当前位置:文档之家› 考研数学中值定理证明题技巧以及结论汇总

考研数学中值定理证明题技巧以及结论汇总

考研数学中值定理证明题技巧以及结论汇总
考研数学中值定理证明题技巧以及结论汇总

目录

第一部分:中值定理结论总结.................................................................. .. (1)

1、介值定理.................................................................. (1)

2、零点定理.................................................................. (2)

3、罗尔定理.................................................................. (2)

4、拉格朗日中值定理.................................................................. .. (2)

5、柯西中值定理.................................................................. . (2)

6、积分中值定理.................................................................. . (3)

第二部分:定理运用.................................................................. . (3)

第三部分:构造函数基本方法.................................................................. .. (9)

一、要证明的等式是一阶导数与原函数之间的关系 (10)

二、二阶导数与原函数之间关系.................................................................. (11)

第四部分:中值定理重点题型分类汇总(包含所有题型) (14)

题型一:中值定理中关于θ的问题

题型二:证明f(n)(ξ)=0

题型三:证明f(n)(ξ)=C0(≠0)

题型四:结论中含一个中值ξ,不含a,b,导数的差距为一阶题型五:含两个中值ξ,η的问题

题型六:含a,b及中值ξ的问题

题型七:杂例

题型八:二阶保号性问题

题型九:中值定理证明不等式问题

第一部分:中值定理结论总结

1、介值定理

:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值

f(a)=A及

f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得

f(ξ)=C(a<ξ

Ps:c是介于A、B之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M,最小值

m,若m≤C≤M,则必存在ξ∈[a,b],使得f(ξ)=C。闭区间上的连续函数必取

得介于最大

值M与最小值m之间的任何值。此条推论运用较多)

Ps:当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数

或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小

值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、零点定理

:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内

至少存在一点ξ使得f(ξ)=0.

Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.

3、罗尔定理

:如果函数f(x)满足:

(1)、在闭区间[a,b]上连续;

(2)、在开区间(a,b)内可导;

(3)、在区间端点处函数值相等,即f(a)=f(b).

那么在(a,b)内至少有一点ξ(

4、拉格朗日中值定理

:如果函数f(x)满足:

(1)、在闭区间[a,b]上连续;

(2)、在开区间(a,b)内可导;

那么在(a,b)内至少有一点ξ(

f(b)-f(a)=f`(ξ).(b-a).

5、柯西中值定理

:如果函数f(x)及g(x)满足

(1)、在闭区间[a,b]上连续;

(2)、在开区间(a,b)内可导;

(3)、对任一x(a

那么在(a,b)内至少存在一点ξ,使得

f(b)f(a) g(b)g(a)f`() g`()

Ps:对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

6、积分中值定理

:若函数f(x)在[a,b]上连续,则至少存在一点[a,b]使得b

a

f(x)dxf()(ba)

Ps:该定理课本中给的结论是在闭区间上成立。但是在开区间上也是满足的,下面

我们来证明下其在开区间内也成立,即定理变为:若函数f(x)在[a,b]上连续,则至

少存在一点(a,b)使得b

a

f(x)dxf()(ba)

证明:设F(x)x

a

f(x)dx,x[a,b]

因为f(x)在闭区间上连续,则F(x)在闭区间上连续且在开区间上可导(导函数即

为f(x))。

则对F(x)由拉格朗日中值定理有:

(a,b)使得F`()F(b)F(a)

ba

b

a

f(x)dx

ba

而F`()f()

所以(a,b)使得b

a

f(x)dxf()(ba)。

在每次使用积分中值定理的时候,如果想在开区间内使用,我们便构造该函数,运

用拉格朗日中值定理来证明下使其在开区间内成立即可。千万不可直接运用,因为

课本给的定理是闭区间。

第二部分:定理运用

1、设f(x)在[0,3]上连续,在(0,3)内存在二阶导函数,且2f(0)2

f(x)dxf(2)f(3).

证明:(1)(0,2)使f()f(0)

(2)(0,3)使f``()0

证明:先看第一小问题:如果用积分中指定理似乎一下子就出来了,但有个问题就是积分中

值定理是针对闭区间的。有的人明知这样还硬是这样做,最后只能是0分。具体证明方法

在上面已经说到,如果要在开区间内用积分中指定理,必须来构造函数用拉格朗日中值定理

证明其在开区间内符合。

(1)、令x

f(t)dtF(x),x[0,2]则由题意可知F(x)在[0,2]上连续,,2)内可导.

则对F(x)由拉格朗日中值定理有:

(0,2)使F`()F(2)F(0)

2

f()2

f(t)d

t

2

f(0),(0,2)

(2)、对于证明题而言,特别是真题第一问证明出来的结论,往往在第二问中都会有运用,

在做第二问的时候我们不要忘记了第一问证明出来的东西,我们要时刻注意下如何将第一问

的东西在第二问中进行运用:

第二问是要证明存在点使得函数二阶倒数为0,这个很容易想到罗尔定理来证明零点问题,

如果有三个函数值相等,运用两次罗尔定理那不就解决问题啦,并且第一问证明出来了一个

等式,如果有f(a)=f(b)=f(c),那么问题就解决了。

第一问中已经在(0,2)内找到一点,那么能否在(2,3)内也找一点满足结论一的形式呢,有了

这样想法,就得往下寻找了,

2f(0)f(2)f(3),看到这个很多人会觉得熟悉的,和介值定理很像,下面就来证明:

f(x)在[0,3]上连续,则在[2,3]上也连续,由闭区间上连续函数必存在最大值和最小值,

分别设为M,m;

则mf(2)M,mf(3)M.

f(2)f(3)

2

f(2)f(3)

2

f(0)f()f(c),(0,2),c[2,3]则有罗尔定理可知:

1(0,),f`(1)0,2(,c),f`(2)0

(1,2)(0,3),f``()0

Ps:本题记得好像是数三一道真题,考察的知识点蛮多,涉及到积分中值定理,介值定理,

最值定理,罗而定理,思路清楚就会很容易做出来。

2、设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.

证明:(1)、(0,1)使得f()1

(2)、两个不同点、(0,1),使得f`()f`()1

本题第一问较简单,用零点定理证明即可。

(1)、首先构造函数:F(x)f(x)x1,x[0,1]

F(0)f(0)11

F(1)f(1)1

F(0)F(1)10

由零点定理知:(0,1)使得F()0,即f()1

(2)、初看本问貌似无从下手,但是我们始终要注意,对于真题这么严谨的题目,他的设问

是一问紧接一问,第一问中的结论或多或少总会在第二问中起到作用。在想想高数定理中的

就这么些定理,第一问用到的零点定理,从第二问的结论来看,也更本不涉及什么积分问题,

证明此问题也只可能从三大中值定理出发,具体是哪个定理,得看自己的情况,做题有时候

就是慢慢试,一种方法行不通,就换令一种方法,有想法才是最重要的,对于一道题,你没

想法,便无从下手。另外在说一点,在历年证明题中,柯西中值定理考的最少。

本题结论都涉及一阶倒数,乘积之后为常数,很可能是消去了变为1(你题目做多了,肯定

就知道事实就是这样).并且第一问中0与1之间夹了个,如果我们在0与,与1上

证明:(0,),(,1),使得:f `()f `() 2 2

对f (x )运用拉格朗日中值定理似乎有些线索。

写一些简单步骤,具体详细步骤就不多写了:将第一问中f ()代入即可。

f `() f `() f ()f (0)

f (1)f ()

1

1

1

,(0,) ,(,1)

f `()f `()1,(0,)(0,1),(,1)(0,1)

Ps :本题是05年数一的一道真题,第一问是基本问题,送分的,第二问有一定区分度,对

定理熟练的会容易想到拉格朗日定理,不熟练的可能难以想到方法。做任何题,最重要的不

是你一下子就能把题目搞出来,而是你得有想法,有想法才是最重要的,有了想法你才能一

步步的去做,如果行不通了,在改变思路,寻求新的解法,如果你没想法,你就根本无从下

我们的一个想法。那具体的函数如何来构造呢,这个得从结论出发,f `()f `()

我们把等式变一下:f `() f `() 0,f `() 这个不就是f () 3关

手。

3、设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.

11

2 2

对于这道题的结论比较有意思,比较对称,另外一个就是结论的条件,为何要把、放在

两个范围内,不像上一题中直接来个、(0,1),这个分界点1/2的作用是干吗的。很

可能也是把1/2当做某一个点就像上一题中的,是否要用到拉格朗日中值定理呢,这是

2

2 2 2 2 1 3

于的导数(而且题目中f(1)=1/3,貌似这样有点想法了),本题会不会也像上一题那样,运

用拉格朗日中值定理后相互消掉变为0呢,有了这些想法我们就要开始往下走了:先来构造一个函数:

F (x )f (x ) x 3,F (0)0,F (1)0,F `()F F F

F `() 1

3

12

2

1 22F (1)

1 2 1 2 1 2

F `()F `()0刚好证明出来。

Ps :本题是近几年数二的一道真题,只有一问,有比较大区分度的,得从条件结论互相出

发,如何构造出函数是关键。做出来之后我们反过来看这个1/2的作用就知道了,如果只

给、(0,1),那就更难了得自己找这个点,既然题中给了这个点,并且把两个变量分

开在两个区间内,我们就对这两个变量在对应区间用相应定理。说明真题出的还是很有技巧

的。一般设计难一点的中值定理证明,往往得用拉格朗日定理来证明,两个变量,

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点考研数学高数定理证明的知识点 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求 会证。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推 举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想 必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导” 和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得 函数在该点的导数为0。 前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直 接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔 定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连 续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。 那么最值和极值是什么关系?这个点需要想清楚,因为直接影响 下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若 最值均取在区间端点,则最值不为极值。那么接下来,分两种情况 讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条 告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值 和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在 开区间上任取一点都能使结论成立。 拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,

若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过 程中体现出来的基本思路,适用于证其它结论。 以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑 在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗 尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子 是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现 场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函 数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值 换成x,再对得到的函数求不定积分。 2015年真题考了一个证明题:证明两个函数乘积的导数公式。 几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为 陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公 式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急 功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可 能从未认真思考过该公式的证明过程,进而在考场上变得很被动。 这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中 未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写 出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则, 因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。 利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有” 的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了 f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把

中值定理有关的证明题辅助函数法

与微分中值定理有关的证明题,辅助函数方法介绍 一.积分法 例 设()f x 在[,]a b 上连续,在(,)a b 内可导,试证明:在(,)a b 内至少存在一点ξ, 满足:22[()()]2[]()f b f a b a f ξξ'-?=-? 分析 将求证等式改写为22[()()]2[]()0f b f a b a f ξξ'-?--?= 左端看成一个函数()F x (辅助函数)在ξ处的导数,即令 22()[()()]2[]()F x f b f a x b a f x ''=-?--? 积分得222()[()()][]()F x f b f a x b a f x =-?--? 证明:作辅助函数222()[()()][]()F x f b f a x b a f x =-?--? 22()[()()]2[]()F x f b f a x b a f x ''=-?--? 则()F x 在[,]a b 上连续,在(,)a b 内可导,且 22 ()()()()F a a f b b f a F b =-= 由罗尔定理知:存在(,)a b ξ∈,使()0F ξ'=,即得 22[()()]2[]()f b f a b a f ξξ'-?=-? 说明:(1)由于积分的不唯一性,也可以取 2222 ()[()()]()[](()())F x f b f a x a b a f x f a =----- 由此可得()()0F a F b ==,不但计算更方便,而且对证明更有信心 (2)本题若取2()g x x =,所以()2g x x '= 由柯西中值定理得:存在(,)a b ξ∈, 使得 22()()()2f b f a f b a ξξ '-=- 移项得22[()()]2[]()f b f a b a f ξξ'-?=-? 但是为了应用柯西中值定理,必须假定00a b a b ≤<<≤或,以确保()0g x '≠ 而对0a b <<情况,不能应用柯西中值定理 二.微分方程法(含有求知函数以及未知函数的等式,称为微分方程,课本第6章) 例 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,求证:在(0,1)内至少存在 一点ξ,满足:2()()0f f ξξξ'+= 分析 本题求证式中不仅含有()f ξ',而且含有()f ξ,对()f ξ是难以直接积分法,像上例的求出一个()F x ,使得它的导数满足()2()()F x f x x f x ''=+常常不可能 由于[()()]()()()()u x f x u x f x u x f x '''=+中既含有含有()f x 又含有()f x ' 与求证式构造已是相同的了,但要使()2()u x u x x '==和同时成立也是不可能的, 解决矛盾的关键,结论中可能约去了一个不等于的的公因子 因为任给一个()0x ?≠,有 2()()0()[2()()]0f f f f ξξξ?ξξξξ''+=?+= 从而求证式等价于2()()()()0f f ?ξξ?ξξξ'+= 上式左端看成一个函数()()()F x u x f x =(辅助函数)在ξ处的导数,即令 ()()()()() 2()()()()F x u x f x u x f x x f x x x f x ??'''=+'=+ 令 () () ()2()()()()2u x u x u x x u x x x x x ???''==?== (说明()f x 与()f x '的系数对应成比例) 所以 () ()222 u x u x du u du dx x dx x u x '=?==分离变量得 22ln ln du dx u x c u x =?=+? ? 得 2u cx = 取1c = 得2u x = 作辅助函数2()()F x x f x =

考研数学中值定理五大注意事项

考研数学中值定理五大注意事项 来源:文都图书 中值定理是考研数学得分较低的一块,可以说是考生的“灾难区”,看到一个题目怎么思考处理是个问题,下面,就给大家就这一部分讲解一下事项。 1. 所有定理中只有介值定理和积分中值定理中的ξ所属区间是闭区间。 2. 拉格朗日中值定理是函数f(x)与导函数f'(x)之间的桥梁。 3. 积分中值定理是定积分与函数之间的桥梁。 4. 罗尔定理和拉格朗日中值定理处理的对象是一个函数,而柯西中值定理处理的对象是两个函数,如果结论中有两个函数,形式与柯西中值定理的形式类似,这时就要想到我们的柯西中值定理。 5. 积分中值定理的加强版若在定理证明中应用,必须先证明。 其次对于中值定理证明一般分为两大类题型:第一应用罗尔定理证明,也可又分为两小类:证明结论简单型和复杂型,简单型一般有证明f'(ξ)=0,f'(ξ)=k (k为任意常数),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),像这样的结论一般只需要找罗尔定理的条件就可以了,一般罗尔定理的前两个条件题目均告知,只是要需找两个不同点的函数值相等,需找此条件一般会运用闭区间连续函数的性质、积分中值定理、拉格朗日中值定理、极限的性质、导数的定义等知识点。复杂型就是结论比较复杂,需要建立辅助函数,再使辅助函数满足罗尔定理的条件。辅助函数的建立一般借助于解微分方程的思想。第二就是存在两个点使之满足某表达式。这样的题

目一般利用拉格朗日中值定理和柯西中值定理,处理思想把结论中相同字母放到等是一侧首先处理。 上述就是值定理需要注意的事项。希望大家在做题的过程中多加注意,可以配套着汤家凤的《2016考研数学绝对考场最后八套题》来进行对应的训练,掌握好上述的知识点。

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

zt4专题四关于中值定理证明中辅助函数的构造

专题四关于中值定理证明中辅助函数的构造 构造函数法的内涵十分丰富,没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归等思想.使用构造法是一种创造性的思维活动,一般无章可循,它要求既要有坚实的基础知识背景,又要有丰富的想象力和敏锐的洞察力,针对问题的具体特点而采用相应的构造方法,常可使论证过程简洁明了. 在教学中,不失时机地加强对学生的构造性思维的训练,对培养学生的创新意识、创新能力大有裨益.同时构造性思维的形成是培养创造性思维能力的一种途径.它是在数学教学中用数、形结合,沟通问题条件与结论,构造出数学模型,从而达到解决问题目的的一种解题数学法.这种方法要求综合应用各种知识,把各科知识有机结合,根据问题的条件、结论、性质及特征,横向联系,纵向渗透,构造出辅助图形或辅助关系式、使问题思路清晰,解法巧妙.有一些数学问题在常规下束手无策,而构造法使问题得到别开生面、简洁而新颖的解法. 数学中的许多问题,往往可以通过构造辅助函数,利用间接方法得到解决.这一方法应用的广泛性,在于其灵活性. 例如,证明拉格朗日定理时,通常都是采用引入一个辅助函数,把适合拉格朗日定理的函数转换成适合罗尔定理的函数的方法.在这里,辅助函数是使问题转化的桥梁. 构造辅助问题,并非是为了它本身,而是要通过辅助问题帮助我们解决原来的问题.那个原来的问题才是我们要达到的目标,而辅助问题只是我们试图达到的手段,是原来问题转化的桥梁.针对所要解决的问题构造一个辅助问题,则原来问题的求解或证明,就转化为对一个函数的性质的研究,可以运用函数的定义域、值域、单调性、最大最小值、连续和微分积分等性质来帮助解决,运算过程就比较简单了. 微分中值定理是沟通函数及导数之间的桥梁,是研究函数性质的有力工具.而各种辅助函数又往往有所不同,这些辅助函数之间有没有内在的联系呢?引入这些辅助函数有没有一般规律呢?为解答上面的问题,给出辅助函数的一般表达式: F(x)=f(x)— ()() f b f a b a - - x c + 此式可以作为证明拉格朗日中值定理所引用的辅助函数,其中c为任意常.容易验证,当f(x)满足拉格朗日中值定理的条件时,相应的F(x)满足罗尔定理的条件.由于它们都含有任意的常数c ,所以具有某种一般性,是辅助函数的最简单的一种形式.每给出一个c的具体的辅助函数,对应一个具体的证法.不难看出将F(x)与某些函数复合所得的函数,也可以作为辅助函数.

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

高等数学练习题(附答案)

《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则 =')3(g . 4. 设y x xy u + =, 则=du .

5. 曲线3 26y y x -=在)2,2(-点切线的斜率为 . 6. 设)(x f 为可导函数,)()1()(,1)1(2 x f x f x F f +==',则=')1(F . 7. 若 ),1(2)(0 2x x dt t x f +=? 则=)2(f . 8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分 =-+∞? dx e x 20 . 10. 设D 为圆形区域=+≤+??dxdy x y y x D 5 2 2 1, 1 . 三、计算题(每题5分,共40分) 1. 计算)) 2(1 )1(11(lim 222n n n n ++++∞→Λ. 2. 求10 3 2 )10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数. 3. 求不定积分 dx x x ? -) 1(1. 4. 计算定积分 dx x x ? -π 53sin sin . 5. 求函数2 2 3 24),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y == ,围成,计算dxdy y y D ?? sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积. 8. 求微分方程y x y y 2- ='的通解. 四、证明题(每题10分,共20分) 1. 证明:tan arc x = )(+∞<<-∞x .

(完整版)考研数学公式推导

积化和差 积化和差,指初等数学三角函数部分的一组恒等式。 公式 sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意此公式前的负号) cosαcosβ=[cos(α+β)+cos(α-β)]/2 sinαcosβ=[sin(α+β)+sin(α-β)]/2 cosαsinβ=[sin(α+β)-sin(α-β)]/2 证明 积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。 即只需要把等式右边用两角和差公式拆开就能证明: sinαsinβ=-1/2[cos(α+β)-cos(α-β)] =-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)] =-1/2[-2sinαsinβ] 其他的3个式子也是相同的证明方法。 作用 积化和差公式可以将两个三角函数值的积化为另两个三角函数值的和乘以常数的形式,所以使用积化和差公式可以达到降次的效果。 在历史上,对数出现之前,积化和差公式被用来将乘除运算化为加减运算,运算需要利用三角函数表。 运算过程:将两个数通过乘、除10的方幂化为0到1之间的数,通过查表求出对应的反三角函数值,即将原式化为10^k*sinαsinβ的形式,套用积化和差后再次查表求三角函数的值,并最后利用加减算出结果。 对数出现后,积化和差公式的这个作用由更加便捷的对数取代。 和差化积 正弦、余弦的和差化积 指高中数学三角函数部分的一组恒等式 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β,

中值定理的证明题

第五讲中值定理的证明技巧 一、考试要求 1、理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、理解并会用罗尔定理、拉格朗日中值定理(泰勒定理),了解并会用柯西中 值定理。掌握这三个定理的简单应用(经济)。 3、了解定积分中值定理。 二、内容提要 1、介值定理(根的存在性定理) (1)介值定理在闭区间上连续的函数必取得介于最大值 M 与最小值m之间的任何值. (2)零点定理 设f(x)在[a、b]连续,且f(a)f(b)<0,则至少存在一点,c (a、 b),使得f(c)=0 2、罗尔定理 若函数满足: (1)在上连续 (2)在内可导 (3) 则一定存在使得 3、拉格朗日中值定理 若函数满足: (1)在上连续 (2)在内可导 则一定存在,使得 4、柯西中值定理 若函数满足: (1)在上连续 (2)在内可导 (3) 则至少有一点使得 5、泰勒公式 如果函数在含有的某个开区间内具有直到阶导数? 则当在内时? 可以表示为的一个次多项式与一个余项之和,即 其中 (介于与之间)?

在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ? f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 方法:大多用介值定理 f(x)满足:在[a,b]上连续;f(a)f(b)<0. 思路:1)直接法 2)间接法或辅助函数法 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++= ΛΛ212211) ()()()(ξ 例2、设)(,0x f a b >>在[a,b]上连续、单调递增,且0)(>x f ,证明存在),(b a ∈ξ 使得 )(2)()(222ξξf a f b b f a =+ 例3、设)(x f 在[a,b]上连续且0)(>x f ,证明存在),(b a ∈ξ使得 ??? = =b b a a dx x f dx x f dx x f ξ ξ )(2 1)()(。

高等数学证明题

1. 证明:函数)4)(3)(2()(---=x x x x f 在区间)4,2(内至少存在一点ξ,使0)(=''ξf 。 证明: )(x f 在]3,2[上连续,在)3,2(内可导,且0)3()2(==f f ,由罗尔定理,至少存在一 点)3,2(1∈ξ,使0)(1='ξf ,同理,至少存在一点)4,3(2∈ξ,使得0)(2='ξf ;)(x f '在 ],[21ξξ上连续,在),(21ξξ内可导,再一次运用罗尔定理,至少存在一点)4,2(),(21?∈ξξξ, 使得 0)(=''ξf 。 2. 设f 为[,]a b 上的二阶可导函数,()()0f a f b ==, 并存在一点(,)c a b ∈,使得()0f c >. 证 明至少存在一点(,)a b ξ∈,使得''()0f ξ>. (10分) 证明:考虑区间[,]a c ,则 f 在[,]a c 满足Lagrange 中值定理的条件,则存在1(,)a c ξ∈,使得 1()() '()0f c f a f c a ξ-= >-. (3分) 同理可证存在2(,)c b ξ∈, 使得 2()() '()0f b f c f b c ξ-= <-. (5分) 再考虑区间12[,]ξξ, 由条件可知导函数'()f x 在12[,]ξξ上满足 Lagrange 中值定理的条件,则存在 12(,)ξξξ∈, 使得 2121 ()() ''()0f f f ξξξξξ-= >-. 得证. 3. 设)(x f 在],[b a 上连续,在),(b a 上可导,且 0)(≤'x f ?-= x a dt t f a x x F )(1)( 证明在],[b a 内有0)(≤'x F 证明在],[b a 内有0) (≤'x F ])()()[() (1 )(2?---= 'x a dt t f x f a x a x x F (2分) = )]()()()[()(1 2 ξf a x x f a x a x ---- ]),[],[(b a x a ?∈ξ(2分) = )(ηξ f a x x '-- ]),[),((b a x ?∈ξη 0)(≤'∴x F (2分) 4. 证明:当0>x 时,x x x arctan )1ln( )1(>++

考研数学辅导,第三讲 中值定理的证明

第四讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值 定理。掌握这四个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(') (') ()()()(ξξg f a g b g a f b f = --

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 ) ())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中1 0)1()()!1() ()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、利用中值定理解题的技巧 (1)辅助函数的构造 微分中值定理通常用来证明一些等式、不等式及方程根的存在性。在证明方程根的存在性和不等式时,经常要构造出一个辅助函数,辅助函数的构造方法通常有三种:找原函数法;指数因子法;常数k 值法。 ①、方程根的存在性 方程根的存在性,常用介值定理和罗尔定理来证明。这里着重讲解罗尔定理。下面通过例题来给出三种构造辅助函数的方法。 ②、存在多个中间值的证明 有一类问题,要证明存在两个或两个以上的中间值,满足一定的等式,由于用一次中值定理只能找到一个中间值,故这类问题通常至少要用两次中值定理才能解决。 (2)非构造性的证明 有一类证明题,在证明过程中,不需要构造辅助函数,只需对原题中的函数进行讨论,称这类问题为“非构造性的证明”。 7、利用泰勒公式解题的技巧 泰勒公式常用干处理与高阶导数相关的函数的性态研究,在解题方面,通常用于证明与中间值相联系的不等式以及求函数极限。 (1) 带拉格朗日型余项的泰勒公式

相关主题
文本预览
相关文档 最新文档