当前位置:文档之家› 考研数学高数有哪些中值定理的复习重点

考研数学高数有哪些中值定理的复习重点

考研数学高数有哪些中值定理的复习重点
考研数学高数有哪些中值定理的复习重点

考研数学高数有哪些中值定理的复习重点考研数学高数有哪些中值定理的复习重点

七大定理的归属。

零点定理与介值定理属于闭区间上连续函数的性质。三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。积分中值定理属于积分范畴,但其实也是微分中值定理的推广。

对使用每个定理的体会

学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。关键在于是对哪个函数在哪个区间上使用哪个中值定理。

1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。应用微分中值定理主要难点在于构造适当的函数。在微分中值定理证明问题时,需要注意下面几点:

(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;

(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;

(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函

数使用三大微分中值定理、或者使用泰勒定理说明;

(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值

定理的区间应当不同;

(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。对此我的体会是应当从需要证明的结论入手,对结论进行分析。我

们总感觉证明题无从下手,我认为证明题其实不难,因为证明题的

结论其实是对你的提示,只要从证明结论入手,逐步分析,必然会

找到证明方法。

4、积分中值定理其实是微分中值定理的推广,对变上限函数使

用微分中值定理或者泰勒定理就可以得到积分中值定理甚至类似于

泰勒定理的形式。因此看到有积分形式,并且带有中值的证明题时,一定是对某个变上限积分在某点处展开为泰勒展开式或者直接使用

积分中值定理。当证明结论中仅有积分与被积函数本身时,一般使

用积分中值定理;当结论中有积分与被积函数的导数时,一般需要展

开变上限积分为泰勒展开式。

?在文字叙述题上下功夫

考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中

的基本概念。考生在复习过程中可以结合一些实际问题理解概念和

公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每

一个基本概念准确的理解,公式理解的准确到位,并且多做些相关

题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。

?会用公式解题

?对概率论与数理统计的考点整体把握

考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量

的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分

布及其数字特征。

?心理上要重视

如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!

在认真熟悉教材上的原理与概念,深刻了解基本概念、基本性质。在同学们以后的复习过程中注意以下几个问题,通过做题来检验自

己的复习程度。

概念不清,只会背不会运用;

不能正确地选择概率公式去证明和计算;

不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。

分析有误,概率模型搞错。

1、只重技巧,不重理解

这是一种投机心理的表现。学习是一件很艰苦的工作,很多学生片面追求别人现成的方法和技巧,殊不知方法和技巧是建立在自己

对基本概念和基础知识深入理解的基础上的,每一种方法和技巧都

有它特定的适用范围和使用前提。也就是说,单纯的模仿是绝对行

不通的,这就要求我们必须放弃投机心理,塌实的透彻理解每一个

方法的来龙去脉。

2、把看题等同于做题

由于时间原因,很多人买了资料后只是匆匆茫茫的看书而不动手练习,造成眼高手低。数学是一门严谨的学科,容不得半点纰漏,

在我们还没有建立起来完备的知识结构之前,一带而过的复习必然

会难以把握题目中的重点,忽略精妙之处。况且,通过动手练习,

我们还能规范答题模式,提高解题和运算的熟练程度,要知道三个

小时那么大的题量,本身就是对计算能力和熟练程度的考察,而且

现在的阅卷都是分步给分的,怎么作答有效果,这些都要通过自己

不断的饿摸索去体会。

3、只追高难,不重基础

万丈高楼平地起,基础知识的学习对于任何一门学科都不例外。考研数学中大部分是中挡题和容易题,难度比较大的题目只站20%

左右,而且难题不过是简单题目的进一步综合,如果你在某个问题

卡住了,必定是因为对于某一个知识点理解不够,或者是对一个简

单问题的思路模糊。忽略基础造成考生在很多简单的问题上丢分惨重,为了不确定的30%而放弃可以比较确定的70%,实在是不划算。

这一点从很多人选择参考资料上就能看出来。因此,大家一定要从

实际出发,打到基础,深入理解,这样即便遇到一些难度大的题目

也会顺利分解,这才是根本的解决方法。

4、题海战术,不归纳总结

我们作题,是要把整个知识通过题目加深理解并有机的串联起来。数学的学习离不开作题,但从来不等于作题,抽象性是数学的重要

特征之一,在复习过程中,我们通过作题,发散开来对抽象知识点

的内涵和外延进行深入理解,这是非常必要的。但是时刻不要忘了

我恩最根本的目的是要对知识点进行理解进而形成我们自己有机联

系的知识结构。因此我嫩作题的思路,必然应该是从理解到作题归

纳再回到理解。在此之外,再做一些题目增加熟练度是有必要的,

单如果超出了这个限度。让作题成为一种机械化的劳动,就没必要了。要记住,时刻目标明确、深入思考才识提高数学思维和数学能

力的关键。

5、作题翻书,不记公式

有许多人还有这样的习惯,不牢记公式,作题的时候看书,查完了作完了也就完了。数学的逻辑性很强,公式和公式、定理和定理

之间有着必然的内在联系,我们应该在平时的复习过程中有理解的

加以记忆,而不是单纯的背诵。机械的记忆容易遗忘和产生差错,这样的话到时候我们用错了都全然不知,如此造成失分岂不冤枉?

高数定理定义总结

高数定理定义总结 第一章函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1, 1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即

f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果l im(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐 近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘 积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限 lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也 成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x) 当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即 lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的 函数。

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点考研数学高数定理证明的知识点 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求 会证。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推 举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想 必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导” 和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得 函数在该点的导数为0。 前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直 接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔 定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连 续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。 那么最值和极值是什么关系?这个点需要想清楚,因为直接影响 下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若 最值均取在区间端点,则最值不为极值。那么接下来,分两种情况 讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条 告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值 和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在 开区间上任取一点都能使结论成立。 拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,

若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过 程中体现出来的基本思路,适用于证其它结论。 以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑 在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗 尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子 是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现 场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函 数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值 换成x,再对得到的函数求不定积分。 2015年真题考了一个证明题:证明两个函数乘积的导数公式。 几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为 陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公 式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急 功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可 能从未认真思考过该公式的证明过程,进而在考场上变得很被动。 这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中 未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写 出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则, 因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。 利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有” 的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了 f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把

初中数学定义、定理汇总

初中数学定义、定理超级大全 1.1有理数 1.1.1有理数的定义:整数和分数的统称。 1.1.2有理数的分类: (1)分为整数和分数。而整数分为正整数、零和负整数;分数分为正分数和负分数。 (2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分数。 1.1.3数轴 1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 1.1.3.2数轴的三要素:①原点②正方向③单位长度 1.1.3.3每个有理数都能用数轴上的点表示 1.1.4相反数 1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0 1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数 1.1.4.3相反数的判别 (1)若,则、互为相反数 (2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。 1.1.5倒数 1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数)注:零没有倒数。 1.1.6绝对值 1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣) 1.1.6.2绝对值的性质:∣a∣≥0 1.1.7有理数大小的比较 1.1.7.1正数大于0,负数小于0 1.1.7.2正数大于负数 1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就小,绝对值小的这个数就大。 1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。 1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。 1.1.8有理数的加法 1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等于0)③任何有理数加0仍等于这个数。 1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a 1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c 1.1.9有理数的减法 1.1.9.1运算法则:减去一个数等于加上这个数的相反数 1.1.9.2有理数减法—转化→有理数加法 1.1.10有理数的乘法 1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。 1.1.10.2乘法交换律在有理数乘法中仍然适用,即 1.1.10.3乘法结合律在有理数乘法中仍然适用,即

考研数学中值定理五大注意事项

考研数学中值定理五大注意事项 来源:文都图书 中值定理是考研数学得分较低的一块,可以说是考生的“灾难区”,看到一个题目怎么思考处理是个问题,下面,就给大家就这一部分讲解一下事项。 1. 所有定理中只有介值定理和积分中值定理中的ξ所属区间是闭区间。 2. 拉格朗日中值定理是函数f(x)与导函数f'(x)之间的桥梁。 3. 积分中值定理是定积分与函数之间的桥梁。 4. 罗尔定理和拉格朗日中值定理处理的对象是一个函数,而柯西中值定理处理的对象是两个函数,如果结论中有两个函数,形式与柯西中值定理的形式类似,这时就要想到我们的柯西中值定理。 5. 积分中值定理的加强版若在定理证明中应用,必须先证明。 其次对于中值定理证明一般分为两大类题型:第一应用罗尔定理证明,也可又分为两小类:证明结论简单型和复杂型,简单型一般有证明f'(ξ)=0,f'(ξ)=k (k为任意常数),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),像这样的结论一般只需要找罗尔定理的条件就可以了,一般罗尔定理的前两个条件题目均告知,只是要需找两个不同点的函数值相等,需找此条件一般会运用闭区间连续函数的性质、积分中值定理、拉格朗日中值定理、极限的性质、导数的定义等知识点。复杂型就是结论比较复杂,需要建立辅助函数,再使辅助函数满足罗尔定理的条件。辅助函数的建立一般借助于解微分方程的思想。第二就是存在两个点使之满足某表达式。这样的题

目一般利用拉格朗日中值定理和柯西中值定理,处理思想把结论中相同字母放到等是一侧首先处理。 上述就是值定理需要注意的事项。希望大家在做题的过程中多加注意,可以配套着汤家凤的《2016考研数学绝对考场最后八套题》来进行对应的训练,掌握好上述的知识点。

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

高数部分知识点总结

高数部分知识点总结 1 高数部分 1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法 0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0, 0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0, 1xx1x,1(1,x),e限,包括、、;4.夹逼定理。 (1,),exlimlimlimsinxxx,0,0x,, 1.2 高数第二章《导数与微分》、第三章《不定积分》、第四 章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答, 案中少写这个C会失一分。所以可以这样建立起二者之间的联系以加 f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,, f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了, 这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下 a f(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,a aaa f(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0 ,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02 用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利 aaa 奇函数,0偶函数,2偶函数用性质、。在处理完积分上下,,,,a,a0 限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3 高数第五章《中值定理的证明技巧》 由本章《中值定理的证明技巧》讨论一下证明题的应对方法。用 E、(AB)C、以下这组逻辑公式来作模型:假如有逻辑推导公式A:,, DE)F,由这样一组逻辑关系可以构造出若干难易程度不等的(C::, 证明题,其中一个可以是这样的:条件给出A、B、D,求证F成立。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以 E就从中找出有用的一个。如对于证明F成立必备逻辑公式中的A,可能有AH、A(IK)、(AB) M等等公式同时存在,有的逻辑::,,,

考研高数各章重点总结

一、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。 二、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 三、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 二重、三重积分在各种坐标下的计算,累次积分交换次序; 第一型曲线积分、曲面积分计算; 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 第二型(对坐标)曲面积分的计算,高斯公式及其应用; 梯度、散度、旋度的综合计算; 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 判定数项级数的收敛、发散、绝对收敛、条件收敛;

考研数学中值定理总结

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、所证式仅与ξ相关 ①观察法与凑方法 ②原函数法 ③一阶线性齐次方程解法的变形法 2、所证式中出现两端点 ①凑拉格朗日 ②柯西定理 ③k值法 ④泰勒公式法 老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。 3、所证试同时出现ξ和η ①两次中值定理 ②柯西定理(与之前所举例类似) 有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。 一、高数解题的四种思维定势 1、在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 2、在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分

中值定理对该积分式处理一下再说。 3、在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 4、对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 二、线性代数解题的八种思维定势 1、题设条件与代数余子式A ij 或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。 2、若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 3、若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。 4、若要证明一组向量a 1,a 2 ,…,a s 线性无关,先考虑用定义再说。 5、若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6、若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7、若已知A的特征向量ζ 0,则先用定义Aζ =λ ζ 处理一下再说。 8、若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

七年级数学定理概念公式汇总

一、有理数 (一)有理数 1、有理数的分类: 按有理数的定义分类:按有理数的性质符号分类: 正整数正整数整数零正有理数 有理数负整数正分数 正分数有理数0 分数负整数 负整数负有理数 负分数 2、正数和负数用来表示具有相反意义的数。 (二)数轴 1、定义:规定了原点、正方向和单位长度的直线叫做数轴。 2、数轴的三要素是:原点、正方向、单位长度。 (三)相反数 1、定义:只有符号不同的两个数互为相反数。 2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫 做互为相反数。 3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。 (四)绝对值 1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。 2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。 3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值 是0。 a (a>0), 即对于任何有理数a,都有|a|=0(a=0) –a(a<0) 4、绝对值的计算规律: (1)互为相反数的两个数的绝对值相等. (2)若|a|=|b|,则a =b或a =-b. (3)若|a|+|b|=0,则|a|=0,且|b|=0. 相关结论: (1)0的相反数是它本身。 (2)非负数的绝对值是它本身。 (3)非正数的绝对值是它的相反数。 (4)绝对值最小的数是0。 (5)互为相反数的两个数的绝对值相等。 (6)任何数的绝对值都是它的正数或0,即|a|≥0。 (五)倒数 1、定义:乘积为“1”的两个数互为倒数。 2、求法:颠倒这个数的分子和分母。 3、a(a≠0)的倒数是1 a. 有理数的运算

考研数学公式大全(考研同学必备)

考研数学公式(全) ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,

·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A

高数中值定理

第三章中值定理与导数 的应用

中值定理与导数的应用的结构 洛必达法则 Rolle 定理 Lagrange 中值定理 常用的泰勒公式 型 0,1,0∞∞型 21∞-∞型 ∞?0型00型∞ ∞Cauchy 中值定理 Taylor 中值定理 x x F =)() ()(b f a f =0 =n g f g f 1= ?2 11 2 21111∞∞∞-∞=∞-∞取对数 令g f y =单调性,极值与最值,凹凸性,拐点,函数图形的描绘;曲率;求根方法. 导数的应用

第三章中值定理与导数的应用 1. 中值定理 2. 常用麦克劳林公式 3. 洛必达法则 4. 函数的单调性、凹凸性、极值与拐点 5. 函数图形性质的讨论 6. 判定极值的充分条件 7. 最值问题 8. 典型例题

1. 中值定理 泰勒中值定理 设f (x )在含0x 的某开区间(a ,b )内具有(n +1)阶 导数, 则当),(b a x ∈时,在 x 与0x 之间存在 ξ ,使 (柯西中值公式) ) () ()()()()('' ξξg f b g a g b f a f =--(拉氏中值公式) )()()(ξf b f a f '=-柯西中值定理 设f (x ), g (x )在闭区间[a ,b ]上连续,在开区间 (a ,b )内可导且g '(x )≠0, 那末),(b a ∈?ξ,使 罗尔中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导且f (a )= f (b ), 那末),(b a ∈?ξ,使f '(ξ )=0 1 0)1(0 00)() ()!1()()(!)()(++=-++-=∑n n n k n n x x n f x x n x f x f ξ拉氏中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导, 那末),(b a ∈?ξ,使

考研数学函数与极限部分定理定义汇总

1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限 一. 函数的概念 1 两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x )与g (x )是同阶无穷小。 (3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x ) 2 常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二 求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=

考研数学专题训练:中值定理

1 中值定理 【本章定位】 本部分内容属于考研数学中的难点内容,而且经常被考生所忽略,往往受到课本中的误导,低估了其难度和重要性,事实证明,在历年考研中,虽不是年年必考,但是出现的几率很大,且一般作为区分题加大了试卷的难度,如 201年的真题中“证明拉格朗日中值定理”的题目,让人无从下手,有人将此归结为看书不仔细,实际上是对本该好好研究学习的内容没有认真把握和总结,没有掌握中值定理的方法和技巧。所以,请考生务必重视! 1、 所证式仅与ξ相关 ①观察法与凑方法 1 ()[0,1](0)(1)(0)0 2() (,)()1 ()()2()0(1) ()() [()]()f x f f f f a b f x f x xf x f x f x xf x xf x xf x '==='ζ''ζ∈ζ=-ζ '''''ζ--='''''''= 例设在上二阶可导,试证至少存在一点使得分析:把要证的式子中的换成,整理得由这个式可知要构造的函数中必含有,从找突破口 因为()(1) ()()[()()]0()()[()]0 ()(1)()() f x f x f x xf x f x f x f x xf x F x x f x f x '+'''''''''''--+=?--='=--,那么把式变一下: 这时要构造的函数就看出来了②原函数法 ?-?-? ===?=?+=?='ζζζ=ζ'∈ζ?==?dx x g dx x g dx x g e x f x F C C e x f Ce x f C dx x g x f x g x f x f x g f f g f b a b a x g b f a f b a b a x f )()()()()( )( )(ln )()(ln )() ()( ) ()()(),( ],[)()()( ),(],[)( 2 很明显了 ,于是要构造的函数就现在设换成把有关的放另一边,同样有关的放一边,与现在把与方法 造的函数,于是换一种是凑都不容易找出要构分析:这时不论观察还使得求证:上连续在,又内可导,上连续,在在设例两边积分00

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

高等数学中值定理的题型与解题方法

高等数学中值定理的题型与解题方法 高数中值定理包含: 1.罗尔中值定理 (rolle); 2. 拉格朗日中值定理 (lagrange); 3. 柯西中值定 理(cauchy); 还有经常用到的泰勒展开式 (taylor), 其中 (a,b) ,一定是开区间 . 全国考研的学生都害怕中值定理, 看到题目的求解过程看得懂, 但是自己不会做, 这里往往是在构造函数不会处理, 这里给总结一下中值定理所涵盖的题型, 保证拿到题目就会做。 题型一:证明: f n ( ) 0 基本思路,首先考虑的就是罗尔定理 (rolle) ,还要考虑极值的问题。 例 1. f ( x) C[ a, b] 在 ( a, b) 可导, f (a) f (b) 0, f ( ) f (a b ) 0 , a 2 证明:存在 (a,b) ,使得 f '( ) 0 . 分析:由 f ( a) f (b) 0 , f (a) f ( a b ) 0 ,容易想到零点定理。 2 证明: f (a) f ( a b ) 0, 存在 x 1 (a, a b ) ,使得 f (x 1 ) 0 , 2 2 f (b) f ( a b ) 又 f (a) f (b) 0 , f ( a), f (b) 同号, 0 , ( a b , b) ,使得 f ( x 2 ) 2 存在 x 2 0 , 2 f ( x 1 ) f ( x 2 ) 0,所以根据罗尔中值定理:存在 (a,b) ,使得 f '( ) 0 . 例 2. f ( x) C[0,3] 在 (0,3) 内可导, f (0) f (1) f (2) 3 , f (3) 1 , 证明:存在 (0,3) ,使得 f '( ) 0 证明:( 1) f ( x) C[0,3] , f ( x) 在 [0,3] 使得上有最大值和最小值 M , m , 根据介值性定理 f (0) f (1) f (2) M ,即 m 1 M m 3 存在 c [0,3] ,使得 f (c) 1 , ( 2) f (c) f (3) 1,所以根据罗尔中值定理:存在 (c,3) (0,3) , 使得 f '( ) 0 . 例 3. f ( x) 在 (0,3) 三阶可导, x [0,1] , f (1) 0 , F (x) x 3 f ( x) 证明:存在 (0,1) ,使得 F '''( ) 0 证明:( 1) F (0) F(1) 0, 存在 1 (0,1),使得 F '( 1 ) 0 ,

人教版八年级下册数学概念定义公式总结

人教版八年级下册数学概念定义公式总结 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

八年级下册数学概念、定义、公式归纳 1. 2. 3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。分子和分母没有公因式的分式叫做最简分式。 4.利用分式基本性质,使分子和分母同乘适当的整式,不改变分式的值,使分母不同的分式变成分母相同的分式,这样的变形叫做分式的通分。通分一般要找各分式的最简公分母。 () 5. 6. 7.

8. 9. 10. 11. 12.勾股定理——如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2。 勾股定理的逆定理——如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。 13.题设、结论正好相反的两个命题称为互逆命题。其中一个叫原命题,另一个叫逆命题。 14.平行四边形的性质: ①对边平行且相等 ②对角相等,邻角互补 ③对角线互相平分 15.平行四边形的判定方法: ①两组对边分别平行的四边形是平行四边形。 ②两组对边分别相等的四边形是平行四边形。

③两组对角分别相等的四边形是平行四边形。 ④一组对边平行且相等的四边形是平行四边形。 ⑤对角线互相平分的四边形是平行四边形。 16.矩形的性质: ①两组对边平行且相等。 ②四个角都是直角。 ③对角线互相平分且相等 17.矩形的判定方法: ①一个角是直角的平行四边形是矩形。 ②对角线相等的平行四边形是矩形。 ③三个角都是直角的四边形是矩形。 18.菱形的性质: ①四条边都相等 ②对角相等,邻角互补 ③对角线互相垂直平分,且每一条对角线平分一组对角 19.菱形的判定方法: ①一组邻边相等的平行四边形是菱形。 ②对角线互相垂直的平行四边形是菱形。 ③四边相等的四边形是菱形。 20.正方形的性质: ①四条边都相等,对边平行 ②四个角都是直角 ③对角线相等且互相垂直平分,且每一条对角线平分一组对角

总结拉格朗日中值定理的应用

总结拉格朗日中值定 理的应用

总结拉格朗日中值定理的应用 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习有着极大的意义! 拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。 凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式, 凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F’(X),由此求出辅助函数F(x).如例1. 常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通 常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分

作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的代数式,另一端为b与.f(b)构成的代数式,将所证式中的端点值(a或b)改为变量x移项即为辅助函数f(x),再用中值定理或待定系数法等方法确定k,一般来说,当问题涉及高阶导数时,往往考虑多次运用中值定理,更多时要考虑用泰勒公式.如例3. 倒推法::这种方法证明方法是欲证的结论出发,借助于逻辑关系导出已知的条件和结论.如例4。

相关主题
文本预览
相关文档 最新文档