 的导体,在径向距离a 处产生的磁场强度δH 为:

δH = u l i a

?δπ241 ……………………………………………(2.3) 式中,u 是沿半径的单位矢量。因此,电流回路C 所生产的磁场强度H 为:

H =

??c a u dl I 2

41π……………….………………………..…………(2.4)

计算半径为r 的环形截流导线在A 点产生的磁场H (见图2.2),其轴向分量是

dH =

απsin 42a Idl ……….………………………………..…………(2.5) 式中,a=22x r +,22sin x r r

+=α

由于?

=r dl π2,轴距离为x 的磁场H 为: ()απαπsin 42

1sin 21232222a Idl x r r I dl a dH H +=?==??………………(2.6) 因此,圆环中心x=0处的磁场强度为r

I H 2= 1826年,安培发现了磁学的一个基本定律——安培环路定律:

?

=?nI dl H …………………………………(2.7) 式中,n 为环形线圈的匝数,每匝导线的电流为I 。

1831年,迈克尔?法拉第(Michael Faraday )发现了另一个磁学基本定律,他指出,如果一个电路与变化磁链 Φ相交,其产生的感应电动势(电压)V 与磁通量变化率成比例: V = -dΦ/dt …………..(2.8),这种效应被称之为电磁(EM )感应。式(2.8)的负号表明,感应电压与产生它的磁通量变化方向相反(楞次定律)。

詹姆斯?克拉克?麦克斯韦(James Clerk Maxwell )在其1873年出版的著作中阐述了磁学的许多重大发现,在《电学与磁学论》一书中,他提出了一组 20 个分析基本磁场和电场的方程(最后总结成一组4个方程:二个高斯定理,一个爱培定理,一个法拉第定理)。

除非特别申明,转载请注明作者及原文链接

《磁性材料测量历史背景》链接:https://www.doczj.com/doc/7e17441555.html,/content/?341.html

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换

《电子测量与仪器》习题答案解析

《电子测量与仪器》习题参考答案 习题1 一、填空题 1.比较法;数值;单位;误差。 2.电子技术;电子技术理论;电子测量仪器。 3.频率;电压;时间。 4.直接测量;间接测量;时域测量;频域测量;数据域测量。 5.统一性;准确性;法制性。 6.国家计量基准;国家副计量基准;工作计量基准。 7.考核量值的一致性。 8.随机误差;系统误差;粗大误差。 9.有界性;对称性。 10.绝对值;符号。 11.准确度;精密度。 12.2Hz ;0.02%。 13.2/3;1/3~2/3。 14.分组平均法。 15.物理量变换;信号处理与传输;测量结果的显示。 16.保障操作者人身安全;保证电子测量仪器正常工作。 二、选择题 1.A 2.C 3.D 4.B 5.B 6.D 7.A 8.B 9.B 10.D 三、简答题 1.答:测量是用被测未知量和同类已知的标准单位量比较,这时认为被测量的真实数值是存在的,测量误差是由测量仪器和测量方法等引起的。计量是用法定标准的已知量与同类的未知量(如受检仪器)比较,这时标准量是准确的、法定的,而认为测量误差是由受检仪器引起的。 由于测量发展的客观需要才出现了计量,测量数据的准确可靠,需要计量予以保证,计量是测量的基础和依据,没有计量,也谈不上测量。测量又是计量联系实际应用的重要途径,可以说没有测量,计量也将失去价值。计量和测量相互配合,才能在国民经济中发挥重要作用。 2.答:量值的传递的准则是:高一级计量器具检定低一级计量器具的精确度,同级计量器具的精确度只能通过比对来鉴别。 3.答:测量误差是由于电子测量仪器及测量辅助设备、测量方法、外界环境、操作技术水平等多种因素共同作用的结果。 产生测量误差的主要原因有:仪器误差、影响误差、理论误差和方法误差、人身误差、测量对象变化误差。按照误差的性质和特点,可将测量误差分为随机误差、系统误差、粗大误差三大类。误差的常用表示方法有绝对误差和相对误差两种。 四、综合题 1.解:绝对误差 ΔX 1=X 1-A 1=9-10=-1V ΔX 2=X 2-A 2=101-100=1V 相对误差 1111 1%100100%A X A γ-=-?=?= 2 22 1 1%100 100%A X A γ=?=?= 2.解:ΔI m1= 1m γ× X m1 =± 0.5%×400=±2mA ,示值范围为100±2mA ;

浅谈测量技术的发展历史和现状

浅谈测量技术的发展历史和现状 摘要:测量技术的发展也同其他技术一样,由原始的、落后的方式,经漫长的人类社会发展历程,一步步的发展起来。生产力的发展促进了测量科学的发展,同时测量技术的应用又为生产力的发展创造了条件,最终服务于科学研究、国防建设和国民经济建设。 关键词:测量技术;发展历史;现状;高新技术 1 引言 科学的产生和发展是由生产力决定的。测量科学也不例外,它是人类长期以来在生产、生活方面与自然斗争的结晶。测量技术的发展也经历了一个长期的、艰难的历程,且至今仍处在不断发展之中。本文主要对这一历程进行了总结概述。 2 测量技术的发展历史 2.1 地图测绘方面 目前见于记载最早的古地图是西周初年的洛邑城址附近的地形图。战国时管仲著有《管子》一书,书中第十卷专门论述了地图的重要用途和内容。但遗憾的是,秦代以前的古地图都已失传。长沙马王堆三号墓出土的公元前168年陪葬的古长沙国驻军图和地形图是现在能见到的最早的古地图。图上有军事要素、道路、河流、山脉和居民地等。西晋时裴秀编制了《方丈图》和《禹贡地域图》,并创立了《制图六体》的地图编制理论。此后,历代都编制过各种地图,如明代郑和下西洋绘制的《郑和航海图》;清代康熙年间绘制的《皇舆全览图》;1934年,上海申报馆出版的《中华民国新地图》等。在我国历史上,能绘制出如此水平的地图,与测量技术的发展是密切相关的。 我国古代测量长度的工具有记里鼓车、步车、测绳和丈杆等。测量高程的工具仪器有水平(相当于现在的水准仪)和矩。测量方向的仪器有指南针和望筒。测量技术的发展离不开数理知识的支撑。公元前问世的《九章算术》和《周髀算经》都记载有利用相似三角原理进行测量的知识。之后,三国时期刘徽所著的《海岛算经》,介绍了利用丈杆进行两次、三次甚至多次测量的方法求解河宽、山高的实例,极大地推动了我国测量技术的发展。 2.2 研究地球大小和形状方面 早在公元前就已经有人提出通过丈量子午线上的弧长来推断地球大小和形状的方法。唐代在僧一行的主持下,实际测量了北极的高度及从河南白马,经扶沟、浚仪到上菜的距离,算得子午线上一度的弧长为132.3km,为正确认识地球做出了巨大贡献。17世纪末,惠更斯和牛顿从力学的观点出发,提出了地球是两极略扁的“地扁说”,从此与地缘说展开了一场大论战。直到1739年经过弧长

磁性材料分类

磁性材料 主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质. 磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。 从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。 磁性材料从形态上讲。包括粉体材料、液体材料、块体材料、薄膜材料等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。 顺磁性 paramagnetism 顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10-5~10-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。 顺磁性是一种弱磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。 抗磁性 diamagnetism 抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物

实验一常用电子测量仪器使用

实验一常用电子测量仪器 使用 Prepared on 24 November 2020

实验一常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、低频信号发生器、直流稳压电源、交流毫伏表等的主要技术指标、性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、低频信号发生器、直流稳压电源、交流毫伏表等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 图1-1 模拟电子电路中常用电子仪器布局图 一、数字示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。 示波器面板介绍

单踪示波模式 注意下列几点: 8. 频率显示 显示当前触发通道波形的频率值。UTILITY 菜单中的“频率计”设置为“开启”才能显示对应信号的频率值,否则不显示。 10.触发位移 使用水平 POSITION 旋钮可修改该参数。向右旋转使箭头(初始位置为屏幕正中央)右移,触发位移值(初始值为 0)相应减小;向左旋转使箭头左移,触发位移值相应增大。按下该键使参数自动恢复为 0,且箭头回到屏幕正中央。 11. 水平时基 表示屏幕水平轴上每格所代表的时间长度。使用 S/DIV 旋钮可修改该参数,可设置范围为~50S。 根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或cm)与“水平时基”指示值(t/div)的乘积,即可算得信号频率的实测值。 13. 电压档位 表示屏幕垂直轴上每格所代表的电压大小。使用 VOLTS/DIV 旋钮可修改该参数,可设置范围为 2mV~10V。

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

实验三 磁性材料的VSM测量

实验三、磁性材料的VSM 测量 一、实验目的 1.了解VSM 仪器的测量原理。 2.了解VSM 的操作要领和注意事项。 3.了解样品磁性测量的方法。 二、实验设备 天平、VSM 等。 三、原理说明 VSM 系统的主体部件是由直流线绕磁铁、振动器和感应线圈组成。装在振动杆上的样品位于磁极中央感应线圈中心连线处,在感应线圈的范围内垂直磁场方向振动。图1是VSM 的结构简图,图2是VSM 的实物图。振动样品磁强计的原理就是将一个小尺度的被磁化了的样品视为磁偶极子并使其在原点附近作等幅振动,利用电子放大系统,将处于上述偶极场中的检测线圈中的感生电压进行放大检测,再根据已知的放大后的电压和磁矩关系求出被测磁矩。 图2 VSM 实物图 设磁化场沿x 轴向,而样品S 沿z 向作等幅振动。在磁铁极头端面处对称放置匝数为N 、截面为S 的检测线圈,其对称轴垂直于z 轴。则可得到穿过第n 匝内dsn 面积元的磁通为: 5n n n n n z r 4Z MX 3ds )r (H d π= =φ 而n n φ∑=φ,由此可得出检测线圈内的总感生电压为: n 7n n 2 n n n 0ds r )z 5r (X ∑t ωcos ωa π4M 3dt φd )t (ε∫== 其中a 0为样品的振幅,ω为振动频率。从方程可以得到,检测线圈中的感生电势正比于样品总磁矩M 及其振动频率ω和振幅a 0,同时和线圈的匝数、大小形状及线圈和样品间的距离有

关。因此,将线圈的几何因素及与样品的间距固定,样品的振幅和频率也固定,则感生电压仅和样品的总磁矩成正比。经过定标以后,就可根据感生电压的大小推知样品的总磁矩:将该磁矩除以样品体积或质量,就可得出该样品的单位质量或单位体积的磁矩。如果将高斯计的输出信号和感生电压分别输入到X-Y记录仪的两个输入端,就可以得到样品的磁滞回线。 四、实验步骤 1.开机预热30分钟 ①打开电源,打开电脑,启动VSM软件。 ②观察了解仪器的结构。 ③学习仪器的原理和测量方法。 2.仪器校准 ①取下样品,磁矩调零。 ②磁场对中,使得正向加磁场的剩磁约80 Oe,反向磁场的剩磁约-80 Oe。 ③用已知质量、磁矩的纯镍球定标。 3.样品测量 ①增加磁场,将待测样品反复磁化多次。 ②将样品固定到样品杆,粗测磁矩。 ③确定所用磁场大小、磁矩量程。 ④测量样品的磁滞回线。 4.根据测量结果,绘出样品的磁滞回线,由此确定样品饱和磁化强度、矫顽力等参数。 五、思考题 1.VSM如何实现磁矩测量的? 2. 正是测试前磁矩是如何定标的? 3.为何要进行磁场零点调节?如果不调零,对测量结果有何影响?

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

磁性材料BH特性测量讲义

近代物理实验讲义BH特性测量 南京理工大学 物理实验中心

2009.1.20 BH特性测量 引言 磁性材料是我们广泛使用的一类材料,它与我们的生产生活紧密相关。许多生产设备上都安装有由磁性材料制成的部件,比如发电机中的永磁体、电动机中的转子、各类电磁铁中的铁芯、用于密封润滑的磁性液体,还有磁性液体选矿。近年来兴起的纳米技术更是使磁性材料研究和应用达到了新的高度。纳米磁性材料由于具有单畴结构导致的高矫顽力或者尺度小于磁畴而导致的超顺磁状态而在高密度磁存储和生物医学方面展现出了诱人的应用前景。 我们使用的磁性材料根据其矫顽力的大小可以分成三类,即硬磁材料、半硬磁材料、软磁材料。其中硬磁材料具有很高的矫顽力,适合用于需要永久磁场的场合,比如电机定子中的磁瓦、扬声器中的永磁体等等。 磁性参数的测试是评价一种磁性材料应用潜力的一个重要手段,因此我们有必对各种磁性材料的次性能进行测量。 一、实验目的 A 掌握磁化曲线和磁滞回线中涉及的各类物理量的物理含义,及其对于应 用的参考价值; B掌握HT610 B-H硬磁材料测量系统的结构和测量原理;

C 掌握利用该系统研究硬磁材料(AlNiCo合金)的退磁曲线、磁滞回线; 研究被测材料的磁特性,即B r(剩磁)、H c(矫顽力)、(BH)max (最大磁能积)、Rs(矩形比)等几项基本磁性能参数的方法。 二、实验设备 HT610 B-H硬磁材料磁特性测量仪,计算机,待测的硬磁样品(AlNiCo合金) 三、实验原理 在铁磁性材料中由于磁矩之间的交换作用,它们会自发的沿平行方向进行排列。由于磁体本身具有一定的几何尺寸,当所有原子的磁矩都同向排列时将会导致磁体表面产生表面磁极。表面磁极会在磁体内部产生退磁场,磁体内的原子磁矩与退磁场相互作用,具有退磁场能。为了降低退磁场能磁体会由单畴结构转变为多畴结构,即由整个磁体内部所有原子磁矩一致取向转变为由一系列小的区域构成,在每个小的区域内部原子磁矩取向基本相同,但是不同区域内部的原子磁矩取向具有随机性。我们把原子磁矩取向基本相同的小区域称为磁畴。磁畴与磁畴之间存在磁矩取向的过渡层,这就是畴壁。畴壁具有畴壁能。磁畴大小的分布主要是由畴壁能和退磁场能之和的极小值决定的。当外磁场由零逐步增大时,处 于其中的磁体对外磁场做出响应, 原子磁矩发生转动使其沿外磁场方 向排列,主要表现为磁畴畴壁的移 动,即磁矩与外磁场方向相同的磁 畴的畴壁向外扩张,磁矩与外磁场 不同的磁畴的磁畴收缩,或者表现 为磁畴的转动。通过畴壁的移动或 者磁畴的转动,使磁体内部的磁化 强度随外磁场的增强而逐步增强, 当所有的原子磁矩都沿外磁场方向图 1 磁化曲线和磁滞回线

实验一 常用电子仪器使用练习

实验一常用电子仪器使用练习、用万用表 测试二极管、三极管 模拟电子技术基础实验常用的电子仪器有: 1、通用示波器20MHZ 2、低频信号发生器 HG1021型 3、晶体管毫伏表:DA-16 4、万用表(500型)或数字万用表 5、直流稳压电源+12V、500mA 为了在实验中能准确地测量数据,观察实验现象,必须学会正确地使用这些仪器的方法,这是一项重要的实验技能,因此以后每次实验都要反复进行这方面的练习。 一、实验目的 (一)学习或复习示波器、低频信号发生器、晶体管毫伏表及直流稳压电源的使用方法。 (二)学习用万用表辨别二极管、三极管管脚的方法及判断它们的好坏。 (三)学习识别各种类型的元件。 二、实验原理 示波器是一种用途很广的电子测量仪器。利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等。 通用示波器的结构包括示波管、垂直放大、水平放大、触发、扫描及电源等六个主要部分,各部分作用见附录。YX4320型波器。 三、预习要求 实验前必须预习实验时使用的示波器、低频信号发生器,万用表的使用说明及注意事项等有关资料。 四、实验内容及步骤 (一)电子仪器使用练习 1、将示波器电源接通1至2分钟,调节有关旋钮,使荧光屏上出现扫描线,熟悉“辉度”、“聚焦”、“X轴位移”、“Y轴位移”等到旋钮的作用。 2、启动低频信号发生器,调节其输出电压(有效值)为1~5V,频率为1KHZ,

用示波器观察信号电压波形,熟悉“Y轴衰减”和“Y轴增幅”旋钮的作用。 3、调节有关旋钮,使荧光屏上显示出的波形增加或减少(例如在荧光屏上得到一个、三个或六个完整的正弦波),熟悉“扫描范围”及“扫描微调”旋钮的作用。 4、用晶体管毫伏表测量信号发生器的输出电压。将信号发生器的“输出衰减”开关置0db、20db、40db、60db位置,测量其对应的输出电压。测量时晶体管毫伏表的量程要选择适当,以使读数准确。注意不要过量程。 (二)用万用表辨别二极管的极性、辨别二极管e、b、c各极、管子的类型(PNP 或NPN)及其好坏。 1、利用万用表测试晶体二极管。 (1)鉴别正、负极性 万用表欧姆档的内部电路可以用图1-1(b)所示电路等效,由图可见,黑棒为正极性,红棒为负极性。将万用表选在R×100档,两棒接到二极管两端如图1-1(a),若表针指在几KΩ以下的阻值,则接黑棒一端为二极管的正极,二极管正向导通;反之,如果表针指向很大(几百千欧)的阻值,则接红棒的那一端为正极。 (2)鉴别性能 将万用表的黑棒接二极管正极,红棒接二极管负极,测得二极管的正向电阻。一般在几KΩ以下为好,要求正向电阻愈小愈好。将红棒接二极管的正极,黑棒接二极管负极,可测量出反向电阻。一般应大于200KΩ以上。 2、利用万用表测试小功率晶体三极管 晶体三极管的结构犹如“背靠背”的两个二极管,如图1-2所示。测试时用R ×100档。

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

磁性基本测量方法

1 磁性基本测量方法 磁性测量 组织结构不敏感量(内禀参量、本征参量) 组织结构敏感量(非本征参量) 物质结构与相关现象 交变磁场条件下的磁参数测量 M S 、T C 、K 1、λS 等 M r 、B r 、H C 、μ、χ等 磁畴结构、磁矩取向、各种磁效应(磁热、磁光、磁电、磁致伸缩、磁共振等)

2 冲击法测磁性材料参数 O :标准环形试样; N :磁化线圈; n :测量线圈;G :冲击检流计; A :直流电流表;M :标准互感器; K 1、K 2:双掷开关;R 1、R 2:可变电阻 Ni H =在N 线圈中通以电流i ,则在N 中产生磁场: N :磁化线圈匝数 :试样平均周长 试样被磁化,磁感应强度为B K 1突然换向(在极短时间τ秒内) H H H B B B →+→+:-:-B S φ=磁通量: S :试样的截面积 冲击法测磁原理图 (磁化曲线和磁滞回线)

3 r :测量回路中的总折合电阻 磁通量的变化,引起线 圈n (匝数为n )中产生 感生电动势: d dB n nS d d φε=-=-ττ在测量回路(由n 、M 、G 、R 3、R 4组成)中产生瞬时电流: 0i r ε=由冲击检流计测出其电量Q : B 000B nS Q i d d dB 2nSB/r r r Q C τ τ-ε?=τ=τ=-=-???=α????Cr B 2nS α=-α:冲击检流计的偏转角; C :冲击检流计常数

4 Cr 的求法: di M d 'ε=-τ K 2合上标准互感器M 的线路,M 主线圈上的电流i : 其副线圈两端产生的感应电动势为: 0i '→M :互感器的互感系数 测量回路中的感生电流: 0i r 'ε'=通过检流计的电量(相应偏转角为α0): i 00000M M Q C i d d d i r r r 'ττ'ε'''=α=τ=τ=-τ=-???0Mi Cr '=-αCr :测量回路的冲击常数 在不同H 条件下,测出B ,可绘出磁化曲线。 测量磁滞回线的基本原理与此相同。

第三章 磁性材料

第三章磁性材料 物质磁性的研究是近代物理学的重要领域之一。磁性现象的范围很广泛。从微观粒子到宏观物体,以至于宇宙天体,都具有某种程度的磁性。 磁性现象很早就被发现,我国人民在3000多年前就发现了磁石(Fe3O4)能相互吸引及磁石吸引铁的现象。我国古代的四大发明之一指南针即是例证。 随着近代科学技术的发展,由于金属和合金磁性材料的电阻率低,损耗大,已不能满足应用的需要,尤其在高频范围。 磁性无机材料科学技术除了有高电阻、低损耗的优点以外,还具备各种不同的磁学性能,因此他们在无线电电子学、自动控制、电子计算机、信息存储,激光调制等方面,都有广泛的应用。 磁性无机材料一般是含铁及其他元素的复杂氧化物,通常称为铁氧体(ferrite),它的电阻率为10—106Ω·m,属于半导体范围。目前,铁氧体已发展成为一门独立科学。 第一节磁性的广泛 物质的磁性来源于原子的磁性。

原子的磁性包括三个部分:电子的自旋磁矩、电子的轨道磁矩(由电子绕原子核的运动产生)和原子核的磁矩。 原子核的磁矩一般比电子的磁矩小的多(相差三个数量级),可以忽略不计。所以原子的总磁矩是电子的自旋磁矩和轨道磁矩的总和。 电子绕原子核运动产生的轨道磁矩和角动量的比值r为: 电子的自旋磁矩和角动量的比值为: 这表明,电子自旋运动的磁矩比轨道运动的磁矩大一倍。 实验证明,原子组成分子或宏观物体后,其平均磁矩往往不等于孤立原子的磁矩,因为原子之间的相互作用会引起磁矩的变化。 很多磁性材料的电子自旋磁矩要比电子轨道磁矩大。这是因为在晶体中,电子的轨道磁矩受晶体(格)场的作用,或者说轨道磁矩被“猝灭”或“冻结”了,

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

磁性材料B-H特性的测量讲解学习

磁性材料B-H 特性的测量 摘要: 关键词:B-H 磁滞回线 剩磁B r 最大磁能积(BH )m 退磁曲线 矫顽力B H c 一、引言 磁性材料,一般只具有铁磁性或亚铁磁性并具有实际应用价值的磁有序材料。广义的磁性材料也包括具有实际应用价值或可能应用的反铁磁材料或其他弱磁性材料。 磁性材料种类很多,磁特性参量不少。从技术应用角度出发,常关注材料的B-H 特性。从B-H 磁滞回线上可以方便地得到这样一些参量:(1)剩余磁感应强度B r (简称剩磁),其意义在于磁性材料被饱和磁化后,材料内部磁化场下降到零时,材料内所保存的磁感应强度值,通常M r

磁铁的材质及性能

磁铁的材质及性能 一、磁铁的种类 磁铁的种类很多,一般分为永磁和软磁两大类,我们所说的磁铁,一般都是指永磁磁铁,永磁磁铁又分二大分类: 第一大类是:金属合金磁铁包括钕铁硼磁铁(Nd2Fe14B)、钐钴磁铁(SmCo)、铝镍钴磁铁(ALNiCO) 第二大类是:铁氧体永磁材料(Ferrite) 1、钕铁硼磁铁:它是目前发现商品化性能最高的磁铁,被人们称为磁王,拥有极高的磁性能,其最大磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械加工性能亦相当之好,工作温度最高可达200摄氏度。而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。但因为其化学活性很强,所以必须对其表面凃层处理。(如镀Zn,Ni,电泳、钝化等)。 2. 铁氧体磁铁:它主要原料包括BaFe12O19和SrFe12O19。通过陶瓷工艺法制造而成,质地比较硬,属脆性材料,由于铁氧体磁铁有很好的耐温性、价格低廉、性能适中,已成为应用最为广泛的永磁体。 3. 铝镍钴磁铁:是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。铸造工艺可以加工生产成不同的尺寸和形状,可加工性很好。铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 4、钐钴磁铁(SmCo):依据成份的不同分为SmCo5和 Sm2Co17。由于其材料价格昂贵而使其发展受到限制。钐钴(SmCo)作为稀土永磁铁,不但有着较高的磁能积(14-28MGOe)、可靠的矫顽力和良好的温度特性。与钕铁硼磁铁相比,钐钴磁铁更适合工作在高温环境中。 二、磁铁使用注意事项 下面是关于磁铁的使用注意事项,在使用磁铁产品之前请您务必先行阅读。 1.磁铁在使用过程中应确保工作场所洁净,以免铁屑等细小杂质吸附在磁铁表面影响产品的正常使用。 2.钕铁硼磁铁适宜存放在通风干燥的室内,酸性、碱性、有机溶剂、水中、高温潮湿的环境容易使磁体产生锈蚀,镀层脱落磁体粉化退

磁性材料BH特性的测量

磁性材料B-H 特性的测量 摘要: 关键词:B-H 磁滞回线剩磁B r 最大磁能积(BH )m 退磁曲线矫顽力 一、引言 磁性材料,一般只具有铁磁性或亚铁磁性并具有实际应用价值的磁有序材料。 性材料也包括具有实际应用价值或可能应用的反铁磁材料或其他弱磁性材料。 磁性材料种类很多,磁特性参量不少。从技术应用角度出发,常关注材料的 从B-H 磁滞回线上可以方便地得到这样一些参量: (1 )剩余磁感应强度 B r 意义在于磁性材料被饱和磁化后, 材料内部磁化场下降到零时, 材料内所保 存的磁感应强度 值,通常M r

应力测量方法的历史

应力测试方法的概述 在几乎所有的机械设备中, 都有金属构件承受负载。这些构件内部应力的大小及其变化是造成失效( 如疲劳等) 的主要原因。金属构件内部应力的大小变化除了与其受力情况有关外, 还与其加工过程, 形变及周围的温度有关。为了维护、检查这些和延长使用寿命, 长期以来人们很关注应力的检测。应力的测量方法也很多, 如盲孔法、x 射线法、磁力法、超声方法等。由于超声波所固有的特性, 如穿透能力强、仪器设备简单、测量速度快、低成本等, 利用超声波无损测量材料表面和内部的应力状况的潜力是显而易见的。目前应力超声波测量的主要理论有: 1 声速与应力关系的Hu g h e s 和ke lly 理论 超声波测量应力方法是基于声弹性效应, 其理论基本假设为: ( 1 ) 固体连续性假设; ( 2 ) 声波的小扰动叠加在物体静态有限变形上; ( 3 ) 物体是超弹性的、均匀的; ( 4 ) 物体在变形中可视为等温或等熵过程。1949 年Hughes 利用超声波测量晶体的三阶弹性常数, 以此为基础, 随后超声波应力测量技术得到了较大的发展。1953 年Hughes 和Kelly 利用Lame 常数λ和μ, 以及Murnaghan 常数l 、m 和n提出了各向同性材料的声弹性理论表达式, 建立了超声波在材料中传播速度与应力之间的关系。 设固体不存在机械耗散过程,可得质点的运动方程为: (1) 式中 是固体的单位体积中的势能, η是拉格朗日坐标下的应变矩阵, ai, xk( i , k =1 , 2 , 3 ) 是拉格朗日坐标和位移坐标。这一方程是研究声波在固体中传播的基础。利用( 1 ) 式, Hughes 和kelly 从理论上研究了各向同性中的波速与附加静压力或常应力的关系, 这些关系也是后来人们测量固体应力的理论基础。 选自变量为拉格朗日变量a , b , c , 质点位移用u , v, w 把表示, 由力学定律方程( 1 ) 可以写成

磁性材料与测试

关于磁致伸缩系数λ的测量 一、目的意义 能源、材料和信息并列为现代科学技术的三大支柱,这三大支柱是现代社 会赖以生存和发展的基本条件之一,其中材料科学显得尤为重要。磁致伸缩材料(Magnetostrictive Material)是自20世纪70年代迅速发展起来的新型功能材料,目前已被视为21世纪提高国家高科技综合竞争力的战略性功能材料,由于它在室温下具有机械能—电能转换率高、能量密度大、响应速度快、可靠性好、驱动方式简单等优点,引发了传统电子信息系统、传感系统、振动系统等的革命性变化。磁致伸缩系数是标志磁致伸缩材料性能优劣的关键参数,磁致伸缩系数越大其材料的能量密度越大,获取较大的磁致伸缩系数也是研究人员的目的之一,因此,获得精确的GMM的磁致伸缩系数,对材料的开发应用具有重要意义。本文主要以铁镍合金为例来说明磁致伸缩系数这一性能参数的测量。目前典型的GMM为Terfenol—D,它的磁致伸缩系数一般微米级,因此磁致伸缩系数的测量属于微位移测量范围,对测量的要求较高。 二、原理与测试方法 1、磁致伸缩效应原理 铁磁体在外磁场的作用下被磁化后,其长度及体积发生了变化,,这种现象称为磁致伸缩效应。磁致伸缩现象是1842年由著名物理学家焦(Joule)发现的,故又称为焦耳效应。 图一磁畴磁化与磁致伸缩效应 当磁致伸缩材料未被磁化时,其内部的磁畴取向是随机的,由于材料内部磁畴的

方向和大小在宏观上相互抵消,所以其总体上的磁场强度H 为0.如图一(a )所示。以长方形磁致伸缩材料为研究对象,当材料沿其L 边被磁化后,它的内部磁畴取向基本一致,如图一(b )所示。这时,在宏观上对外其磁场强度为H1.但是,在材料被磁化的同时,材料本身的外形也发生了变化,沿磁化方向伸长了?L ,沿垂直磁化方向缩短了?W ,这就是磁致伸缩效应。 磁致伸缩现象的大小用磁致伸缩系数表示。在磁化过程中,磁体沿磁化方向 单位长度发生的伸缩量称为线磁致伸缩系数,用λ表示,表达式为 L L ?=λ 式中:L ?此为材料长度变化量;L 为材料原始长度。λ符号为正时,表示材料随磁场强度增强材料的长度是伸长的,称为正磁致伸缩;元符号为负时,表示材料随磁场强度增强材料的长度是缩短的,称为负磁致伸缩。 2、磁致伸缩系数的测量方法 目前国内外测量磁致伸缩系数的方法有电阻应变片法、电容法、光杠杆法、 干涉法等。其中电阻应变片法和电容法是比较完善的测量方式,另外,根据不同的测量原理,还有磁矩转动法、铁磁共振法、位移传递法等测量方式。下面以电阻应变法为例来说明磁致伸缩系数的测量。 图2 单臂工作电桥 将电阻应变片粘贴在超磁致伸缩材料上,再把贴有应变片的样品放入磁场中,在磁场的作用下样品产生磁致伸缩L L ?,磁致伸缩引起应变片的电阻R 发生

相关主题
文本预览