当前位置:文档之家› 最新结晶原理及操作资料讲解

最新结晶原理及操作资料讲解

最新结晶原理及操作资料讲解
最新结晶原理及操作资料讲解

结晶原理及操作

1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。

从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。

重结晶的一般过程为:

选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。

2、基本操作:

(1)选择溶剂:选择适合的溶剂是重结晶的关键之一,

适宜的溶剂必须符合以下几个条件:

a、与被提纯的有机物不起化学反应;

b、被提纯的有机物在该溶剂中的溶解度随温度变化显

著,在热溶剂中溶解度大,在冷溶剂中溶解度小;

c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去);

d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去;

e、价廉易得、毒性低、容易回收。

选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。具体选择可通过查阅有关化学手册,也可以通过实验来确定。

(2)固体溶解:

待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。)或全溶(不含不溶性杂质)为止,最后再多加计算量20%的溶剂(将溶液稀释,防止热滤时由于溶剂的挥发和温度的下降导致晶体析出),振荡,制成热的近饱和溶液。

(3)除去杂质

a、脱色:若热溶液有色,说明其中有有色杂质,可利用活性炭进行脱色处理,除去有色杂质。

脱色操作:

将沸腾的溶液稍冷后,加入活性炭加热煮沸几分钟,然后趁热过滤,除去活

性炭,得到无色溶液。

注意:

不能向正在沸腾的热溶液中加入活性炭,以免爆沸。活性炭的用量根据溶液颜色的深浅而定,一般为固体粗产物的1~10%,加入过量的活性炭会吸附产物而造成损失。加热煮沸的时间一般为5~10分钟。

b、热滤:待重结晶的有机物热溶液中若有不溶性杂质或经活性炭脱色后必须趁热过滤除去杂质或活性炭。热滤应尽可能快速进行,防止在过滤中由于溶剂挥发或温度下降引起晶体析出,析出的晶体与杂质混在一起,造成损失。为了加快热滤的速度应采取以下措施:

a、选用颈短而粗的玻璃漏斗,避免析出晶体堵塞漏斗颈。

b、使用热水漏斗,保持溶液温度。

c、使用菊花形折叠滤纸,增大过滤面积,提高过滤速度。

4、晶体析出:热滤得到的滤液,放置,让其自然冷却,晶体逐步析出。结晶过程中,如果将溶液急速冷却或剧烈摇动,析出的晶体颗粒太小,晶体表面积大,吸附的杂质较多,纯度较低。因此应将溶液缓慢冷却、静置,得到颗粒较大的晶体。但是,晶体颗粒也不能太大,否则晶体中包含大量的母液,产物纯度过低,也给干燥带来困难。当看到有较大晶体形成时,及时轻轻摇动使之形成均匀的小晶体。如果溶液冷却后没有晶体析出,可以用玻璃棒摩擦器壁或用冰水冷却促使晶体生成。

5、抽滤:结晶完全后,过滤使晶体与母液分离,溶解度大的杂质留在母液中。一般采用抽滤进行过滤,因为抽滤速度快且能吸干母液得到产品纯度高。

抽滤装置由布氏漏斗、吸滤瓶、缓冲瓶、真空泵组成。布氏漏斗插入吸滤瓶时应该让漏斗下端斜口正对吸滤瓶的支管口;漏斗内放一张圆形滤纸,滤纸直径要小于漏斗内径,但必须能完全盖住所有小孔。吸滤前用少量溶剂将滤纸润湿并吸紧。缓冲瓶的作用是调节系统压力,防止倒吸。抽滤时先将晶体和母液转移到布氏漏斗上,使晶体均匀分布在滤纸上,用少量溶剂将粘附在溶器壁上的晶体洗出倒入漏斗,抽气吸干,用玻璃棒挤压晶体,尽量除去母液,用少量溶剂洗涤晶体,继续抽干。结束抽滤时应先打开缓冲瓶上的旋塞放气,内外压力平衡后再关闭真空泵。

6、晶体的干燥:经过抽滤得到的晶体表面吸附有少量溶剂,必须干燥除去,以得到纯净的产品。固体有机物的干燥通常采用烘干法。使晶体干燥,干燥后取下晶体,用玻璃棒轻敲滤纸使粘在滤纸上的晶体全部脱落下来。

二、结晶步骤:

1、固体溶解:

称取待提纯的粗制品己二酸g(或乙酰苯胺3g),放于锥形瓶中,加入ml水(50ml水,理论计算用水量为55ml),加热至沸,振荡,若固体不能全部溶解,可分次添加少量水,每次2~3ml,加热沸腾,振荡,至固体全溶或不再溶解为止,记录加入水量,再过量20%的水,加热至微沸。

2、脱色:热溶液稍冷后,加入0.1~0.5g活性炭,边加热边搅拌,煮沸5~10分钟。

3、热滤:在金属漏斗中注入热水,放于铁圈上,用酒精灯加热侧管,取一个短颈玻璃漏斗放入金属漏斗中,将折叠好的菊花滤纸放在玻璃漏斗上,预热一段时间。用少量热水润湿滤纸,再将沸腾的热溶液倒入漏斗中过滤,每次倒入少量,分几次过滤,瓶中剩余的溶液继续加热保持微沸。过滤完毕,用少量热水洗涤锥形瓶和滤纸。

4、结晶:滤液静置,自然冷却,晶体逐渐析出。

5、抽滤:连接抽滤装置,剪一个大小合适的滤纸放于布氏漏斗上,用少量水润湿后开动真

空泵吸紧,打开缓冲瓶旋塞,将晶体和母液一起倒入漏斗中,晶体要尽可能分布均匀,关闭缓冲瓶旋塞,抽滤,抽干后用少量水洗涤晶体两次,继续抽干。

6、烘干:将滤纸和滤饼一同从漏斗中取出,放在一个干燥洁净的表面皿上,在水蒸气浴上加热,晶体表面的溶剂很快挥发,晶体逐渐干燥。取下晶体,将滤纸上沾附的少量晶体刮下合并在一起。

7、称重计算:

八、注意事项:

1 不能将活性炭加入正在沸腾的溶液中,必须等溶液冷后再加。

2 热滤时漏斗滤纸都要预热,每次倒入少量液体,过滤速度要快,防止在滤纸上出现结晶。

3 结晶析出时要静置切勿摇动。

4 抽滤时注意正确操作

社区护士个人先进事迹材料

“健康守门人”,是周玲玲对自己的定位和理想。周玲玲说,作为一名社区护士,岗位是健康战线最基层、最平凡的,但救死扶伤的神圣职责是一样的,肩负使命,坚守基层,牢筑网底,做好老百姓的健康守门人,就是她的坚持和信念。

立足基层奋发进取

社区医护工作,多么平凡的工作,社区护士,多么平凡的岗位,周玲玲一干已经二十一载。

自1992年从无锡卫生学校护理专业毕业后,周玲玲从来没有离开过基层护理岗位。她先是在无锡县荡口人民医院工作,乡镇医院离家较远,有两小时车程,为了便于工作,她干脆吃住在医院,“那时候还没成家,年轻人总应该多干点。” 她虚心求教,一心扑在工作上,镇医院病人不少,为了病人,她常常放弃休息忘了吃饭,加班加点是常有的事。由于工作认真负责,很快在年轻人里脱颖而出。1996年调至无锡县坊前卫生院担任副护理长,2001年到新区医院任护士长兼医院感染管理科科长,都以任劳任怨的工作作风赢得了领导、同事和病人的尊重信任和一致称道。

2003年,当周玲玲应工作需要调到新区旺庄医院担任护士长时,她面对着协助医院领导筹建外科、手术室的重任。新的单位、填补空白双重压力,让她感到前所未有的挑战,

但倔强的她没有退缩,从选购设备、病区规划到建章立制、组建团队她都克服人手少、经费紧、不熟悉等困难,亲力亲为,尽心尽力,迎难而上,顶住压力,顺利完成了筹建任务。为了迅速提高护理团队的业务素质,她一手抓硬件建设,一手重护理管理,除了每天早到坚持查房,自己率先垂范外,她深知团队的重要,在医院组织学习和推行“健康保姆”式新的医疗护理模式。做了大量细致扎实的工作,开展优质护理示范服务,深化“病人为中心”的服务理念,实施责任制整体护理,为病人提供全程、全面的优质护理服务,并通过加强基础护理培训、实行弹性分层次排班、强化晨晚重点时段和重点对象护理以及实施护理绩效考核等具体措施,调动了护理团队的积极性,迅速适应了医院新的发展要求。她带着团队,护理过肺癌急救开刀患者,护理过急诊疑难病患,良好的医德医风和精湛过硬的业务水平,为周玲玲和她的团队赢得了口碑,旺庄医院的外科在新区有着较强的辐射力和影响力。

为了提高自身业务素质,周玲玲继自学考试取得护理大专学历后,继续在工作之余参加成人高考,取得南京医科大学护理本科学历,除此之外,还不断的外出进修培训,拓展自身视野,提高专业水平。正是她的以身作则和严以律己带动了护理团队的整体向上和团结合作,社区群众和病人的满意度逐年上升,各色锦旗和感谢信贴满了护士站,2006年中心护理团队荣获全区三基考试第一名,她本人被光荣评为“无锡市优秀护士”。

心系社区情暖百姓

2006年,当旺庄医院转为社区卫生服务中心,周玲玲又迅速调整工作思路,以变应变,将工作重心转移到社区、百姓。

GMDSS原理与操作练习二,三副考试必备

GMDSS原理与操作练习 1. GMDSS全面实行日期为( )。 A、 1999年2月1日 B、 1992年2月1日 C、 1993年2月1日 D、 1995年2月1日 2. 在GMDSS系统中的救助是以( )为核心,岸上和遇险船舶附近的船舶共同救助。 A、 周围的船 B、 岸基 C、 NCS D、 自我救助 3. GMDSS建立的目的是( )。 A、 遇险船舶能够迅速向RCC或者附近的船舶报警 B、 RCC协调救助 C、 附近船舶参与救助 D、 A+B+C 4. 下面那一项不属于GMDSS的功能( ): A、 现场通信 B、 遇险报警 C、 船位报告 D、 常规通信 5. 下面哪一说法不正确( ): A、 GMDSS仅是一个全球遇险报警系统 B、 GMDSS能够播发海上安全信息 C、 驾驶台与驾驶台通信是GMDSS一个功能 D、 GMDSS能使遇险船舶可靠地报警 6.GMDSS中遇险报警指( ): A、 船对岸的报警 B、 船对船的报警 C、 岸对船的报警 D、 以上都是 7. 下面那一项不属于GMDSS的七大功能( ): A、 搜救协调通信 B、 搜救现场通信

C、 船队业务 D、 常规通信 8. 在A1海区实现船对岸遇险报警通常可采用( )。 A、VHF DSC设备 B、 HF DSC设备 C、 MF/HF DSC设备 D、 MF DSC设备 9. 根据国际海事组织规定,世界上共划分了( )个搜救区域。 A、26 B、16 C、13 D、24 10.GMDSS海区划分为( )个。 A、1 B、2 C、3 D、4 11.下述哪种种情况下需要遇险转发( )。 A、遇险船没有发出遇险报警; B、救助船救助能力不够,需要其它船舶增援救助; C、HF波段上收到DSC报警,本船不能救助,海岸电台5分钟没有应答时; D、以上3种情况,都需要进行遇险转发 12.关于船舶抛锚时对GMDSS设备工作要求叙述不正确的一项是( )。 A、 每天接收气象信息 B、 停泊期间,可以不接收N/W信息; C、 VHF CH70值守; D、 做好天线电源管理。 13.下面哪一项不是GMDSS基本概念的内容?( ) A、 船舶能够及时播发船位 B、 遇险船舶能够迅速向RCC或者附近的船舶报警; C、 RCC协调救助,附近船舶参与救助; D、 MSI信息能及时播发和接收。 14.1. INMARSAT组织的总部位于( ) A、纽约

结晶原理和起晶方法

结晶原理和起晶方法 结晶原理的说明 从固体物质的不饱和溶液里析出晶体,一般要经过下列步骤:不饱和溶液一 饱 和溶液一过饱和溶液一晶核的发生一晶体生长等过程。 制取饱和溶液是溶质结晶的关键,下面应用溶解度曲线加以说明。图中曲线 S 表 示某物质的溶解度曲线。P 表示未达饱和时的溶液,使这种溶液变成过饱和 溶液,从而析出晶体的方法有两种: (1)恒温蒸发,使溶剂的量减少,P 点所表示的溶液变为饱和溶液,即变成 S 曲 线上的A 点所表示的溶液。在此时,如果停止蒸发,温度也不变,则 A 点的溶 液处于溶解平衡状态,溶质不会由溶液里析出。若继续蒸发,则随着溶剂量的继 续减少,原来用A 点表示的溶液必需改用 A 点表示,这时的溶液是过饱和溶液, 溶质可以自然地由溶液里析出晶体。 圈总吉晶用理的说明 (2)若溶剂的量保持不变,使溶液的温度降低,假如 P 点所表示的不饱和溶 液的 温度由tJC 降低到t 2°C 时,则原P 点所表示的溶液变成了用 S 曲线上的B 点 所表示的饱和溶液。在此时,如果停止降温,则 B 点的溶液处于溶解平衡状态, 溶质不会由溶液里析出。若使继续降温,由t 2C 降到了 t 3C 时,则原来用B 点表 示的溶液必需改用B'点表示,这时的溶液是过饱和溶液,溶质可自然地由溶液 里析出晶体。

1. 结晶原理(过饱和溶液) 2. 结晶原理(晶核形成与晶体的长大) 障碍的程度因溶液的性质和操作条件不一样,这就是存在过饱和溶液的原因。当溶液的过饱和度超过饱和曲线时,也就是溶液中不稳定的高能质点很多,多到足以不受稳定的低能质点影响,而很快互相碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。 起晶时一般认为由于质点的碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。起晶时一般认为由于质点的碰撞,首先由几个质点结合成晶线,再扩大与晶面,最后结合成微小的晶格,称为晶核(晶芽),其他质点继续排列在晶核上,使晶核长大成晶体。 3. 境界膜 处于晶核附近的不稳定高能质点,受到晶体质点的引力,放出能量,排列到晶核上以后,晶体周围的溶液就是一些溶质质点比较稳定的溶液,这些溶液好象一层膜一样包围着晶核,通常称这层膜为境界膜。 4. 伪晶 表面结晶速度小于扩散速度时,不稳定的溶质质点来不及很好地排列,只受到继续通过境界膜的不稳定质点的影响,故可能形成新的晶核,或不规则地附在晶核上生成伪晶。

详解单结晶体管的基本工作原理和特性

单结晶体管原理 摘要:单结晶体管原理单结晶体管(简称UJT)又称基极二极管,它是一种只有一个PN结和两个电阻接触电极的半导体器件,它的基片为条状的高阻N型硅片,两端分别用欧姆接触引出两个基极b1和b2。在硅片中间略偏b2一侧用合金法制作一个P区作为发射极e。其结构、符号和等效电呼如图1所示。图1、单结晶体管一、单结晶体管的特性从图1可以看出,两基极b1与b2之间的电阻称为基极电阻:rbb=rb1+rb2式中:rb1----第一基极与发射结之间的电阻,其数值 目录 单结晶体管原理 单结晶体管(简称UJT)又称基极二极管,它是一种只有一个PN结和两个电阻接触电极的半导体器件,它的基片为条状的高阻N型硅片,两端分别用欧姆接触引出两个基极b1和b2。在硅片中间略偏b2一侧用合金法制作一个P区作为发射极e。其结构、符号和等效电呼如图1所示。 图1、单结晶体管 一、单结晶体管的特性 从图1可以看出,两基极b1与b2之间的电阻称为基极电阻: rbb=rb1+rb2 式中:rb1----第一基极与发射结之间的电阻,其数值随发射极电流ie而变化,rb2为第二基极与发射结之间的电阻,其数值与ie无关;发射结是PN结,与二极管等效。 若在两面三刀基极b2、b1间加上正电压Vbb,则A点电压为: VA=[rb1/(rb1+rb2)]vbb=(rb1/rbb)vbb=ηVbb 式中:η----称为分压比,其值一般在0.3---0.85之间,如果发射极电压VE由零逐渐增加,就可测得单结晶体管的伏安特性,见图2

图2、单结晶体管的伏安特性 (1)当Ve<η Vbb时,发射结处于反向偏置,管子截止,发射极只有很小的漏电流Iceo。(2)当Ve≥η Vbb+VD VD为二极管正向压降(约为0.7伏),PN结正向导通,Ie显著增加,rb1阻值迅速减小,Ve相应下降,这种电压随电流增加反而下降的特性,称为负阻特性。管子由截止区进入负阻区的临界P称为峰点,与其对就的发射极电压和电流,分别称为峰点电压Vp和峰点电流Ip和峰点电流Ip。Ip是正向漏电流,它是使单结晶体管导通所需的最小电流,显然Vp=ηVbb (3)随着发射极电流ie不断上升,Ve不断下降,降到V点后,Ve不在降了,这点V称为谷点,与其对应的发射极电压和电流,称为谷点电压,Vv和谷点电流Iv。 (4)过了V点后,发射极与第一基极间半导体内的载流子达到了饱和状态,所以uc继续增加时,ie便缓慢地上升,显然Vv是维持单结晶体管导通的最小发射极电压,如果Ve<Vv,管子重新截止。 二、单结晶体管的主要参数 (1)基极间电阻Rbb 发射极开路时,基极b1、b2之间的电阻,一般为2--10千欧,其数值随温度上升而增大。 (2)分压比η 由管子内部结构决定的常数,一般为0.3--0.85。 (3)eb1间反向电压Vcb1 b2开路,在额定反向电压Vcb2下,基极b1与发射极e之间的反向耐压。 (4)反向电流Ieo b1开路,在额定反向电压Vcb2下,eb2间的反向电流。

各种结晶过程分析通用版

安全管理编号:YTO-FS-PD273 各种结晶过程分析通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

各种结晶过程分析通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、冷却结晶 冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNOs、NaNOs、MgSO‘等。 冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而冷却,冷却剂在冷却过程中则被汽化的方法。直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。

结晶原理

结晶原理 溶质从溶液中析出的过程,可分为晶核生成(成核)和晶体生长两个阶段,两个阶段的推动力都是溶液的过饱和度( 结晶 溶液中溶质的浓度超过其饱和溶解度之值)。晶核的生成有三种形式:即初级均相成核、初级非均相成核及二次成核。在高过饱和度下,溶液自发地生成晶核的过程,称为初级均相成核;溶液在外来物(如大气中的微尘)的诱导下生成晶核的过程,称为初级非均相成核;而在含有溶质晶体的溶液中的成核过程,称为二次成核。二次成核也属于非均相成核过程,它是在晶体之间或晶体与其他固体(器壁、搅拌器等)碰撞时所产生的微小晶粒的诱导下发生的。对结晶操作的要求是制取纯净而又有一定粒度分布的晶体。晶体产品的粒度及其分布,主要取决于晶核生成速率(单位时间内单位体积溶液中产生的晶核数)、晶体生长速率(单位时间内晶体某线性尺寸的增加量)及晶体在结晶器中的平均停留时间。溶液的过饱和度,与晶核生成速率和晶体生长速率都有关系,因而对结晶产品的粒度及其分布有重要影响。在低过饱和度的溶液中,晶体生长速率与晶核生成速率之比值较大(见图),因而所得晶体较大,晶形也较完整,但结晶速率很慢。在工业结晶器内,过饱和度通常控制在介稳区内,此时结晶器具有较高的生产能力,又可得到一定大小的晶体产品。晶 导流筒结晶设备 体在一定条件下所形成的特定晶形,称为晶习。向溶液添加或自溶液中除去某种物质(称为晶习改变剂)可以改变晶习,使所得晶体具有另一种形状。这对工业结晶有一定的意义。晶习改变剂通常是一些表面活性物质以及金属或非金属离子。晶体在溶液中形成的过程称为结晶。结晶的方法一般有2种:一种是蒸发溶剂法,它适用于温度对溶解度影响不大的物质。沿海地区“晒盐”就是利用的这种方法。另一种是冷却热饱和溶液法[2]。此法适用于温

可控硅工作原理

可控硅工作原理 一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。 在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。它只有导通和关断两种状态。 可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。 可控硅从外形上分类主要有:螺栓形、平板形和平底形。 1、可控硅元件的结构 不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。 2、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1、可控硅结构示意图和符号图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

充电电路地工作原理

充电电路工作原理 蓄电池与逆变器对直流电源的要求不同:逆变器要求直流电源提供稳定电压;蓄电池要求直流电源提供的电压能随着蓄电池的充电过程而变化。为了解决蓄电池、逆变器对直流电源的不同要求,故UPS分别设置整流器及充电电路。根据UPS容量大小、工作方式不同,充电电路可分为恒压充电、恒流充电、分级充电等电路。介于充电电路在整个系统中的重要作用,我做了多方面的考虑,最后决定采用高压快速充电电路。 在此所用的高压快速充电电路不但解决了UPS内部蓄电池的快速充电问题,而且解决了一般不能快充外接蓄电池的问题。 工作原理分析: 该电路适用于长备用时间、大容量蓄电池的充电。它由以下几个部分组成:(1)加电电路 在不加交流输入电压时,继电器J2的中间触点a2和b2相连,如果这时开关K是闭合的,那么外加蓄电池电压就和UPS内部蓄电池形成并联结构,此时控制电路由于没有电源而不能工作。 当市电电压220V加到输入端时,由于继电器J1的触点处于断开状态,因而交流电压220V就不能加到变压器T1上。当按下按钮N1时,J1被激励,触点J1闭合。这时电流经限流电阻R x加到变压器T1上,等到变压器初级绕组的电压达到一定值时,J3被激励,触点闭合,将电阻R x短路。在交流220V加到输入端的同时,J2被激励,继电器触点a2转接到c2,于是电池组电压UB经R2、VD6加到控制电路上。N2为按断开关,在未按下开关N2时其处于闭合状态将两个单结晶体管振荡器的发射扳旁路,故振荡器不工作,电路处于静止等待状态。 加电电路中之所以加入了J3和R x环节,是因为一般电源变压器的匝间电容使加电前沿的电流被旁路,磁通不能马上建立起来,形成很大的短路电流。如未变压器容量再增加,这种启动瞬间短路电流就会更严重。因此,在加电前瞬间用电阻R x限流,当变压器上电压升到一定值时,再将R x短路就可避免这种情况的发生。 当按下开关N1瞬间,由于有上述的过程,最好不要马上供电。在N2被按下,该开关处于断开状态,电容C5的充电能延缓振荡器的起振,只有当C5上电压上;升到一定值时,振荡器才开始工作。 (2)振荡电路

结晶器原理

结晶器原理 结晶是一个重要的化工过程,是物质提纯的主要手段之一。众多化工、医药产品及中间产品都是以晶体形态出现的,结晶往往是大规模生产它们的最好又最经济的方法。 结晶过程是一个复杂的传热、传质过程。在溶液和晶体并存的悬浮液中,溶液中的溶质分子向晶体转移(结晶),同时晶体的分子也在向溶液扩散(溶解)。在未饱和溶液中溶解速度大于结晶速度,从宏观上看这个过程就是溶解;在过饱和溶液中结晶速度大于溶解速度,从宏观上看这个过程就是结晶。所以,结晶的前提是溶液必须有一定的过饱和度。连续结晶器和间歇结晶器相比具有以下优点:连续结晶具有收率高、能耗低、母液少、产品质量好、自动化程度高、设备占地面积小及操作人员少等优点。由于连续结晶器具有较高的生产效率,一套连续结晶器往往可以取代数套乃至数十套间歇结晶器,相应配套设备的数量也大大减少。对于医药产品的结晶,由于连续结晶器都是全密闭的,结晶器可以布置在GMP车间的外面,而仅将离心机、烘干和包装布置在GMP车间的里面,这将极大地减少GMP车间的面积,从而降低整个工程的投资。 连续结晶器可以方便地和机械压缩泵组合,在低温下进行蒸发结晶,不但不需要蒸汽,而且无需冷冻水。节能的同时也避免了庞大的冷冻机投资。

过饱和度是结晶的一个重要参数。根据大量试验的结果证实,溶液的过饱和与结晶的关系可用上图1表示;图中的AB 线为普通的溶解度曲线,CD 线代表溶液过饱和而能自发地产生晶核的浓度曲线(超溶解度曲线),它与溶解度曲线大致平行。这两根曲线将浓度——温度图分割为三个区城。在AB 曲线以下是稳定区,在此区中溶液尚未达到饱和,因此没有结晶的可能。AB 线以上为过饱和溶液区,此区又分为两部分:在AB 与CD 线之间称为介稳区,在这个区域中,不会自发地产生晶核,但如果溶液中已加了晶种,这些晶种就会长大。CD 线以上是不稳区,在此区域中,溶液能自发地产生晶核。若原始浓度为 E 的洁净溶液在没有溶剂损失的情况下冷却到 F 点,溶液刚好达到饱和,但不能结晶,因为它还缺乏作推动力的过饱和度。从F 点继续冷却到G 点的一段期间,溶液经过介稳区,虽已处于过饱和状态,但仍不能自发地产生晶核。只有冷却到G 点后,溶液中才能自发地产生晶核,越深入不稳区(例如达到H 点),自发产生的晶核也越多。由此可见,超溶解度曲线及介稳区、不稳区这些概念对于结晶过程有重要意义。把溶液中的溶剂蒸发一部分,也能使溶液达到过饱和状态,图中EF ’ G’线代表此恒温蒸发过程。在工业结晶中往合并使用冷却和蒸发,此过程可由EG’’线代表。晶体成长的速率与过饱和度的关系如上图2所示。当然,结晶器出来的最终的晶体的尺寸不仅仅与晶体成长的速率相关,还与成核速率、耗散速率等有关。成核速率也与过饱和度相关,且受过饱和度影响要较成长速率受其影响来的大,从下图3我们可以看出来。

各种GMDSS设备操作规程

各种G M D S S设备操作规程 Prepared on 24 November 2020

船舶设备操作规程 JSS-850中高频无线电设备 一、概述 组成:JSS-850由主机(NCU-850)、M/HF发信机(NSD-85)、M/HF收信机(NRD-840W)、DSC设备(CDJ-1085)、NBDP设备(CDJ-1980)、电源(NBL-851)、天线调谐器(NFC –850)、控制器(NCH-852)、打印机(NKG-800)和天线等组成。 二、电话通信 1.按面板上的键开机。 2.选择电话模式(两种方式): 1). 直接按操作面板上的键。或是: 2). 从初始菜单上选择Mode 模块,按键,再从其下拉菜单中选择 Telephone模式。 3.指定通信频率(三种方式)。 1). 将光标移至Tune ,按键,并从下拉菜单中选择Frequencies List。在显 示的站台表中选择你事先编好的岸台,并按Select 上按下 键。从屏幕显示菜单上,选择所需的频率,并核实该频率是否空闲。 或是:

2). 从Tune 下拉菜单中选择Channel set ,按键,输入ITU频道号, 再按键。核实将要使用的频率是否空闲,如果是,则按回车。或 是: 3). 从Tune 下拉菜单中选择Tx/Rx frequencies,然后分别输入发射频率和接 收频率,核实频率是否空闲,如果是,按键。 4.拿起话筒,按下即可进行电话通信。 5.通话结束,按 三、编辑电文 1.菜单中选择File 功能模块,按回车键。 2.从下拉菜单中选择New telex message,按回车键。 3.用键盘输入你要编辑的电文,然后按键,进行保存。 中海集运股份有限公司新连云港轮船舶设备操作规程 四、ARQ模式通信 1.直接按操作面板上键,或是从Mode 功能模块中选择Telex模式。 2.将光标移至Connect 上,按键,下拉菜单中选择ARQ模式。 3.从屏幕显示的事先编制好的站台表中选择所需的站台,按键,再按 4.选择合适的频率,按 5.核实所选的频率是否空闲,如果是,按键。 6.当你与被呼电台交换应答码建立联系后,屏幕显示GA+字样时,键入所 要通信的方式(例如:DIRTLX33103+),收到用户的应答码后显示

结晶过程机理分析

编号:SM-ZD-11262 结晶过程机理分析 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

结晶过程机理分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 (1)结晶在固体物质溶解的同时,溶液中还进行着一个相反的过程,即已溶解的溶质粒子撞击到固体溶质表面时,又重新变成固体而从溶剂中析出,这个过程称为结晶。 (2)晶体晶体是化学组成均一的固体,组成它的分子(原子或离子)在空间格架的结点上对称排列,形成有规则的结构。 (3)晶系和晶格构成晶体的微观粒子(分子、原子或离子)按一定的几何规则排列,由此形成的最小单元称为晶格。晶体可按晶格空间结构的区别分为不同的晶系。同一种物质在不同的条件下可形成不同的晶系,或为两种晶系的混合物。例如,熔融的硝酸铵在冷却过程中可由立方晶系变成斜棱晶系、长方晶系等。 微观粒子的规则排列可以按不同方向发展,即各晶面以不同的速率生长,从而形成不同外形的晶体,这种习性以及

关于结晶器

18.什么是“凸形”结晶器? 答:“凸形”结晶器是康卡斯特公司推出的一种高效方坯结晶器技术,又名Convex结晶器。它的基本特征是:结晶器上部内腔铜壁面向外凸出而不是平的,即上口内圆角大于90°,往下沿整个结晶器长度方向上逐渐变为平面,即至铜管出口处内圆角又恢复到90°角,康卡斯特公司认为:上部凸面区传热效率高,角部气隙小,能使坯壳与结晶器尽量可能保持良好接触,坯壳向下运行时,逐渐冷却收缩并自然过渡到平面段。结晶器下部壁面呈平面正好适应了坯壳本身的自然收缩,使结晶器传热效率大为改善。 19.什么是自适应结晶器? 答:自适应结晶器是达涅利(Danieli)公司开发的一种高效方坯结晶器,又称Danam结晶器。其具体做法如下;采用薄型铜管,加大并调节结晶器冷却水压,使薄铜壁紧粘坯壳以消除气隙,实现高拉速。在Danam结晶器里,通过调节水压,使其上部对铸坯侧面和角部采取不同的横向冷却,来控制气隙的形成,确保坯壳均匀凝固。 20.什么是“钻石”结晶器? 答:“钻石”结晶器是VAI公司推出一种高效方坯结晶器,又称DIAMOND。VAI采用的技术解决办法如下:VAI认为提高拉速,坯壳在结晶器内生长的均匀性和增加坯壳厚度很重要,解决结晶器内坯壳生长均匀性问题,其本质就是如何降低结晶器内气隙热阻。VAI 采用比常规抛物线锥度大一些的新抛物线形锥度,提高整个结晶器长度上坯壳与结晶器的接触性,方便坯壳在结晶器内均匀生长。增加坯壳厚度的有效办法是延长结晶器长度,增加结晶器中铸坯质点在结晶器内的生长时间。VAI经过计算,认为铜管延长至1000mm长较好。采用过大的抛物线锥度和延长铜管至100mm后,会使结晶下部摩擦力增加很大,不利于拉坯。VAI通过研究,发现摩擦力过分增大的压力峰值出现在结晶器下部四角边沿区域。为了减小摩擦力,VAI采用从距结晶器顶部300~400mm处开始,一直到下口为直结晶器角部区域没有锥度,而且愈往下角部无锥度区域也增大。这种方法既确保了结晶器内坯壳的均匀生长,又有效防止了结晶器中尤其下部摩擦力的过分增大。VAI认为由于结晶器角部区域为二维热传递,因此在这个区域中小方坯角部区域的直接接触没有绝对必要,因为这个区域中的坯壳总能充分生长。 21.什么是压力水膜结晶器? 答:压力水膜结晶器是比利时冶金研究中心(CRM)和阿贝德厂(Arbed)联合开发的一种高效结晶器技术。具体做法如下:在结晶器下口固定有四块钢板,水从每块钢板上加工的狭缝喷射出来,钢板与结晶器面成直线放置,并与铸坯表面间留有小间隙,间隙使高速流动着的水充满并形成一层水膜。钢板上的狭缝向下倾斜,使得从中流出来的水能朝下流动。水膜既起强冷作用,又起支撑铸坯作用,这就是压力水膜结晶器。 22.什么是曲面结晶器? 答:曲面结晶器是中冶连铸开发的一种高效方坯结晶器技术。该技术是从传热角度,根据气隙产生的主要原因,通过对结晶器热变形和小方坯收缩的分析开发出来的。其基本特征如下:

GMDSS在中国的应用与发展

GMDSS在中国的应用与发展 一GMDSS的构成及工作原理 全球海上遇险与安全系统(GMDSS)是国际海事组织(IMO)利用现代化的通信技术改善海上遇险与安全通信,建立新的海上搜救通信程序,并用来进一步完善现行常规海上通信的一套庞大的综合的全球性的通信搜救网络。该系统主要由卫星通信系统——INMARSA T(海事卫星通信系统)和COS- PAS/SARSAT(极轨道卫星搜救系统)、地面无线电通信系统(即海岸电台)以及海上安全信息播发系统三大部分构成。 1. 卫星通信系统 (1)INMARSA T INMARSAT主要由海事通信卫星、移动终端(船舶地球站)、海岸地球站以及协调控制站构成。 (2)COSPAS/SARSA T COSPAS/SARSAT是由加拿大、法国、美国和前苏联联合开发的全球性卫星搜救系统,由示位信标、空间段(极轨道通信卫星)和地面部分3个分系统组成。 2. 地面无线电通信系统 地面无线电通信系统用于遇险报警、搜救协调通信、搜救现场通信及日常公众通信,主要由MF/HF/VHF通信分系统组成。 3. 海上安全信息播发系统 海上安全信息播发系统由岸基NA VTEX系统及INMARSA T系统中的增强群呼系统(EGC)、船舶交通管理系统(VTS)等组成。 二GMDSS的功能 GMDSS具有以下七大功能: 1.遇险报警 是指遇险者迅速并成功地把遇险事件提供给可能予以救助的单位。报警包括船对岸、船对船和岸对船报警3个方向,其中船对岸报警是主要的。 2.搜救协调通信 RCC通过岸台或岸站与遇险船舶和参与救助的船舶、飞机以及与陆上其他有关搜救中心进行有关搜救的直接通信。 搜救协调通信是双方进行有关遇险与安全内容的信息交换,即具备双向的通信功能,与报警功能中只具有向某一方向传输特定信息不同。 3.救助现场通信 在救助现场参与救助的船舶之间、船舶与飞机之间的相互通信称为现场通信。它包括救助指挥船与其他船、船与救生艇、指挥船与救助飞机之间的现场通信。通常,这种通信的距离比较近。 4.定位 定位是指遇险船舶和救生艇所发出的一种无线电信号,便于救助船舶和飞机去寻找遇难的船舶和救生艇。 5.海上安全信息的播发 是指本系统能够提供各种手段发布航行警告、气象预报和其他各种紧急信息,以保证航行安全。 6.常规的公众业务通信 是指GMDSS系统要求船舶配备的通信设备不但能进行遇险、紧急和安全通信外,还能进行有关的公众业务通信。也就是船舶与岸上管理部门之间进行管理、调度等方面的通信以及船舶与船东、用户等通信。 7.驾驶台对驾驶台的通信

结晶原理及操作

结晶原理及操作 1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。 从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。 重结晶的一般过程为: 选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。 2、基本操作: (1)选择溶剂:选择适合的溶剂是重结晶的关键之一, 适宜的溶剂必须符合以下几个条件: a、与被提纯的有机物不起化学反应; b、被提纯的有机物在该溶剂中的溶解度随温度变化显 著,在热溶剂中溶解度大,在冷溶剂中溶解度小; c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去); d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去; e、价廉易得、毒性低、容易回收。 选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。具体选择可通过查阅有关化学手册,也可以通过实验来确定。 (2)固体溶解: 待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。)或全溶(不含不溶性杂质)为止,最后再多加计算量20%的溶剂(将溶液稀释,防止热滤时由于溶剂的挥发和温度的下降导致晶体析出),振荡,制成热的近饱和溶液。 (3)除去杂质 a、脱色:若热溶液有色,说明其中有有色杂质,可利用活性炭进行脱色处理,除去有色杂质。 脱色操作: 将沸腾的溶液稍冷后,加入活性炭加热煮沸几分钟,然后趁热过滤,除去活 性炭,得到无色溶液。

单结晶体管触发电路原理及各店波形

单节晶体管触发电路 1原理图是: 实验目的是:(1)熟悉单结晶体管触发电路的工作原理及电路中 各个元件的作用 (2)掌握单结晶体管触发电路的调试步骤与方法 (3)熟悉与掌握单结晶体管触发电路各主要点的波 形测量与分析 实验原理:有原理图可知,由同步变压器变压器副边输出60V 的交流同步电压,经过D1的半波整流得到T1点的波形图,经过稳压管D3的稳压使图T2处的波形进行嵌位,使梯形波电位嵌位,可得到梯形波的波形即T2的波形图如图所示,T1和T2的波形图为下图

(其中红色表示的是T1处的波形,黑色表示的是T2处的波形)电路经过电阻R2的分压使T3的比T2略低,由于D2稳压器的稳压使T3处的波形也为梯形波,其中T2和T3的波形如图所示,当改变R2阻值时,由于T2压降保持不变,R2和滑动变阻器的分压,由于R2分压增大,使得T3处电位降低,波形图如下图所示: 其中同步电压,整流桥和稳压二极管共同组成梯形波,这个梯形波电压,既作为触发电路的同步电压,也作为它的直流电源。

(其中蓝色线是T3的波形,橙色表示的是T2的波形,R2未变动之前) 当R2变化时(R2=10kΩ),由于T2处稳压管的嵌位,是的R2变化时T2处电压保持不变,此时R2和滑动变阻器R8串联分T2的电压,由于R2的电阻增大,由电阻串联可知,R2分的的电压就会增大,从而使滑动变阻器两端的电压变小,即T3处的电压变小,图像如下所示:

(蓝线表示的是T3的波形,橙线表示的是T2的波形) T6后面是由两个三极管构成的放大和移相环节,主要由晶体管Q1和Q2组成,Q1的作用是放大,Q2的作用是等效可变电阻,由外部输入的移相控制电压经晶体管Q1放大后,作为晶体管Q2当梯形波电压过零时单结晶体管的e和第一基极b1导通,电容的基极控制信号,使Q2的集电极电流顺着T6处电压的变化而变化,起到可变电阻的作用。即改变T6处的点位就可改变电容C的充电时间常数,也就是说改变了单结晶体管峰点电压到来的时刻,从而实现对输出脉冲的移相控制。 此外,单节晶体管Q3和电容器C1共同组成了单结晶体管触发电路的脉冲形成和输出环节,此时同步电源通过R4和三极管

GMDSS原理与操作练习4

GMDSS原理与操作练习4 01.下面那一项不属于GMDSS的七大功能(): A、搜救协调通信 B、搜救现场通信 C、船队业务 D、常规通信 02.在A1海区实现船对岸遇险报警通常可采用()。 A、 VHF DSC设备 B、 HF DSC设备 C、MF/HF DSC设备 D、 MF DSC设备 03.根据国际海事组织规定,世界上共划分了()个搜救区域。 A、26 B、16 C、13 D、24 04.GMDSS海区划分为()个。 A、1 B、2 C、3

D、4 05.卫星控制中心的作用是(): A、直接对卫星进行控制和管理 B、遥测卫星的各种数据 C、处理测控站发来的数据,通过遥测站对卫星进行控制和管理 D、接收遥测站发来的分析结果,对卫星进行控制和管理 06.()负责监控所有INMARSAT卫星工作运行状态: A、SOC B、TT&C C、OCC D、NCC 07.在INMARSAT系统中岸站的作用是(): A、直接对卫星进行控制和管理 B、提供和国际国内用户连接的接口 C、负责对INMARSAT通信网的营运和管理 D、负责对本洋区通信网的控制和管理 08.在INMARSAT系统中网络协调站的作用是(): A、负责对INMARSAT卫星的控制和管理 B、提供和国际国内用户连接的接口 C、负责对INMARSAT通信网的营运和管理

D、负责对本洋区通信网的控制和管理 09.在INMARSAT系统中网络操作中心的作用是(): A、直接对卫星进行控制和管理 B、提供和国际国内用户连接的接口 C、负责对INMARSAT通信网的营运和管理 D、负责对本洋区通信网的控制和管理 10.在INMARSAT 船站中,天线伺服系统的作用是(): A、使天线保持稳定,避免由于船舶运动而损坏天线; B、避免由于天线始终朝一个方向旋转而绞断信号电缆和控制电缆 C、接收从卫星发来的信号和将信号发往卫星; D、补偿由于船舶运动而造成的天线偏离卫星的误差,使天线始终指向卫星。 11.在INMARSAT中,对船站天线进行仰角控制的轴是: A、AZ轴 B、EL轴 C、X轴 D、Y轴 12.在INMARSAT系统中,常规通信时选择岸站转接到陆地用户的原则是() A、离呼叫船最近的岸站 B、离被呼叫用户最近的岸站 C、电传选CES,电话选NCS

程控单结晶体管简介

程控单结晶体管(PUT)应用及原理 程控单结晶体管PUT(Programmable Uniguction Tr-ansistor),又称可编程单结晶体管或可调单结晶体管,程控单结晶体管实质上是一个N极门控晶闸管的功能,但因它与单结晶体管的用途相近,故纳入单结管之列。它与单结晶体管也有重工区别。单结管一经制成,从外部就无法改变rB1、rB2、RBB、ηV、IP、IV等参数值,加之工艺的离散性导致同类单结管的ηV值总会存在一定的偏差,这就给用记带来不便。程控单结晶体管圆满解决了上述问题,它是用外部电阻R1、R2取代内基极电阻rB1、rB2,只需改变二者的电阻比,即可从外部调整其参数值。正是由于PUT器件使用灵活,用途广泛,因此颇受使用者欢迎。 PUT器件的外形与小功率晶体管相同,也有金属壳和塑料两种封装形式,见图。国产型号为BT 40、XG 901 D等,国外典型产品有2 N 6027、2 N 6028。国外还研制成外形尺寸为1.1×1.5×2.9(mm)的超小型程控单结晶体管。下面介绍其工作原理及检测方法。 1.工作原理 程控单结晶体管的结构、等效电路及符号如下图所示。它属于PNPN四层、三端、具有负阻特性的半导体器件。三个引出端分别是阳极A,阴极K,门极G。门极是从靠近阳极的N型半导体上引出①。PUT等效于由PNP硅管T1和NPN硅管T2构成的互补晶体管。

当VA>VG+0.7V(0.7V是T1的发射结正向压降VEB)时,T1导通,IC1↑,使T2导通,IC2↑,这就进一步促使T1导通,形成正反馈,导致A-K间电阻急剧下降,呈现负阻特性。程控单结晶体管与单结晶体管的性能比较见表1。BT 40型主要参数见表。 程控单结晶体管具有参数可调、触发灵敏度高、漏电流小、脉冲上升时间快(约60ns)、输出功率较大等优点,不仅能构成可控制脉冲波或锯齿波发生器、过压保护器、长延时器,还能触发晶闸管及大功率晶体管。下图给出两种典型用法。 2.检测方法 (1)识别程控单结晶体管的电极

结晶原理和起晶方法Word版

一结晶原理和起晶方法 结晶原理的说明 从固体物质的不饱和溶液里析出晶体,一般要经过下列步骤:不饱和溶液→饱和溶液→过饱和溶液→晶核的发生→晶体生长等过程。 制取饱和溶液是溶质结晶的关键,下面应用溶解度曲线加以说明。图中曲线S表示某物质的溶解度曲线。P表示未达饱和时的溶液,使这种溶液变成过饱和溶液,从而析出晶体的方法有两种: (1)恒温蒸发,使溶剂的量减少,P点所表示的溶液变为饱和溶液,即变成S 曲线上的A点所表示的溶液。在此时,如果停止蒸发,温度也不变,则A点的溶液处于溶解平衡状态,溶质不会由溶液里析出。若继续蒸发,则随着溶剂量的继续减少,原来用A点表示的溶液必需改用A'点表示,这时的溶液是过饱和溶液,溶质可以自然地由溶液里析出晶体。 (2)若溶剂的量保持不变,使溶液的温度降低,假如P点所表示的不饱和溶 液的温度由t1℃降低到t2℃时,则原P点所表示的溶液变成了用S曲线上的B点所表示的饱和溶液。在此时,如果停止降温,则B点的溶液处于溶解平衡状态,溶质不会由溶液里析出。若使继续降温,由t2℃降到了t3℃时,则原来用B点表示的溶液必需改用B′点表示,这时的溶液是过饱和溶液,溶质可自然地由溶液里析出晶体。

1.结晶原理(过饱和溶液) 2.结晶原理(晶核形成与晶体的长大) 障碍的程度因溶液的性质和操作条件不一样,这就是存在过饱和溶液的原因。当溶液的过饱和度超过饱和曲线时,也就是溶液中不稳定的高能质点很多,多到足以不受稳定的低能质点影响,而很快互相碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。 起晶时一般认为由于质点的碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。起晶时一般认为由于质点的碰撞,首先由几个质点结合成晶线,再扩大与晶面,最后结合成微小的晶格,称为晶核(晶芽),其他质点继续排列在晶核上,使晶核长大成晶体。 3.境界膜 处于晶核附近的不稳定高能质点,受到晶体质点的引力,放出能量,排列到晶核上以后,晶体周围的溶液就是一些溶质质点比较稳定的溶液,这些溶液好象一层膜一样包围着晶核,通常称这层膜为境界膜。 4.伪晶 表面结晶速度小于扩散速度时,不稳定的溶质质点来不及很好地排列,只受到继续通过境界膜的不稳定质点的影响,故可能形成新的晶核,或不规则地附在晶核上生成伪晶。

结晶器

液压伺服与比例控制系统三级项目250KN结晶器液压振动系统特性仿真分析 学院(系):机械工程学院 年级专业: 10级机电控制工程1班 小组成员:张迪嘉张天宇王平阳 王利双王浩冉 指导教师:张伟

目录 一、结晶器及其振动技术概述 (4) 1.2结晶器的振动 (5) 二、结晶器振动技术国内外研究现状及发展趋势 (5) 2.1国内研究及应用 (5) 2.2国外的研究与应用 (6) 三、结晶器液压振动结构原理和特点 (7) 3.1液压振动装置的构成 (7) 3.2液压振动装置原理 (7) 3.3液压振动的特点 (8) 四、结晶器液压系统工作原理 (9) 4.1系统工作原理 (9) 4.2液压系统参数及主要元件的选择 (10) 4.3结晶器液压振动控制系统 (12) 五、结晶器液压伺服系统建模 (13) 5.1确定各组成原件的传递函数 (14) 5.2系统方框图 (15) 六、matlab系统仿真分析 (16) 6.1时间响应曲线 (16) 6.2频率响应曲线 (17)

6.3 PID 控制原理 (19) 6.4PID参数对系统特性影响 (20) 七、总结与感想 (21) 7.1影响阀控缸系统频率特性的参数 (21) 7.2心得与感想 (22) 参考文献 (22)

一、结晶器及其振动技术概述 1.1结晶器 近年来,传统连铸的高效化生产在工业发达国家取得了长足的进步,特别是高拉速技术引起人们的重视。通过采用新型保护渣、液面高精度检测和控制等一系列技术措施,使连铸机的生产能力大幅度提高,生产成本降低,给企业带来了极大的经济效益。而结晶器作为连铸生产的重要设备之一,如图1,它的性能对连铸机的生产能力和铸坯质量都起着十分重要的作用。 图1 连铸设备的组成 结晶器是连铸最重要的组成部分,它是一种特殊的无底水冷铸模。在它的内部有冷却装置,其中有的是管式结晶器隔离水缝冷却,有的是喷淋水喷水冷却,目的是对铸坯进行冷却降温。并且结晶器由振动装置带动发生振动。

各种结晶过程分析

编号:SM-ZD-50617 各种结晶过程分析 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

各种结晶过程分析 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、冷却结晶 冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNOs、NaNOs、MgSO‘等。 冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而冷却,冷却剂在冷却过程中则被汽化的方法。直接接

相关主题
文本预览
相关文档 最新文档