当前位置:文档之家› 磁性材料测量(1)—磁测量导论

磁性材料测量(1)—磁测量导论

磁性材料测量(1)—磁测量导论
磁性材料测量(1)—磁测量导论

磁测量导论

磁性测量的范围不仅仅局限于磁性材料测试或磁场测量。直接或间接测量磁性参数,例如磁场强度H、磁感应强度B、磁导率μ、磁化系数Χ、磁致伸缩系数λ,常用于科学和技术的其他领域中,像古地磁学、磁考古学、矿山探测、位移或距离检测、电流检测、材料无损检测和医学诊断等。磁场测量实际应用是无限的,例如可以使用磁致伸缩传感器测试其他物质的数量,如酸度pH值、血凝固度、蓖麻油(蓖麻毒素)浓度甚至沙门氏菌的存在。

尽管磁和电的测量需要类似的“工具”(两者都是通过电压或电流确定),但磁场测量通常更加复杂甚至更加不明确。多年来,仍假设磁性材料磁化由磁场强度H和磁感应强度B两个参数表示。然而,几年前的公认结论(国际标准紧随其后)是与磁感应强度相比,为少数人熟知的名词——极化强度J(J=B-μ0H)能更准确地描述材料的磁化状态。此外,现在有些专家认为更好的采用磁化强度M来描述磁性材料。在磁性材料磁场测量上有两个学派:一个是通过应用安培定律(通过测量励磁电流)间接测量;另一个通过测量线圈(应用法拉第电磁感应定律)直接测量。在真正选择测量磁场的传感器时,目前仍在讨论是测量磁场强度H还是磁感应强度B。因此,与建立了明确术语的电参量测量相比,磁性测量有许多基本问题仍在讨论中。

在电气测量方面,电流与电压之间存在简单关系,可表达为欧姆定律。如图1.1所示测试样品,电势差由供电电压V表示,电流用I表示,电流值取决于材料的电阻率ρ,电阻为R=ρL/A(L是样品长度,A是横截面积)。根据欧姆定律,电流为I=V/R,在电场E作用情况下,更精确地反映材料电阻率ρ的是电流密度J。

由图1.1还可得出,磁性材料的响应由磁场强度H作用下的磁导率μ表示,流过线圈的电流I产生H,也就是线圈中产生了磁通Φ。换句话说,磁场强度H作用下材料的磁导率μ可由磁通量密度(即磁感应强度)B=Φ/A表示。磁感应强度通常由二次侧n 匝线圈感应电压来测量——电压值取决于磁感应强度的导数。在励磁磁场强度H和响应磁感应强度B之间,有相对简单的关系B=μH……(1.2),但是通常磁性材料的测量

比较复杂,远远超过同种情况的电气测量,因为:

(1)通常典型导电材料(如长方体或圆柱形)电流分布是均匀的,只有少数情况例外(举例来说,高频电流导致集肤效应)。对于磁性材料而言,这种情况几乎完全相反——磁性材料测试样品磁化通常都是不均匀的,只有极少数例外(如椭圆形状的样品)。(2)典型的导电材料中,电流和电压之间的关系是高度线性,只有一些个别的例外。因此,材料可以用单一标量值电阻R描述。相反,大多数典型磁性材料,磁场强度和磁感应强度关系是高度非线性的。因此,通常表达两者关系适用B=f(H)描述,这就是磁化曲线。

(3)大多数的导电材料具有相同质性,因此电流也分布均匀。由于磁性材料样品的晶粒和畴结构,在大多数情况下磁化都不均匀。

(4)除少数例外,大多数导电材料呈现各向同性,实际中需要的是电阻率张量。而大多数磁性材料具有各向异性的特性。

因此,假设测试一个典型磁性材料样品,磁感应强度的分布很大程度上取决于样本的形状,因此不能简单地只讨论材料的磁特性。只能预先确定某些样品的属性(如环形铁芯、爱泼斯坦方圈、薄板或细长条形),一般建议采用闭合磁路,因开路样品需要外部磁轭磁化。

即使采用标准的试验样品,因为铁磁材料是非线性的,还有另外一个问题需要解决。那就是磁场强度和磁感应强度两个都有可能是非正弦的(如果是使用交流试验方法),磁感应强度和磁场强度两者哪一个采用正弦的,测量结果有非常大的差异。公认的标准是磁感应强度必须是正弦的,这需要使用特殊的先进数控磁化设备,产生高值的磁感应强度。

然而,即使测试样品采用确定的形状和严格的磁化波形,还有许多其他困难需要克服。因为材料通常各向异性,应该精确地确定磁化方向,这个问题再二维或三维测试中更加重要。测试结果很大程度上还要受到磁化频率的影响。在直流(静态)磁化情况下,也会出现额外问题,因为根据法拉第定律,若要产生感应电压,磁通必须是交变的。由于磁性材料测试中面临的大量困难,因此大多数测试只能在专业实验室中进行。

磁滞回线通常被视为磁性材料具有的一种现象,因此也是一个最经常测试的磁特性。图1.2为磁滞回线的典型测试方法,因为磁感应强度为时间的导数,尽管先进的示波器可以执行操作,但通常积分放大器是必不可少的。励磁磁场强度通常取决于磁化电流值(电压降V H),根据安培定律H=I1N1/L(L是磁路长度,在环形样品中取平均周长,N1是磁化绕组匝数)。磁感应强度通常可由法拉第定律dB/dt=-V2N2/A得出。

马蹄型永久磁铁(见图1.3)通常被用作一个磁性的标志,现代稀土磁铁可产生的BH高于400kJ/m3,非常接近于理论极限假定为485kJ/m3。诸如1200kA/m以上(磁)矫顽力的非常大磁场的测量研究,促进了硬磁材料测试新方法的发展,其中一种解决方案是使用脉冲测试领域的技术。

磁场可以影响许多其他的物理特性,例如电阻率、机械应力、光学特性等。因此,这些现象通常用于磁场传感器的设计。霍尔效应传感器、磁阻传感器和电感传感器等磁场传感器,不仅经常用于磁场的检测,还可用于磁性材料无损检测、材料评价和其他量的测量,特别是机械和电信号的测量。当然,也可以用于设计商用测量仪器,目前磁场测量仪器市场上,超导量子干涉器件具有测量几个fT(10-15T)低磁场的能力,这小到可以与人类大脑活动的磁场相类比。对于小磁场的测量,常用磁通门传感器,而霍尔效应传感器常用于测量大的磁场。

地球的磁场会造成磁测量中一个很大的问题,若测量几个fT(10-15T)的低磁场,就必须考虑强度超过其大小百万倍(大约50μT)的地球磁场的存在。此外,该领域伴随着类似或更大的工业磁干扰,特殊的磁屏蔽室是该领域内测量不可或缺的。

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换

《电子测量与仪器》习题答案解析

《电子测量与仪器》习题参考答案 习题1 一、填空题 1.比较法;数值;单位;误差。 2.电子技术;电子技术理论;电子测量仪器。 3.频率;电压;时间。 4.直接测量;间接测量;时域测量;频域测量;数据域测量。 5.统一性;准确性;法制性。 6.国家计量基准;国家副计量基准;工作计量基准。 7.考核量值的一致性。 8.随机误差;系统误差;粗大误差。 9.有界性;对称性。 10.绝对值;符号。 11.准确度;精密度。 12.2Hz ;0.02%。 13.2/3;1/3~2/3。 14.分组平均法。 15.物理量变换;信号处理与传输;测量结果的显示。 16.保障操作者人身安全;保证电子测量仪器正常工作。 二、选择题 1.A 2.C 3.D 4.B 5.B 6.D 7.A 8.B 9.B 10.D 三、简答题 1.答:测量是用被测未知量和同类已知的标准单位量比较,这时认为被测量的真实数值是存在的,测量误差是由测量仪器和测量方法等引起的。计量是用法定标准的已知量与同类的未知量(如受检仪器)比较,这时标准量是准确的、法定的,而认为测量误差是由受检仪器引起的。 由于测量发展的客观需要才出现了计量,测量数据的准确可靠,需要计量予以保证,计量是测量的基础和依据,没有计量,也谈不上测量。测量又是计量联系实际应用的重要途径,可以说没有测量,计量也将失去价值。计量和测量相互配合,才能在国民经济中发挥重要作用。 2.答:量值的传递的准则是:高一级计量器具检定低一级计量器具的精确度,同级计量器具的精确度只能通过比对来鉴别。 3.答:测量误差是由于电子测量仪器及测量辅助设备、测量方法、外界环境、操作技术水平等多种因素共同作用的结果。 产生测量误差的主要原因有:仪器误差、影响误差、理论误差和方法误差、人身误差、测量对象变化误差。按照误差的性质和特点,可将测量误差分为随机误差、系统误差、粗大误差三大类。误差的常用表示方法有绝对误差和相对误差两种。 四、综合题 1.解:绝对误差 ΔX 1=X 1-A 1=9-10=-1V ΔX 2=X 2-A 2=101-100=1V 相对误差 1111 1%100100%A X A γ-=-?=?= 2 22 1 1%100 100%A X A γ=?=?= 2.解:ΔI m1= 1m γ× X m1 =± 0.5%×400=±2mA ,示值范围为100±2mA ;

磁性材料分类

磁性材料 主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质. 磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。 从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。 磁性材料从形态上讲。包括粉体材料、液体材料、块体材料、薄膜材料等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。 顺磁性 paramagnetism 顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10-5~10-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。 顺磁性是一种弱磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。 抗磁性 diamagnetism 抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物

实验一常用电子测量仪器使用

实验一常用电子测量仪器 使用 Prepared on 24 November 2020

实验一常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、低频信号发生器、直流稳压电源、交流毫伏表等的主要技术指标、性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、低频信号发生器、直流稳压电源、交流毫伏表等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 图1-1 模拟电子电路中常用电子仪器布局图 一、数字示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。 示波器面板介绍

单踪示波模式 注意下列几点: 8. 频率显示 显示当前触发通道波形的频率值。UTILITY 菜单中的“频率计”设置为“开启”才能显示对应信号的频率值,否则不显示。 10.触发位移 使用水平 POSITION 旋钮可修改该参数。向右旋转使箭头(初始位置为屏幕正中央)右移,触发位移值(初始值为 0)相应减小;向左旋转使箭头左移,触发位移值相应增大。按下该键使参数自动恢复为 0,且箭头回到屏幕正中央。 11. 水平时基 表示屏幕水平轴上每格所代表的时间长度。使用 S/DIV 旋钮可修改该参数,可设置范围为~50S。 根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或cm)与“水平时基”指示值(t/div)的乘积,即可算得信号频率的实测值。 13. 电压档位 表示屏幕垂直轴上每格所代表的电压大小。使用 VOLTS/DIV 旋钮可修改该参数,可设置范围为 2mV~10V。

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

实验三 磁性材料的VSM测量

实验三、磁性材料的VSM 测量 一、实验目的 1.了解VSM 仪器的测量原理。 2.了解VSM 的操作要领和注意事项。 3.了解样品磁性测量的方法。 二、实验设备 天平、VSM 等。 三、原理说明 VSM 系统的主体部件是由直流线绕磁铁、振动器和感应线圈组成。装在振动杆上的样品位于磁极中央感应线圈中心连线处,在感应线圈的范围内垂直磁场方向振动。图1是VSM 的结构简图,图2是VSM 的实物图。振动样品磁强计的原理就是将一个小尺度的被磁化了的样品视为磁偶极子并使其在原点附近作等幅振动,利用电子放大系统,将处于上述偶极场中的检测线圈中的感生电压进行放大检测,再根据已知的放大后的电压和磁矩关系求出被测磁矩。 图2 VSM 实物图 设磁化场沿x 轴向,而样品S 沿z 向作等幅振动。在磁铁极头端面处对称放置匝数为N 、截面为S 的检测线圈,其对称轴垂直于z 轴。则可得到穿过第n 匝内dsn 面积元的磁通为: 5n n n n n z r 4Z MX 3ds )r (H d π= =φ 而n n φ∑=φ,由此可得出检测线圈内的总感生电压为: n 7n n 2 n n n 0ds r )z 5r (X ∑t ωcos ωa π4M 3dt φd )t (ε∫== 其中a 0为样品的振幅,ω为振动频率。从方程可以得到,检测线圈中的感生电势正比于样品总磁矩M 及其振动频率ω和振幅a 0,同时和线圈的匝数、大小形状及线圈和样品间的距离有

关。因此,将线圈的几何因素及与样品的间距固定,样品的振幅和频率也固定,则感生电压仅和样品的总磁矩成正比。经过定标以后,就可根据感生电压的大小推知样品的总磁矩:将该磁矩除以样品体积或质量,就可得出该样品的单位质量或单位体积的磁矩。如果将高斯计的输出信号和感生电压分别输入到X-Y记录仪的两个输入端,就可以得到样品的磁滞回线。 四、实验步骤 1.开机预热30分钟 ①打开电源,打开电脑,启动VSM软件。 ②观察了解仪器的结构。 ③学习仪器的原理和测量方法。 2.仪器校准 ①取下样品,磁矩调零。 ②磁场对中,使得正向加磁场的剩磁约80 Oe,反向磁场的剩磁约-80 Oe。 ③用已知质量、磁矩的纯镍球定标。 3.样品测量 ①增加磁场,将待测样品反复磁化多次。 ②将样品固定到样品杆,粗测磁矩。 ③确定所用磁场大小、磁矩量程。 ④测量样品的磁滞回线。 4.根据测量结果,绘出样品的磁滞回线,由此确定样品饱和磁化强度、矫顽力等参数。 五、思考题 1.VSM如何实现磁矩测量的? 2. 正是测试前磁矩是如何定标的? 3.为何要进行磁场零点调节?如果不调零,对测量结果有何影响?

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

磁性材料BH特性测量讲义

近代物理实验讲义BH特性测量 南京理工大学 物理实验中心

2009.1.20 BH特性测量 引言 磁性材料是我们广泛使用的一类材料,它与我们的生产生活紧密相关。许多生产设备上都安装有由磁性材料制成的部件,比如发电机中的永磁体、电动机中的转子、各类电磁铁中的铁芯、用于密封润滑的磁性液体,还有磁性液体选矿。近年来兴起的纳米技术更是使磁性材料研究和应用达到了新的高度。纳米磁性材料由于具有单畴结构导致的高矫顽力或者尺度小于磁畴而导致的超顺磁状态而在高密度磁存储和生物医学方面展现出了诱人的应用前景。 我们使用的磁性材料根据其矫顽力的大小可以分成三类,即硬磁材料、半硬磁材料、软磁材料。其中硬磁材料具有很高的矫顽力,适合用于需要永久磁场的场合,比如电机定子中的磁瓦、扬声器中的永磁体等等。 磁性参数的测试是评价一种磁性材料应用潜力的一个重要手段,因此我们有必对各种磁性材料的次性能进行测量。 一、实验目的 A 掌握磁化曲线和磁滞回线中涉及的各类物理量的物理含义,及其对于应 用的参考价值; B掌握HT610 B-H硬磁材料测量系统的结构和测量原理;

C 掌握利用该系统研究硬磁材料(AlNiCo合金)的退磁曲线、磁滞回线; 研究被测材料的磁特性,即B r(剩磁)、H c(矫顽力)、(BH)max (最大磁能积)、Rs(矩形比)等几项基本磁性能参数的方法。 二、实验设备 HT610 B-H硬磁材料磁特性测量仪,计算机,待测的硬磁样品(AlNiCo合金) 三、实验原理 在铁磁性材料中由于磁矩之间的交换作用,它们会自发的沿平行方向进行排列。由于磁体本身具有一定的几何尺寸,当所有原子的磁矩都同向排列时将会导致磁体表面产生表面磁极。表面磁极会在磁体内部产生退磁场,磁体内的原子磁矩与退磁场相互作用,具有退磁场能。为了降低退磁场能磁体会由单畴结构转变为多畴结构,即由整个磁体内部所有原子磁矩一致取向转变为由一系列小的区域构成,在每个小的区域内部原子磁矩取向基本相同,但是不同区域内部的原子磁矩取向具有随机性。我们把原子磁矩取向基本相同的小区域称为磁畴。磁畴与磁畴之间存在磁矩取向的过渡层,这就是畴壁。畴壁具有畴壁能。磁畴大小的分布主要是由畴壁能和退磁场能之和的极小值决定的。当外磁场由零逐步增大时,处 于其中的磁体对外磁场做出响应, 原子磁矩发生转动使其沿外磁场方 向排列,主要表现为磁畴畴壁的移 动,即磁矩与外磁场方向相同的磁 畴的畴壁向外扩张,磁矩与外磁场 不同的磁畴的磁畴收缩,或者表现 为磁畴的转动。通过畴壁的移动或 者磁畴的转动,使磁体内部的磁化 强度随外磁场的增强而逐步增强, 当所有的原子磁矩都沿外磁场方向图 1 磁化曲线和磁滞回线

实验一 常用电子仪器使用练习

实验一常用电子仪器使用练习、用万用表 测试二极管、三极管 模拟电子技术基础实验常用的电子仪器有: 1、通用示波器20MHZ 2、低频信号发生器 HG1021型 3、晶体管毫伏表:DA-16 4、万用表(500型)或数字万用表 5、直流稳压电源+12V、500mA 为了在实验中能准确地测量数据,观察实验现象,必须学会正确地使用这些仪器的方法,这是一项重要的实验技能,因此以后每次实验都要反复进行这方面的练习。 一、实验目的 (一)学习或复习示波器、低频信号发生器、晶体管毫伏表及直流稳压电源的使用方法。 (二)学习用万用表辨别二极管、三极管管脚的方法及判断它们的好坏。 (三)学习识别各种类型的元件。 二、实验原理 示波器是一种用途很广的电子测量仪器。利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等。 通用示波器的结构包括示波管、垂直放大、水平放大、触发、扫描及电源等六个主要部分,各部分作用见附录。YX4320型波器。 三、预习要求 实验前必须预习实验时使用的示波器、低频信号发生器,万用表的使用说明及注意事项等有关资料。 四、实验内容及步骤 (一)电子仪器使用练习 1、将示波器电源接通1至2分钟,调节有关旋钮,使荧光屏上出现扫描线,熟悉“辉度”、“聚焦”、“X轴位移”、“Y轴位移”等到旋钮的作用。 2、启动低频信号发生器,调节其输出电压(有效值)为1~5V,频率为1KHZ,

用示波器观察信号电压波形,熟悉“Y轴衰减”和“Y轴增幅”旋钮的作用。 3、调节有关旋钮,使荧光屏上显示出的波形增加或减少(例如在荧光屏上得到一个、三个或六个完整的正弦波),熟悉“扫描范围”及“扫描微调”旋钮的作用。 4、用晶体管毫伏表测量信号发生器的输出电压。将信号发生器的“输出衰减”开关置0db、20db、40db、60db位置,测量其对应的输出电压。测量时晶体管毫伏表的量程要选择适当,以使读数准确。注意不要过量程。 (二)用万用表辨别二极管的极性、辨别二极管e、b、c各极、管子的类型(PNP 或NPN)及其好坏。 1、利用万用表测试晶体二极管。 (1)鉴别正、负极性 万用表欧姆档的内部电路可以用图1-1(b)所示电路等效,由图可见,黑棒为正极性,红棒为负极性。将万用表选在R×100档,两棒接到二极管两端如图1-1(a),若表针指在几KΩ以下的阻值,则接黑棒一端为二极管的正极,二极管正向导通;反之,如果表针指向很大(几百千欧)的阻值,则接红棒的那一端为正极。 (2)鉴别性能 将万用表的黑棒接二极管正极,红棒接二极管负极,测得二极管的正向电阻。一般在几KΩ以下为好,要求正向电阻愈小愈好。将红棒接二极管的正极,黑棒接二极管负极,可测量出反向电阻。一般应大于200KΩ以上。 2、利用万用表测试小功率晶体三极管 晶体三极管的结构犹如“背靠背”的两个二极管,如图1-2所示。测试时用R ×100档。

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

磁性基本测量方法

1 磁性基本测量方法 磁性测量 组织结构不敏感量(内禀参量、本征参量) 组织结构敏感量(非本征参量) 物质结构与相关现象 交变磁场条件下的磁参数测量 M S 、T C 、K 1、λS 等 M r 、B r 、H C 、μ、χ等 磁畴结构、磁矩取向、各种磁效应(磁热、磁光、磁电、磁致伸缩、磁共振等)

2 冲击法测磁性材料参数 O :标准环形试样; N :磁化线圈; n :测量线圈;G :冲击检流计; A :直流电流表;M :标准互感器; K 1、K 2:双掷开关;R 1、R 2:可变电阻 Ni H =在N 线圈中通以电流i ,则在N 中产生磁场: N :磁化线圈匝数 :试样平均周长 试样被磁化,磁感应强度为B K 1突然换向(在极短时间τ秒内) H H H B B B →+→+:-:-B S φ=磁通量: S :试样的截面积 冲击法测磁原理图 (磁化曲线和磁滞回线)

3 r :测量回路中的总折合电阻 磁通量的变化,引起线 圈n (匝数为n )中产生 感生电动势: d dB n nS d d φε=-=-ττ在测量回路(由n 、M 、G 、R 3、R 4组成)中产生瞬时电流: 0i r ε=由冲击检流计测出其电量Q : B 000B nS Q i d d dB 2nSB/r r r Q C τ τ-ε?=τ=τ=-=-???=α????Cr B 2nS α=-α:冲击检流计的偏转角; C :冲击检流计常数

4 Cr 的求法: di M d 'ε=-τ K 2合上标准互感器M 的线路,M 主线圈上的电流i : 其副线圈两端产生的感应电动势为: 0i '→M :互感器的互感系数 测量回路中的感生电流: 0i r 'ε'=通过检流计的电量(相应偏转角为α0): i 00000M M Q C i d d d i r r r 'ττ'ε'''=α=τ=τ=-τ=-???0Mi Cr '=-αCr :测量回路的冲击常数 在不同H 条件下,测出B ,可绘出磁化曲线。 测量磁滞回线的基本原理与此相同。

第三章 磁性材料

第三章磁性材料 物质磁性的研究是近代物理学的重要领域之一。磁性现象的范围很广泛。从微观粒子到宏观物体,以至于宇宙天体,都具有某种程度的磁性。 磁性现象很早就被发现,我国人民在3000多年前就发现了磁石(Fe3O4)能相互吸引及磁石吸引铁的现象。我国古代的四大发明之一指南针即是例证。 随着近代科学技术的发展,由于金属和合金磁性材料的电阻率低,损耗大,已不能满足应用的需要,尤其在高频范围。 磁性无机材料科学技术除了有高电阻、低损耗的优点以外,还具备各种不同的磁学性能,因此他们在无线电电子学、自动控制、电子计算机、信息存储,激光调制等方面,都有广泛的应用。 磁性无机材料一般是含铁及其他元素的复杂氧化物,通常称为铁氧体(ferrite),它的电阻率为10—106Ω·m,属于半导体范围。目前,铁氧体已发展成为一门独立科学。 第一节磁性的广泛 物质的磁性来源于原子的磁性。

原子的磁性包括三个部分:电子的自旋磁矩、电子的轨道磁矩(由电子绕原子核的运动产生)和原子核的磁矩。 原子核的磁矩一般比电子的磁矩小的多(相差三个数量级),可以忽略不计。所以原子的总磁矩是电子的自旋磁矩和轨道磁矩的总和。 电子绕原子核运动产生的轨道磁矩和角动量的比值r为: 电子的自旋磁矩和角动量的比值为: 这表明,电子自旋运动的磁矩比轨道运动的磁矩大一倍。 实验证明,原子组成分子或宏观物体后,其平均磁矩往往不等于孤立原子的磁矩,因为原子之间的相互作用会引起磁矩的变化。 很多磁性材料的电子自旋磁矩要比电子轨道磁矩大。这是因为在晶体中,电子的轨道磁矩受晶体(格)场的作用,或者说轨道磁矩被“猝灭”或“冻结”了,

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

磁性材料B-H特性的测量讲解学习

磁性材料B-H 特性的测量 摘要: 关键词:B-H 磁滞回线 剩磁B r 最大磁能积(BH )m 退磁曲线 矫顽力B H c 一、引言 磁性材料,一般只具有铁磁性或亚铁磁性并具有实际应用价值的磁有序材料。广义的磁性材料也包括具有实际应用价值或可能应用的反铁磁材料或其他弱磁性材料。 磁性材料种类很多,磁特性参量不少。从技术应用角度出发,常关注材料的B-H 特性。从B-H 磁滞回线上可以方便地得到这样一些参量:(1)剩余磁感应强度B r (简称剩磁),其意义在于磁性材料被饱和磁化后,材料内部磁化场下降到零时,材料内所保存的磁感应强度值,通常M r

磁铁的材质及性能

磁铁的材质及性能 一、磁铁的种类 磁铁的种类很多,一般分为永磁和软磁两大类,我们所说的磁铁,一般都是指永磁磁铁,永磁磁铁又分二大分类: 第一大类是:金属合金磁铁包括钕铁硼磁铁(Nd2Fe14B)、钐钴磁铁(SmCo)、铝镍钴磁铁(ALNiCO) 第二大类是:铁氧体永磁材料(Ferrite) 1、钕铁硼磁铁:它是目前发现商品化性能最高的磁铁,被人们称为磁王,拥有极高的磁性能,其最大磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械加工性能亦相当之好,工作温度最高可达200摄氏度。而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。但因为其化学活性很强,所以必须对其表面凃层处理。(如镀Zn,Ni,电泳、钝化等)。 2. 铁氧体磁铁:它主要原料包括BaFe12O19和SrFe12O19。通过陶瓷工艺法制造而成,质地比较硬,属脆性材料,由于铁氧体磁铁有很好的耐温性、价格低廉、性能适中,已成为应用最为广泛的永磁体。 3. 铝镍钴磁铁:是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。铸造工艺可以加工生产成不同的尺寸和形状,可加工性很好。铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 4、钐钴磁铁(SmCo):依据成份的不同分为SmCo5和 Sm2Co17。由于其材料价格昂贵而使其发展受到限制。钐钴(SmCo)作为稀土永磁铁,不但有着较高的磁能积(14-28MGOe)、可靠的矫顽力和良好的温度特性。与钕铁硼磁铁相比,钐钴磁铁更适合工作在高温环境中。 二、磁铁使用注意事项 下面是关于磁铁的使用注意事项,在使用磁铁产品之前请您务必先行阅读。 1.磁铁在使用过程中应确保工作场所洁净,以免铁屑等细小杂质吸附在磁铁表面影响产品的正常使用。 2.钕铁硼磁铁适宜存放在通风干燥的室内,酸性、碱性、有机溶剂、水中、高温潮湿的环境容易使磁体产生锈蚀,镀层脱落磁体粉化退

磁性材料BH特性的测量

磁性材料B-H 特性的测量 摘要: 关键词:B-H 磁滞回线剩磁B r 最大磁能积(BH )m 退磁曲线矫顽力 一、引言 磁性材料,一般只具有铁磁性或亚铁磁性并具有实际应用价值的磁有序材料。 性材料也包括具有实际应用价值或可能应用的反铁磁材料或其他弱磁性材料。 磁性材料种类很多,磁特性参量不少。从技术应用角度出发,常关注材料的 从B-H 磁滞回线上可以方便地得到这样一些参量: (1 )剩余磁感应强度 B r 意义在于磁性材料被饱和磁化后, 材料内部磁化场下降到零时, 材料内所保 存的磁感应强度 值,通常M r

磁性材料与测试

关于磁致伸缩系数λ的测量 一、目的意义 能源、材料和信息并列为现代科学技术的三大支柱,这三大支柱是现代社 会赖以生存和发展的基本条件之一,其中材料科学显得尤为重要。磁致伸缩材料(Magnetostrictive Material)是自20世纪70年代迅速发展起来的新型功能材料,目前已被视为21世纪提高国家高科技综合竞争力的战略性功能材料,由于它在室温下具有机械能—电能转换率高、能量密度大、响应速度快、可靠性好、驱动方式简单等优点,引发了传统电子信息系统、传感系统、振动系统等的革命性变化。磁致伸缩系数是标志磁致伸缩材料性能优劣的关键参数,磁致伸缩系数越大其材料的能量密度越大,获取较大的磁致伸缩系数也是研究人员的目的之一,因此,获得精确的GMM的磁致伸缩系数,对材料的开发应用具有重要意义。本文主要以铁镍合金为例来说明磁致伸缩系数这一性能参数的测量。目前典型的GMM为Terfenol—D,它的磁致伸缩系数一般微米级,因此磁致伸缩系数的测量属于微位移测量范围,对测量的要求较高。 二、原理与测试方法 1、磁致伸缩效应原理 铁磁体在外磁场的作用下被磁化后,其长度及体积发生了变化,,这种现象称为磁致伸缩效应。磁致伸缩现象是1842年由著名物理学家焦(Joule)发现的,故又称为焦耳效应。 图一磁畴磁化与磁致伸缩效应 当磁致伸缩材料未被磁化时,其内部的磁畴取向是随机的,由于材料内部磁畴的

方向和大小在宏观上相互抵消,所以其总体上的磁场强度H 为0.如图一(a )所示。以长方形磁致伸缩材料为研究对象,当材料沿其L 边被磁化后,它的内部磁畴取向基本一致,如图一(b )所示。这时,在宏观上对外其磁场强度为H1.但是,在材料被磁化的同时,材料本身的外形也发生了变化,沿磁化方向伸长了?L ,沿垂直磁化方向缩短了?W ,这就是磁致伸缩效应。 磁致伸缩现象的大小用磁致伸缩系数表示。在磁化过程中,磁体沿磁化方向 单位长度发生的伸缩量称为线磁致伸缩系数,用λ表示,表达式为 L L ?=λ 式中:L ?此为材料长度变化量;L 为材料原始长度。λ符号为正时,表示材料随磁场强度增强材料的长度是伸长的,称为正磁致伸缩;元符号为负时,表示材料随磁场强度增强材料的长度是缩短的,称为负磁致伸缩。 2、磁致伸缩系数的测量方法 目前国内外测量磁致伸缩系数的方法有电阻应变片法、电容法、光杠杆法、 干涉法等。其中电阻应变片法和电容法是比较完善的测量方式,另外,根据不同的测量原理,还有磁矩转动法、铁磁共振法、位移传递法等测量方式。下面以电阻应变法为例来说明磁致伸缩系数的测量。 图2 单臂工作电桥 将电阻应变片粘贴在超磁致伸缩材料上,再把贴有应变片的样品放入磁场中,在磁场的作用下样品产生磁致伸缩L L ?,磁致伸缩引起应变片的电阻R 发生

(完整版)电子测量仪器的分类及应用

电子测量仪器的分类及应用 电子测量仪器按其工作原理与用途,大致划为以下几类。 1.多用电表 模拟式电压表、模拟多用表(即指针式万用表VOM)、数字电压表、数字多用表(即数字万用表DMM)都属此类。这是经常使用仪表。它可以用来测量交流/直流电压、交流/直流电流、电阻阻值、电容器容量、电感量、音频电平、频率、晶体管NPN或PNP电流放大倍数β值等。 2.示波器 示波器是一种测量电压波形的电子仪器,它可以把被测电压信号随时间变化的规律,用图形显示出来。使用示波器不仅可以直观而形象地观察被测物理量的变化全貌,而且可以通过它显示的波形,测量电压和电流,进行频率和相位的比较,以及描绘特性曲线等。 3.信号发生器 信号发生器(包括函数发生器)为检修、调试电子设备和仪器时提供信号源。它是一种能够产生一定波形、频率和幅度的振荡器。例如:产生正弦波、方波、三角波、斜波和矩形脉冲波等。 4.晶体管特性图示仪 晶体管特性图示仪是一种专用示波器,它能直接观察各种晶体管特性曲线及曲性簇。例如:晶体管共射、共基和共集三种接法的输入、输出特性及反馈特性;二极管的正向、反向特性;稳压管的稳压或齐纳特性;它可以测量晶体管的击穿电压、饱和电流、自或a参数等。 5.兆欧表 兆欧表(俗称摇表)是一种检查电气设备、测量高电阻的简便直读式仪表,通常用来测量电路、电机绕组、电缆等绝缘电阻。兆欧表大多采用手摇发电机供电,故称摇表。由于它的刻度是以兆欧(MΩ)为单位,故称兆欧表。 6.红外测试仪 红外测试仪是一种非接触式测温仪器,它包括光学系统、电子线路,在将信息进行调制、线性化处理后达到指示、显示及控制的目的。目前已应用的红外测温仪有光子测温和热测温仪两种,主要用于电热炉、农作物、铁路钢轨、深埋地下超高压电缆接头、消防、气体分析、激光接收等温度测量及控制场合。 7.集成电路测试仪 该类仪器可对TI1、PM0S、CM0S数字集成电路功能和参数测试,还可判断抹去字的芯片型号及对集成电路在线功能测试、在线状态测试。

磁性材料静态磁特性的测量-Read

磁性材料基本磁化曲线的测量 一、实验目的 1. 通过实验了解铁磁材料基本磁化曲线测试的原理,熟悉磁锻、去磁的过程,以及用数字 磁通计测量磁通的方法,掌握用冲击法测量铁磁材料基本磁化曲线的方法; 2、通过实验熟练掌握数字磁通计的使用方法。 二、磁性材料的静态磁特性的测量原理 1.原理 磁性材料静态磁特性的测试,主要包括基本磁化曲线和磁滞回线及有关磁参量的测试。 静态磁特性测量的基本原理式根据电磁感应原理,当磁化回路中的磁化电流改变时,试样中的磁通量随之改变,在测量线圈两端产生感应电动势,根据冲击检流计偏转和磁化电流确定试样的直流磁性参数。 磁轭由高导磁材料制成,其截面积大于试样截面积50倍。磁轭与试样间的气隙极小,因此磁轭与试样构成的磁路中,可近似地认为磁势全部降落在试样上。根据磁路中的安培环路定律。试样中的磁场强度H 为 L I W H 1= (1) 式中L 为试样的有效长度。 根据电磁感应定理可知,当磁化电流增加I ?时,试样中的磁通量增加?Φ,则测试线圈W 2中的磁通链增加??,即?Φ=?2W ?。??将使数字磁通计产生偏转,其最大偏转值??。因此磁感应强度B 的增量为: S W S B 2? φ?= ?= ? (2) 式中S 为试样的截面积。 常用的测量装置见图1所示,图中: T ~220——去磁用交流调压器220/0~250V ,500V A ; A ——监视去磁电流用的交流安培表,选用量程1A ; E ——直流稳压电源; R 2——多档可选电阻; a.——磁轭。截面积为4900 mm 2; b.——试样。截面积S=100mm 2,试样的有效长度L=230 mm ; W 1——试样的磁化绕组。2000匝(由红色接线柱引出); W 2——磁测试线圈。30匝(由黑色接线柱引出); mA ——直流毫安表; Φ——数字磁通计,选用量程10mWb ; K 1、K 2、K 3一双刀双向开关;

相关主题
文本预览