当前位置:文档之家› 结晶原理及操作演示教学

结晶原理及操作演示教学

结晶原理及操作演示教学
结晶原理及操作演示教学

结晶原理及操作

1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。

从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。

重结晶的一般过程为:

选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。

2、基本操作:

(1)选择溶剂:选择适合的溶剂是重结晶的关键之一,

适宜的溶剂必须符合以下几个条件:

a、与被提纯的有机物不起化学反应;

b、被提纯的有机物在该溶剂中的溶解度随温度变化显

著,在热溶剂中溶解度大,在冷溶剂中溶解度小;

c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去);

d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去;

e、价廉易得、毒性低、容易回收。

选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。具体选择可通过查阅有关化学手册,也可以通过实验来确定。

(2)固体溶解:

待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。)或全溶(不含不溶性杂质)为止,最后再多加计算量20%的溶剂(将溶液稀释,防止热滤时由于溶剂的挥发和温度的下降导致晶体析出),振荡,制成热的近饱和溶液。

(3)除去杂质

a、脱色:若热溶液有色,说明其中有有色杂质,可利用活性炭进行脱色处理,除去有色杂质。

脱色操作:

将沸腾的溶液稍冷后,加入活性炭加热煮沸几分钟,然后趁热过滤,除去活

性炭,得到无色溶液。

注意:

不能向正在沸腾的热溶液中加入活性炭,以免爆沸。活性炭的用量根据溶液颜色的深浅而定,一般为固体粗产物的1~10%,加入过量的活性炭会吸附产物而造成损失。加热煮沸的时间一般为5~10分钟。

b、热滤:待重结晶的有机物热溶液中若有不溶性杂质或经活性炭脱色后必须趁热过滤除去杂质或活性炭。热滤应尽可能快速进行,防止在过滤中由于溶剂挥发或温度下降引起晶体析出,析出的晶体与杂质混在一起,造成损失。为了加快热滤的速度应采取以下措施:

a、选用颈短而粗的玻璃漏斗,避免析出晶体堵塞漏斗颈。

b、使用热水漏斗,保持溶液温度。

c、使用菊花形折叠滤纸,增大过滤面积,提高过滤速度。

4、晶体析出:热滤得到的滤液,放置,让其自然冷却,晶体逐步析出。结晶过程中,如果将溶液急速冷却或剧烈摇动,析出的晶体颗粒太小,晶体表面积大,吸附的杂质较多,纯度较低。因此应将溶液缓慢冷却、静置,得到颗粒较大的晶体。但是,晶体颗粒也不能太大,否则晶体中包含大量的母液,产物纯度过低,也给干燥带来困难。当看到有较大晶体形成时,及时轻轻摇动使之形成均匀的小晶体。如果溶液冷却后没有晶体析出,可以用玻璃棒摩擦器壁或用冰水冷却促使晶体生成。

5、抽滤:结晶完全后,过滤使晶体与母液分离,溶解度大的杂质留在母液中。一般采用抽滤进行过滤,因为抽滤速度快且能吸干母液得到产品纯度高。

抽滤装置由布氏漏斗、吸滤瓶、缓冲瓶、真空泵组成。布氏漏斗插入吸滤瓶时应该让漏斗下端斜口正对吸滤瓶的支管口;漏斗内放一张圆形滤纸,滤纸直径要小于漏斗内径,但必须能完全盖住所有小孔。吸滤前用少量溶剂将滤纸润湿并吸紧。缓冲瓶的作用是调节系统压力,防止倒吸。抽滤时先将晶体和母液转移到布氏漏斗上,使晶体均匀分布在滤纸上,用少量溶剂将粘附在溶器壁上的晶体洗出倒入漏斗,抽气吸干,用玻璃棒挤压晶体,尽量除去母液,用少量溶剂洗涤晶体,继续抽干。结束抽滤时应先打开缓冲瓶上的旋塞放气,内外压力平衡后再关闭真空泵。

6、晶体的干燥:经过抽滤得到的晶体表面吸附有少量溶剂,必须干燥除去,以得到纯净的产品。固体有机物的干燥通常采用烘干法。使晶体干燥,干燥后取下晶体,用玻璃棒轻敲滤纸使粘在滤纸上的晶体全部脱落下来。

二、结晶步骤:

1、固体溶解:

称取待提纯的粗制品己二酸g(或乙酰苯胺3g),放于锥形瓶中,加入ml水(50ml水,理论计算用水量为55ml),加热至沸,振荡,若固体不能全部溶解,可分次添加少量水,每次2~3ml,加热沸腾,振荡,至固体全溶或不再溶解为止,记录加入水量,再过量20%的水,加热至微沸。

2、脱色:热溶液稍冷后,加入0.1~0.5g活性炭,边加热边搅拌,煮沸5~10分钟。

3、热滤:在金属漏斗中注入热水,放于铁圈上,用酒精灯加热侧管,取一个短颈玻璃漏斗放入金属漏斗中,将折叠好的菊花滤纸放在玻璃漏斗上,预热一段时间。用少量热水润湿滤纸,再将沸腾的热溶液倒入漏斗中过滤,每次倒入少量,分几次过滤,瓶中剩余的溶液继续加热保持微沸。过滤完毕,用少量热水洗涤锥形瓶和滤纸。

4、结晶:滤液静置,自然冷却,晶体逐渐析出。

5、抽滤:连接抽滤装置,剪一个大小合适的滤纸放于布氏漏斗上,用少量水润湿后开动真

空泵吸紧,打开缓冲瓶旋塞,将晶体和母液一起倒入漏斗中,晶体要尽可能分布均匀,关闭缓冲瓶旋塞,抽滤,抽干后用少量水洗涤晶体两次,继续抽干。

6、烘干:将滤纸和滤饼一同从漏斗中取出,放在一个干燥洁净的表面皿上,在水蒸气浴上加热,晶体表面的溶剂很快挥发,晶体逐渐干燥。取下晶体,将滤纸上沾附的少量晶体刮下合并在一起。

7、称重计算:

八、注意事项:

1 不能将活性炭加入正在沸腾的溶液中,必须等溶液冷后再加。

2 热滤时漏斗滤纸都要预热,每次倒入少量液体,过滤速度要快,防止在滤纸上出现结晶。

3 结晶析出时要静置切勿摇动。

4 抽滤时注意正确操作

自动控制原理课程教学大纲

物理电子工程学院《自动控制原理》课程教学大纲课程编号:04210164 课程性质:专业必修课 先修课程:高等数学、函数变换、模拟电路、电路分析 总学时数:76 学分:4 适合专业:电子信息工程、机械与电子工程、机械自动化、电器自动化、通信、包装工程等专业 (一) 课程教学目标 自动控制理论是电子信息科学与技术专业的一门重要的专业基础课程。它侧重于理论角度,系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。 (二) 课程的目的与任务 本课程是电子通信工程、机电一体化、包装工程等专业、工科及相关理科的必修基础课程。通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,为专业课学习和参加控制工程实践打下必要的基础。学生将掌握自动控制系统分析与设计等方面的基

本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方法等。为各类计算机控制系统设计打好基础。 (三) 理论教学的基本要求 1、熟练掌握自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。 2、熟练掌握典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法。 3、熟练掌握暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步掌握高阶系统分析方法、主导极点的概念。 4、熟练掌握根轨迹的概念和绘制法则,并能利用根轨迹对系统性能进行分析,初步掌握偶极子的概念以及添加零极点对系统性能的影响。 5、熟练掌握频率特性的概念、开环系统频率特性Nyquist图和Bode图的画法和奈氏判据,掌握绝对稳定系统、条件稳定系统、最小相位系统、非最小相位系统、稳定裕量、频域性能指标的概念,以及频率特性与系统性能的关系。 6、熟练掌握校正的基本概念、基本校正方式和反馈校正的作用,初步掌握复合校正的概念和以串联校正为主的频率响应综合法,了解以串联校正为主的根轨迹综合法,掌握常用校正装置及其作用。 (四) 教学学时分配数

自动控制原理课程总结1

HEFEI UNIVERSITY 自动控制原理课程总结 系别电子信息与电气工程系 专业自动化 班级 09自动化(1)班 姓名 完成时间 2011.12.29

自动控制原理课程总结 前言 自动控制技术已广泛应用于制造、农业、交通、航空及航天等众多产业部门,极大地提高了社会劳动生产率,改善了人们的劳动环境,丰富了人民的生活水平。在今天的社会中,自动化装置无所不在,为人类文明进步做出了重要贡献。本学期我们开了自动控制原理这门专业课,下面主要介绍下我对这门课前五章的认识和总结。 一、控制系统的数学模型 1.传递函数的定义: 在线性定常系统中,当初是条件为零时,系统输出的拉氏变换与输入的拉氏变换之比。 (1)零极点表达式: (2)时间常数表达式: 2.信号流图

(1)信号流图的组成 节点:用来表示变量或信号的点,用符号“○”表示。 支路:连接两节点的定向线段,用符号“→”表示。(2)信号流图与结构图的关系 3.梅逊公式

其中:Δ=1-La+LbLc-LdLeLf+...成为特征试。 Pi:从输入端到输出端第k条前向通路的总传递函数 Δi:在Δ中,将与第i条前向通路相接触的回路所在项除去后所余下的部分,称为余子式。 La:所有单回路的“回路传递函数”之和 LbLc:两两不接触回路,其“回路传递函数”乘积之和 LdLeL:所有三个互不接触回路,其“回路传递函数”乘积之和“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数只积并且包含表示反馈极性的正负号。 二、线性系统的时域分 1.ζ、ωn坐标轴上表示如下: (1)闭环主导 极点:

当一个极点距离虚轴较近,且周围没有其他闭环极点和零点,并且该极点的实部的绝对值应比其他极点的实部绝对值小5倍以上。(2)对于任何线性定常连续控制系统由如下的关系: ①系统的输入信号导数的响应等于系统对该输入信号响应的导数; ②系统对输入信号积分的响应等于系统对该输入信号响应的积分,积分常数由初始条件确定。 2.劳斯判据: 设系统特征方程为 : 劳斯判据指出:系统稳定的充要条件是劳斯表中第一列系数都大于零,否则系统不稳定,而且第一列系数符号改变的次数就是系统特征方程中正实部根的个数。 劳斯判据特殊情况的处理 ⑴某行第一列元素为零而该行元素不全为零时——用一个很小的正数ε代替第一列的零元素参与计算,表格计算完成后再令ε→0。 ⑵某行元素全部为零时—利用上一行元素构成辅助方程,对辅助方程求导得到新的方程,用新方程的系数代替该行的零元素继续计算。 3.稳态误差 (1)定义: (2)各种误差系数的定义公式

详解单结晶体管的基本工作原理和特性

单结晶体管原理 摘要:单结晶体管原理单结晶体管(简称UJT)又称基极二极管,它是一种只有一个PN结和两个电阻接触电极的半导体器件,它的基片为条状的高阻N型硅片,两端分别用欧姆接触引出两个基极b1和b2。在硅片中间略偏b2一侧用合金法制作一个P区作为发射极e。其结构、符号和等效电呼如图1所示。图1、单结晶体管一、单结晶体管的特性从图1可以看出,两基极b1与b2之间的电阻称为基极电阻:rbb=rb1+rb2式中:rb1----第一基极与发射结之间的电阻,其数值 目录 单结晶体管原理 单结晶体管(简称UJT)又称基极二极管,它是一种只有一个PN结和两个电阻接触电极的半导体器件,它的基片为条状的高阻N型硅片,两端分别用欧姆接触引出两个基极b1和b2。在硅片中间略偏b2一侧用合金法制作一个P区作为发射极e。其结构、符号和等效电呼如图1所示。 图1、单结晶体管 一、单结晶体管的特性 从图1可以看出,两基极b1与b2之间的电阻称为基极电阻: rbb=rb1+rb2 式中:rb1----第一基极与发射结之间的电阻,其数值随发射极电流ie而变化,rb2为第二基极与发射结之间的电阻,其数值与ie无关;发射结是PN结,与二极管等效。 若在两面三刀基极b2、b1间加上正电压Vbb,则A点电压为: VA=[rb1/(rb1+rb2)]vbb=(rb1/rbb)vbb=ηVbb 式中:η----称为分压比,其值一般在0.3---0.85之间,如果发射极电压VE由零逐渐增加,就可测得单结晶体管的伏安特性,见图2

图2、单结晶体管的伏安特性 (1)当Ve<η Vbb时,发射结处于反向偏置,管子截止,发射极只有很小的漏电流Iceo。(2)当Ve≥η Vbb+VD VD为二极管正向压降(约为0.7伏),PN结正向导通,Ie显著增加,rb1阻值迅速减小,Ve相应下降,这种电压随电流增加反而下降的特性,称为负阻特性。管子由截止区进入负阻区的临界P称为峰点,与其对就的发射极电压和电流,分别称为峰点电压Vp和峰点电流Ip和峰点电流Ip。Ip是正向漏电流,它是使单结晶体管导通所需的最小电流,显然Vp=ηVbb (3)随着发射极电流ie不断上升,Ve不断下降,降到V点后,Ve不在降了,这点V称为谷点,与其对应的发射极电压和电流,称为谷点电压,Vv和谷点电流Iv。 (4)过了V点后,发射极与第一基极间半导体内的载流子达到了饱和状态,所以uc继续增加时,ie便缓慢地上升,显然Vv是维持单结晶体管导通的最小发射极电压,如果Ve<Vv,管子重新截止。 二、单结晶体管的主要参数 (1)基极间电阻Rbb 发射极开路时,基极b1、b2之间的电阻,一般为2--10千欧,其数值随温度上升而增大。 (2)分压比η 由管子内部结构决定的常数,一般为0.3--0.85。 (3)eb1间反向电压Vcb1 b2开路,在额定反向电压Vcb2下,基极b1与发射极e之间的反向耐压。 (4)反向电流Ieo b1开路,在额定反向电压Vcb2下,eb2间的反向电流。

各种结晶过程分析通用版

安全管理编号:YTO-FS-PD273 各种结晶过程分析通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

各种结晶过程分析通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、冷却结晶 冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNOs、NaNOs、MgSO‘等。 冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而冷却,冷却剂在冷却过程中则被汽化的方法。直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。

可控硅工作原理

可控硅工作原理 一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。 在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。它只有导通和关断两种状态。 可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。 可控硅从外形上分类主要有:螺栓形、平板形和平底形。 1、可控硅元件的结构 不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。 2、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1、可控硅结构示意图和符号图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

自动控制原理教学大纲-胡寿松

自动控制原理课程教学大纲 ◆层次:?本科?专科 ◆课程英文名称:Automatical control principle ◆课程类别:本科选?通识必修?通识选修?专业必修?专业选修 专科选?公共必修?公共选修?职业技术必修?职业技术选修 ◆适用专业:自动化 ◆配套教学计划:2011级教学计划 ◆开课系部:自动化系 ◆学分:5 ◆学时:80 其中:实验(实践)学时:10 ;课外学时:0 ◆执笔人:张海燕教研室审核人:张海燕系部审核人: 一、课程性质和教学目标 《自动控制原理》是自动化专业的一门必修课,通过本课程的学习,使学生掌握自动控制的基本原理和概念,并具备对自动控制系统进行分析,计算,实验的初步能力,为专业课的学习和参加控制工程实践提供必要的理论基础。 通过对本课程的学习,要求学生掌握自动控制的基本理论和基本分析方法,能应用控制理论对自动控制系统进行性能分析,能对系统进行校正和提出改善系统性能的途径和方法,具体要求如下: 1.掌握常规控制器和自动控制系统的组成及其相互关系。 2.了解对自动控制系统的性能要求及分析系统性能的方法。 3.掌握用传递函数,方框图,信号流图及状态空间描述建立系统数学模型的方法。 4.掌握常规控制器的基本控制规律、动态特性和对控制系统的作用。 5.掌握对控制系统进行分析和综合的方法:时域分析法、频域分析法、根轨迹法及状态空间分析法。6.初步掌握控制系统的校正和设计方法,为解决实际问题打好基础。 7.掌握脉冲传递函数的概念,了解离散控制系统的一般分析方法。 8.初步了解非线性系统的基本知识。 二、本课程与其他课程的联系与分工 本课程在自动化专业教学计划中被列为专业基础课,本课程以工程数学、电路、电机拖动等为前序课程,也是过程控制系统等课程必需的理论基础,因此本课程的学习对全面掌握各门专业课程起着重要的作用。本课程的重点是第三、第四、第五章章,次重点是第一、第二章,一般章节为六章。 三、教学内容和教学方式 第一章自动控制的一般概念(4学时) (一)教学要求

充电电路地工作原理

充电电路工作原理 蓄电池与逆变器对直流电源的要求不同:逆变器要求直流电源提供稳定电压;蓄电池要求直流电源提供的电压能随着蓄电池的充电过程而变化。为了解决蓄电池、逆变器对直流电源的不同要求,故UPS分别设置整流器及充电电路。根据UPS容量大小、工作方式不同,充电电路可分为恒压充电、恒流充电、分级充电等电路。介于充电电路在整个系统中的重要作用,我做了多方面的考虑,最后决定采用高压快速充电电路。 在此所用的高压快速充电电路不但解决了UPS内部蓄电池的快速充电问题,而且解决了一般不能快充外接蓄电池的问题。 工作原理分析: 该电路适用于长备用时间、大容量蓄电池的充电。它由以下几个部分组成:(1)加电电路 在不加交流输入电压时,继电器J2的中间触点a2和b2相连,如果这时开关K是闭合的,那么外加蓄电池电压就和UPS内部蓄电池形成并联结构,此时控制电路由于没有电源而不能工作。 当市电电压220V加到输入端时,由于继电器J1的触点处于断开状态,因而交流电压220V就不能加到变压器T1上。当按下按钮N1时,J1被激励,触点J1闭合。这时电流经限流电阻R x加到变压器T1上,等到变压器初级绕组的电压达到一定值时,J3被激励,触点闭合,将电阻R x短路。在交流220V加到输入端的同时,J2被激励,继电器触点a2转接到c2,于是电池组电压UB经R2、VD6加到控制电路上。N2为按断开关,在未按下开关N2时其处于闭合状态将两个单结晶体管振荡器的发射扳旁路,故振荡器不工作,电路处于静止等待状态。 加电电路中之所以加入了J3和R x环节,是因为一般电源变压器的匝间电容使加电前沿的电流被旁路,磁通不能马上建立起来,形成很大的短路电流。如未变压器容量再增加,这种启动瞬间短路电流就会更严重。因此,在加电前瞬间用电阻R x限流,当变压器上电压升到一定值时,再将R x短路就可避免这种情况的发生。 当按下开关N1瞬间,由于有上述的过程,最好不要马上供电。在N2被按下,该开关处于断开状态,电容C5的充电能延缓振荡器的起振,只有当C5上电压上;升到一定值时,振荡器才开始工作。 (2)振荡电路

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。

结晶器原理

结晶器原理 结晶是一个重要的化工过程,是物质提纯的主要手段之一。众多化工、医药产品及中间产品都是以晶体形态出现的,结晶往往是大规模生产它们的最好又最经济的方法。 结晶过程是一个复杂的传热、传质过程。在溶液和晶体并存的悬浮液中,溶液中的溶质分子向晶体转移(结晶),同时晶体的分子也在向溶液扩散(溶解)。在未饱和溶液中溶解速度大于结晶速度,从宏观上看这个过程就是溶解;在过饱和溶液中结晶速度大于溶解速度,从宏观上看这个过程就是结晶。所以,结晶的前提是溶液必须有一定的过饱和度。连续结晶器和间歇结晶器相比具有以下优点:连续结晶具有收率高、能耗低、母液少、产品质量好、自动化程度高、设备占地面积小及操作人员少等优点。由于连续结晶器具有较高的生产效率,一套连续结晶器往往可以取代数套乃至数十套间歇结晶器,相应配套设备的数量也大大减少。对于医药产品的结晶,由于连续结晶器都是全密闭的,结晶器可以布置在GMP车间的外面,而仅将离心机、烘干和包装布置在GMP车间的里面,这将极大地减少GMP车间的面积,从而降低整个工程的投资。 连续结晶器可以方便地和机械压缩泵组合,在低温下进行蒸发结晶,不但不需要蒸汽,而且无需冷冻水。节能的同时也避免了庞大的冷冻机投资。

过饱和度是结晶的一个重要参数。根据大量试验的结果证实,溶液的过饱和与结晶的关系可用上图1表示;图中的AB 线为普通的溶解度曲线,CD 线代表溶液过饱和而能自发地产生晶核的浓度曲线(超溶解度曲线),它与溶解度曲线大致平行。这两根曲线将浓度——温度图分割为三个区城。在AB 曲线以下是稳定区,在此区中溶液尚未达到饱和,因此没有结晶的可能。AB 线以上为过饱和溶液区,此区又分为两部分:在AB 与CD 线之间称为介稳区,在这个区域中,不会自发地产生晶核,但如果溶液中已加了晶种,这些晶种就会长大。CD 线以上是不稳区,在此区域中,溶液能自发地产生晶核。若原始浓度为 E 的洁净溶液在没有溶剂损失的情况下冷却到 F 点,溶液刚好达到饱和,但不能结晶,因为它还缺乏作推动力的过饱和度。从F 点继续冷却到G 点的一段期间,溶液经过介稳区,虽已处于过饱和状态,但仍不能自发地产生晶核。只有冷却到G 点后,溶液中才能自发地产生晶核,越深入不稳区(例如达到H 点),自发产生的晶核也越多。由此可见,超溶解度曲线及介稳区、不稳区这些概念对于结晶过程有重要意义。把溶液中的溶剂蒸发一部分,也能使溶液达到过饱和状态,图中EF ’ G’线代表此恒温蒸发过程。在工业结晶中往合并使用冷却和蒸发,此过程可由EG’’线代表。晶体成长的速率与过饱和度的关系如上图2所示。当然,结晶器出来的最终的晶体的尺寸不仅仅与晶体成长的速率相关,还与成核速率、耗散速率等有关。成核速率也与过饱和度相关,且受过饱和度影响要较成长速率受其影响来的大,从下图3我们可以看出来。

结晶过程机理分析

编号:SM-ZD-11262 结晶过程机理分析 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

结晶过程机理分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 (1)结晶在固体物质溶解的同时,溶液中还进行着一个相反的过程,即已溶解的溶质粒子撞击到固体溶质表面时,又重新变成固体而从溶剂中析出,这个过程称为结晶。 (2)晶体晶体是化学组成均一的固体,组成它的分子(原子或离子)在空间格架的结点上对称排列,形成有规则的结构。 (3)晶系和晶格构成晶体的微观粒子(分子、原子或离子)按一定的几何规则排列,由此形成的最小单元称为晶格。晶体可按晶格空间结构的区别分为不同的晶系。同一种物质在不同的条件下可形成不同的晶系,或为两种晶系的混合物。例如,熔融的硝酸铵在冷却过程中可由立方晶系变成斜棱晶系、长方晶系等。 微观粒子的规则排列可以按不同方向发展,即各晶面以不同的速率生长,从而形成不同外形的晶体,这种习性以及

关于结晶器

18.什么是“凸形”结晶器? 答:“凸形”结晶器是康卡斯特公司推出的一种高效方坯结晶器技术,又名Convex结晶器。它的基本特征是:结晶器上部内腔铜壁面向外凸出而不是平的,即上口内圆角大于90°,往下沿整个结晶器长度方向上逐渐变为平面,即至铜管出口处内圆角又恢复到90°角,康卡斯特公司认为:上部凸面区传热效率高,角部气隙小,能使坯壳与结晶器尽量可能保持良好接触,坯壳向下运行时,逐渐冷却收缩并自然过渡到平面段。结晶器下部壁面呈平面正好适应了坯壳本身的自然收缩,使结晶器传热效率大为改善。 19.什么是自适应结晶器? 答:自适应结晶器是达涅利(Danieli)公司开发的一种高效方坯结晶器,又称Danam结晶器。其具体做法如下;采用薄型铜管,加大并调节结晶器冷却水压,使薄铜壁紧粘坯壳以消除气隙,实现高拉速。在Danam结晶器里,通过调节水压,使其上部对铸坯侧面和角部采取不同的横向冷却,来控制气隙的形成,确保坯壳均匀凝固。 20.什么是“钻石”结晶器? 答:“钻石”结晶器是VAI公司推出一种高效方坯结晶器,又称DIAMOND。VAI采用的技术解决办法如下:VAI认为提高拉速,坯壳在结晶器内生长的均匀性和增加坯壳厚度很重要,解决结晶器内坯壳生长均匀性问题,其本质就是如何降低结晶器内气隙热阻。VAI 采用比常规抛物线锥度大一些的新抛物线形锥度,提高整个结晶器长度上坯壳与结晶器的接触性,方便坯壳在结晶器内均匀生长。增加坯壳厚度的有效办法是延长结晶器长度,增加结晶器中铸坯质点在结晶器内的生长时间。VAI经过计算,认为铜管延长至1000mm长较好。采用过大的抛物线锥度和延长铜管至100mm后,会使结晶下部摩擦力增加很大,不利于拉坯。VAI通过研究,发现摩擦力过分增大的压力峰值出现在结晶器下部四角边沿区域。为了减小摩擦力,VAI采用从距结晶器顶部300~400mm处开始,一直到下口为直结晶器角部区域没有锥度,而且愈往下角部无锥度区域也增大。这种方法既确保了结晶器内坯壳的均匀生长,又有效防止了结晶器中尤其下部摩擦力的过分增大。VAI认为由于结晶器角部区域为二维热传递,因此在这个区域中小方坯角部区域的直接接触没有绝对必要,因为这个区域中的坯壳总能充分生长。 21.什么是压力水膜结晶器? 答:压力水膜结晶器是比利时冶金研究中心(CRM)和阿贝德厂(Arbed)联合开发的一种高效结晶器技术。具体做法如下:在结晶器下口固定有四块钢板,水从每块钢板上加工的狭缝喷射出来,钢板与结晶器面成直线放置,并与铸坯表面间留有小间隙,间隙使高速流动着的水充满并形成一层水膜。钢板上的狭缝向下倾斜,使得从中流出来的水能朝下流动。水膜既起强冷作用,又起支撑铸坯作用,这就是压力水膜结晶器。 22.什么是曲面结晶器? 答:曲面结晶器是中冶连铸开发的一种高效方坯结晶器技术。该技术是从传热角度,根据气隙产生的主要原因,通过对结晶器热变形和小方坯收缩的分析开发出来的。其基本特征如下:

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

单结晶体管触发电路原理及各店波形

单节晶体管触发电路 1原理图是: 实验目的是:(1)熟悉单结晶体管触发电路的工作原理及电路中 各个元件的作用 (2)掌握单结晶体管触发电路的调试步骤与方法 (3)熟悉与掌握单结晶体管触发电路各主要点的波 形测量与分析 实验原理:有原理图可知,由同步变压器变压器副边输出60V 的交流同步电压,经过D1的半波整流得到T1点的波形图,经过稳压管D3的稳压使图T2处的波形进行嵌位,使梯形波电位嵌位,可得到梯形波的波形即T2的波形图如图所示,T1和T2的波形图为下图

(其中红色表示的是T1处的波形,黑色表示的是T2处的波形)电路经过电阻R2的分压使T3的比T2略低,由于D2稳压器的稳压使T3处的波形也为梯形波,其中T2和T3的波形如图所示,当改变R2阻值时,由于T2压降保持不变,R2和滑动变阻器的分压,由于R2分压增大,使得T3处电位降低,波形图如下图所示: 其中同步电压,整流桥和稳压二极管共同组成梯形波,这个梯形波电压,既作为触发电路的同步电压,也作为它的直流电源。

(其中蓝色线是T3的波形,橙色表示的是T2的波形,R2未变动之前) 当R2变化时(R2=10kΩ),由于T2处稳压管的嵌位,是的R2变化时T2处电压保持不变,此时R2和滑动变阻器R8串联分T2的电压,由于R2的电阻增大,由电阻串联可知,R2分的的电压就会增大,从而使滑动变阻器两端的电压变小,即T3处的电压变小,图像如下所示:

(蓝线表示的是T3的波形,橙线表示的是T2的波形) T6后面是由两个三极管构成的放大和移相环节,主要由晶体管Q1和Q2组成,Q1的作用是放大,Q2的作用是等效可变电阻,由外部输入的移相控制电压经晶体管Q1放大后,作为晶体管Q2当梯形波电压过零时单结晶体管的e和第一基极b1导通,电容的基极控制信号,使Q2的集电极电流顺着T6处电压的变化而变化,起到可变电阻的作用。即改变T6处的点位就可改变电容C的充电时间常数,也就是说改变了单结晶体管峰点电压到来的时刻,从而实现对输出脉冲的移相控制。 此外,单节晶体管Q3和电容器C1共同组成了单结晶体管触发电路的脉冲形成和输出环节,此时同步电源通过R4和三极管

自动控制原理课程教学大纲

物理电子工程学院《自动控制原理》课程教学大纲 课程编号:04210164 课程性质:专业必修课 先修课程:高等数学、函数变换、模拟电路、电路分析 总学时数:76 学分:4 适合专业:电子信息工程、机械与电子工程、机械自动化、电器自动化、通信、包装工程等专业 (一)课程教学目标 自动控制理论是电子信息科学与技术专业的一门重要的专业基础课程。它侧重于理论角度,系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。 (二)课程的目的与任务 本课程是电子通信工程、机电一体化、包装工程等专业、工科及相关理科的必修基础课程。通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,为专业课学习和参加控制工程实践打下必要的基础。学生将掌握自动控制系统分析与设计等方面的基本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方法等。为各类计算机控制系统设计打好基础。(三)理论教学的基本要求 1、熟练掌握自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。 2、熟练掌握典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法。 3、熟练掌握暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步掌握高阶系统分析方法、主导极点的概念。 4、熟练掌握根轨迹的概念和绘制法则,并能利用根轨迹对系统性能进行分析,初步掌握偶

结晶原理及操作

结晶原理及操作 1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。 从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。 重结晶的一般过程为: 选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。 2、基本操作: (1)选择溶剂:选择适合的溶剂是重结晶的关键之一, 适宜的溶剂必须符合以下几个条件: a、与被提纯的有机物不起化学反应; b、被提纯的有机物在该溶剂中的溶解度随温度变化显 著,在热溶剂中溶解度大,在冷溶剂中溶解度小; c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去); d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去; e、价廉易得、毒性低、容易回收。 选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。具体选择可通过查阅有关化学手册,也可以通过实验来确定。 (2)固体溶解: 待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。)或全溶(不含不溶性杂质)为止,最后再多加计算量20%的溶剂(将溶液稀释,防止热滤时由于溶剂的挥发和温度的下降导致晶体析出),振荡,制成热的近饱和溶液。 (3)除去杂质 a、脱色:若热溶液有色,说明其中有有色杂质,可利用活性炭进行脱色处理,除去有色杂质。 脱色操作: 将沸腾的溶液稍冷后,加入活性炭加热煮沸几分钟,然后趁热过滤,除去活 性炭,得到无色溶液。

程控单结晶体管简介

程控单结晶体管(PUT)应用及原理 程控单结晶体管PUT(Programmable Uniguction Tr-ansistor),又称可编程单结晶体管或可调单结晶体管,程控单结晶体管实质上是一个N极门控晶闸管的功能,但因它与单结晶体管的用途相近,故纳入单结管之列。它与单结晶体管也有重工区别。单结管一经制成,从外部就无法改变rB1、rB2、RBB、ηV、IP、IV等参数值,加之工艺的离散性导致同类单结管的ηV值总会存在一定的偏差,这就给用记带来不便。程控单结晶体管圆满解决了上述问题,它是用外部电阻R1、R2取代内基极电阻rB1、rB2,只需改变二者的电阻比,即可从外部调整其参数值。正是由于PUT器件使用灵活,用途广泛,因此颇受使用者欢迎。 PUT器件的外形与小功率晶体管相同,也有金属壳和塑料两种封装形式,见图。国产型号为BT 40、XG 901 D等,国外典型产品有2 N 6027、2 N 6028。国外还研制成外形尺寸为1.1×1.5×2.9(mm)的超小型程控单结晶体管。下面介绍其工作原理及检测方法。 1.工作原理 程控单结晶体管的结构、等效电路及符号如下图所示。它属于PNPN四层、三端、具有负阻特性的半导体器件。三个引出端分别是阳极A,阴极K,门极G。门极是从靠近阳极的N型半导体上引出①。PUT等效于由PNP硅管T1和NPN硅管T2构成的互补晶体管。

当VA>VG+0.7V(0.7V是T1的发射结正向压降VEB)时,T1导通,IC1↑,使T2导通,IC2↑,这就进一步促使T1导通,形成正反馈,导致A-K间电阻急剧下降,呈现负阻特性。程控单结晶体管与单结晶体管的性能比较见表1。BT 40型主要参数见表。 程控单结晶体管具有参数可调、触发灵敏度高、漏电流小、脉冲上升时间快(约60ns)、输出功率较大等优点,不仅能构成可控制脉冲波或锯齿波发生器、过压保护器、长延时器,还能触发晶闸管及大功率晶体管。下图给出两种典型用法。 2.检测方法 (1)识别程控单结晶体管的电极

自动控制原理 教学大纲

《自动控制原理》课程教学大纲 一、课程的地位、目的和任务 本课程地位: 自动控制原理是机械设计制造及其自动化专业的专业方向课。自动控制技术是现代化技术中重要的一个方面,本课程主要讲述现代自动控制技术的基本原理与结构模型,自动控制系统的分析方法与设计方法,使学生具备自动化控制的基础理论知识以及实践能力。 本课程目的: 通过本课程的学习,要求学生理解自动控制的基本概念,掌握简单系统的建模方法,掌握对线性定常系统的稳定性、快速性和准确性的基本分析方法以及设计和校正方法,能熟练使用根轨迹法和频率特性法分析与设计控制系统和控制器,对非线性系统也能进行初步的分析。 本课程任务: 1.掌握自动控制的基本概念、原理,学会对实际物理系统进行数学抽象,并用已学过的数学工具进行系统分析和综合,能灵活应用各种理论知识来解决实际问题的综合设计能力。 2.不仅为后续课程的学习奠定基础,而且直接为解决实际控制系统问题提供理论和方法,养成将来在工程实际中经常进行理性思维的习惯。 3.培养学生在掌握课程知识、概念、原理方法基础上,独立思考、独立解决问题、实验与仿真实现的能力。 二、本课程与其它课程的联系 本课程的先修课是高等数学(上、下)、大学物理、电工电子技术(Ⅰ、Ⅱ)。这些课程的学习,为本课程学习奠定数学基础和分析系统建立数学模型提供必要的电学知识。本课程学习为后续课程的学习提供所应用的系统分析、设计的基本理论和基本方法,掌握必要的基本技能,为进一步深造打下必要的理论基础。 三、教学内容及要求 第一章控制系统导论 教学要求: 通过本章教学,使学生理解自动控制的定义、组成、基本控制方式及特点,对控制系统性能的基本要求,自动控制系统的分类,自动控制系统实例有一定掌握。使学生对反馈控制的基本理论和方法有一全面、整体的了解。 重点:自动控制的定义、组成、基本控制方式、特点及基本要求

《自动控制原理》课程标准

《自动控制原理》课程标准 一、课程基本信息 课程名称:自动控制原理课程代码:011087 课程类别:专业核心课 课程类型: B类(理论+实践课) 是否为精品课程:否 总学时:64(理论学时数:32,实践学时数:32)学分4分 二、课程定位与设计思路 1.1课程定位 《自动控制原理》课程是电气自动化技术专业的一门专业核心课程,专业必修课程。本课程的作用是通过学习性的工作任务教学方式,采取情境教学方法培养学生具有相应的自动控制理念和综合分析能力。本课程通过前修课程《电工基础》、《模拟电子技术》、《传感器与自动检测A》的学习,将传感器的自动控制理念和电学相关的简单电路知识融合在本课程的教学中,使复杂的理论知识变的简单,便于学生理解和掌握;通过前修课程《电机与电气控制B》理论知识的学习,培养学生对直流调速系统理论知识和实践技能的综合应用能力。同时为后续课程《电气传动新技术》、《生产过程自动控制实训》、《电机调速综合实训》的学习打下必要的理论知识和实践基础。 1.2设计思路 通过对本专业安装电工、维修电工、电气系统线路及器件(自动生产线)操作员工作岗位分析,确定了课程的设计思路为:根据本专业的基础能力目标、单项能力目标、综合能力目标,将本课程的学习领域划分成四个学习项目。学习项目一中,以电阻炉温控制系统和一汽大众汽车有限公司中汽车内饰装配控制系统的认识与描述为载体,学习自动控制系统的常用术语,引导学生学习自动控制系统的基本组成和工作过程。学习项目二中,以简单电路为载体,建立自动控制系统的数学模型,学习自动控制系统的常见环节。学习项目三中,以典型环节为载体,引导讲授分析自动控制系统性能的常用方法;以长春轨道客车股份有限公司生产控制线路为载体,可实现对不良的自动控制系统实行校正,确保控制的正常运行。学习项目四中,以简易直流调速的组装、调试、运行与检修为载体,学习直流调速的方法、简易调速系统的组装、调试、运行与基本检修方法。

结晶器

液压伺服与比例控制系统三级项目250KN结晶器液压振动系统特性仿真分析 学院(系):机械工程学院 年级专业: 10级机电控制工程1班 小组成员:张迪嘉张天宇王平阳 王利双王浩冉 指导教师:张伟

目录 一、结晶器及其振动技术概述 (4) 1.2结晶器的振动 (5) 二、结晶器振动技术国内外研究现状及发展趋势 (5) 2.1国内研究及应用 (5) 2.2国外的研究与应用 (6) 三、结晶器液压振动结构原理和特点 (7) 3.1液压振动装置的构成 (7) 3.2液压振动装置原理 (7) 3.3液压振动的特点 (8) 四、结晶器液压系统工作原理 (9) 4.1系统工作原理 (9) 4.2液压系统参数及主要元件的选择 (10) 4.3结晶器液压振动控制系统 (12) 五、结晶器液压伺服系统建模 (13) 5.1确定各组成原件的传递函数 (14) 5.2系统方框图 (15) 六、matlab系统仿真分析 (16) 6.1时间响应曲线 (16) 6.2频率响应曲线 (17)

6.3 PID 控制原理 (19) 6.4PID参数对系统特性影响 (20) 七、总结与感想 (21) 7.1影响阀控缸系统频率特性的参数 (21) 7.2心得与感想 (22) 参考文献 (22)

一、结晶器及其振动技术概述 1.1结晶器 近年来,传统连铸的高效化生产在工业发达国家取得了长足的进步,特别是高拉速技术引起人们的重视。通过采用新型保护渣、液面高精度检测和控制等一系列技术措施,使连铸机的生产能力大幅度提高,生产成本降低,给企业带来了极大的经济效益。而结晶器作为连铸生产的重要设备之一,如图1,它的性能对连铸机的生产能力和铸坯质量都起着十分重要的作用。 图1 连铸设备的组成 结晶器是连铸最重要的组成部分,它是一种特殊的无底水冷铸模。在它的内部有冷却装置,其中有的是管式结晶器隔离水缝冷却,有的是喷淋水喷水冷却,目的是对铸坯进行冷却降温。并且结晶器由振动装置带动发生振动。

相关主题
文本预览
相关文档 最新文档