当前位置:文档之家› 干扰排除

干扰排除

干扰排除
干扰排除

2.2.1干扰优化

2.2.1.1 原因分析

TD-SCDMA系统的干扰主要分两个大的方面:系统内和系统外干扰。在系统内由

于同频,扰码分配带来的干扰,以及相邻小区交叉时隙等带来的干扰。由于TD 是一个TDD 系统,所以会带来下行对UpPCH 的干扰,严重的时候会使得上行无法接入。系统外的干扰主要是异系统,特别是PHS 系统会对TD 系统带来比较严重的干扰。同时雷达,军用警用设备带来的干扰。以上各种干扰都会对TD 系统网络性能造成很严重的影响。通常进行干扰原因分析时考虑以下几个方面:

● 同频干扰;

● 相邻小区扰码相关性较强带来的干扰;

● 交叉时隙干扰;。

● 与本系统频段相近的其他无线通信系统产生的干扰,如PHS、GSM甚至微波等等;

● 其他一些用于军用的无线电波发射装置产生的干扰,如雷达、屏蔽器等等。

2.2.1.2 解决措施

系统外的干扰需要多方面的资源协调解决。而对于系统内的同频干扰,在做频率

规划时应尽量使频点分配最优,在后期加站时也要特别注意频点的规划,避免产生严重的同频干扰。由于TD 系统在同一个时隙内采用码分多址接入,因此要用扰码来区分同一时隙内的用户,所以扰码的分配要对扰码的相关性进行考虑。对于下行对上行带来的干扰,主要的解决方法是采用Upshifting技术。也就是将UpPCH 重新配置,使它所处的时隙无干扰。干扰的主要解决方法如下:

● 对于系统内的同频干扰,在做频率规划时应尽量使频点分配最优;

● 后期加站时也要特别注意频点的规划,避免产生严重的同频干扰;

● 扰码规划时,需考虑选择正交性好的码子;

● 对于相邻小区交叉时隙等带来的干扰,可调整交叉时隙优先级;

● 对于下行对上行带来的干扰,可将UpPCH 重新配置,使它所处的时隙无干扰。TD-SCDMA系统技术培训手册-优化篇

27

2.2.1.3 干扰问题的排查方法

干扰排查步骤:首先排查设备自身问题带来的干扰,然后排查外部干扰源带来的

干扰。

TD 自身干扰的特点就是和频点密切相关。目前室外基站使用的大都是6个频点,

那么,即使由于某个基站对其他基站造成了干扰,也只能是在这6 个频点中,而另外的3 个频点必然没有任何干扰。所以,只要观察是否满足这个特点就可以得到准确判断。内部干扰的最可能的原因就是基站之间不同步,比如GPS失锁或者采用了模拟时钟;或者某些小区配置的上下行时隙格式和其他小区不一致。

当排除了系统内干扰以后,就可以初步定位为系统外干扰。异系统的干扰比较复

杂,因为很多的干扰源是未知的,需要根据干扰信号的特点进行分析,逐步通过多个角度来定位。可以从如下四个角度来判断干扰信号的来源:

● 干扰和时隙的关系:如果和时隙相关,说明干扰源是一个时分系统。目前的

时分系统只有TD 和小灵通。小灵通根据其时隙特征,会影响到TD 的TS1

和TS2。TD 信号由于长时间发射的时隙只有TS0 和DwPCH,在GPS同步并

且各小区时隙配置相同的情况下,最多也只会有两个时隙受影响。

● 干扰信号的特性:如果干扰变化比较剧烈,没有规律,则说明此干扰信号很

可能是民用通讯设备,干扰功率和用户量有关系。如果一直保持平稳,则说

明此干扰信号功率稳定发射。

● 干扰和频率的关系:如果只是某个载波收到干扰,则很可能是来自其他TD

基站的干扰。如果多个载波受到干扰,并且不区分时隙,那么可能是宽频干

扰。同时,可以根据干扰对不同频点的影响,可以断定它是来自比TD 低频

段的系统还是比TD 频段高的系统。

● 受干扰小区的分布情况:如果受干扰小区相对集中且有方向性,则说明干扰

来自同一地点,可以根据地图确定干扰源区域;如果__________受干扰小区没有方向性,那么干扰可能覆盖范围较小,需要就近查找,比如可能是共站系统的干扰。

干扰排查有以下手段:

● 调整天线方位角,判断干扰的方向性;

● 关闭部分基站,判断干扰是否来自系统内部;

● 修改频点,判断干扰的频带特性;

● 利用Scanner 扫频,注意一定要在天面上面进行;

● 接收带宽总功率主要反应各个上行时隙的底噪,一般大于-100dBm,就认为

存在干扰。

2.2.1.4 排查小灵通干扰

由于小灵通的频段(1900M~1920M)是目前离TD频段最近的。因而,来自小灵

通基站设备的干扰需要重点排查,步骤如下。

● 首先要观察受干扰小区底噪的变化,如果各上行时隙差异明显并且随时间波

动,可以初步判断应该是小灵通干扰的迹象。

● 如果可以协调关闭干扰的小灵通基站,那么直接在网管上观察底噪是否有所

变化。若是小灵通干扰,其底噪会因关掉小灵通基站而有明显降低。这样可

以初步判断应该是被关闭的小灵通干扰。

● 如果不能关闭干扰的小灵通基站,那么先关闭搜索到信号强度较高的TD 小

区,尽量使TD 频段内自己的信号强度减弱(因为如果用扫频仪测量干扰,

会发现TD 自己的信号很强,即使有干扰也会被TD 信号掩盖),然后用扫频

仪上的定向天线对准可能造成干扰的小灵通天线,缓慢靠近且观察扫频仪上

TD-SCDMA系统技术培训手册-优化篇

28

TD 频段内的信号强度是否有增强的趋势,如果发现确有增强趋势,就继续沿

着此方向往前走远离小灵通天线,在远离时观察TD 频段内的信号会不会减

弱。若有减弱,就可基本断定是小灵通干扰。

2.2.1.5 排查下行对上行的干扰

如果小区上行导频时隙受到干扰。可针对存在干扰问题的站点仅保留上行导频时

隙;同时天馈接收侧,仅保留天线下行处的低噪___________放。然后,用SCANNER 输入端直接

接到该低噪放端口处;关闭周围站点后,观察是否有远处高站的信号影响。比如SCANNER 读值在[-45~-50dBm]左右,还原低噪放值、再减去天线增益后,可计算出

在天线口处的RSCP大约为[-65~70dBm]左右,信号较强。这时,关闭远端扇区或压低

下倾角后,干扰消失或减弱。如果发现系统内存在上行导频时隙的干扰,可以采用的

方法有:加大天线下倾角、更换频点或者采用Upshifting技术。切换区域覆盖优化。

在OMCR 服务小区配置管理中的“小区载波时隙配置”这张表里有“Up 偏移位置”

这个参数,设置为0表示不偏移,设置为53 表示Up偏移到TS1 最后144 个Chip。

2.2.2导频污染判断

当存在过多的强导频信号,但是却没有一个足够强主导频信号的时候,即定义为

导频污染。

下面给出强导频信号、过多和足够强主导频信号的判断标准。

● 强导频

在TD-SCDMA 中,定义当PCCPCH_RSCP 大于某一门限,信号为有用信号,也

就是强导频信号。设定门限为-85 dBm。

● 导频过多

当某一地点的强导频信号数目大于某一门限的时候,即定义为强导频信号过多。

一般设定门限为4。

● 足够强主导频

某个地点是否存在足够强主导频,是通过判断该点的多个导频的相对强弱来决定

的。如果该点的最强导频信号和第(N)个强导频信号强度的差值如果小于某一门限值D,即定义为该地点没有足够强主导频。一般可设D=6dB。

● 导频污染判断

综上所述,判断TD-SCDMA网络中的某点存在导频污染的条件是:

A:PCCPCH_RSCP>-85dBm的小区个数大于等于4个;

B:PCCPCH_RSCP(1st)-PCCPCH_RSCP(4th)<=6dB。

当上述两个条件都满足时,即为导频污染。

2.2.2.1 原因分析

TD-SCDMA中导频污染产生的原因很多,影响因素主要有:基站选址,天线挂高,

天线方位角,天线下倾角,小区布局,PCCPCH 的发射功率,周围环境影响等等。有些导频污染是由某一因素引起的,而有些则是有好几个因素的影响。

● 基站位置因素影响

周围基站围成一个环形,在环形的中心位置,就会有周围的小区均对该地段有所

覆盖,造成导频污染。

● 天线挂高因素

在实际网络建设过程中,有可能出现相邻基站之间天线高度相差非常大的情况,

会出现由于越区覆盖而导致导频污染的情况。

TD-SCDMA系统技术培训手册-优化篇

29

● 天线方位角、下倾角因素

天线下倾角、方位角因素的影响,在密集城区里表现得比较显。站间距较小,很

容易发生多个小区重叠的情况。

城区内站点分布比较密集,信号覆盖较强,基站各个天线的方位角和下倾角设置

不合理,造成多小区重叠覆盖,导致导频污染的情况出现。

● 覆盖区域周边环境影响

覆盖区域的环境,包括地形,建筑物阻挡等等。

2.2.2.2 影响分析

在进行网络建设时,导频污染对网络性能有一定的影响,主要表现如下:

? 呼通率降低:在导频污染的地方,由于手机无法稳定驻留于一个小区,不停

的进行服务小区重选,在手机起呼过程中会不断地更换服务小区,易发生起

呼失败。

? 掉话率上升:出现导频污染的情况时,由于没有一个足够强的主导频,手机

通话过程中,乒乓切换会比较严重,导致掉话率上升。

? 系统容量降低:导频污染的情况出现时,由于出现干扰,会导致系统接收灵

敏度提升。距离基站较远的信号无法进行接入,导致系统容量下降。

? 高BLER:导频污染发生时会有很大的干扰情况出现,这样会导致BLER提

升,导致话音质量下降,数据传输速率下降。

2.2.2.3 解决措施

导频污染的优化,其根本目的是在原来的导频污染地方产生一个足够强的主导频

信号,以提高网络性能。

● 规划阶段解决导频污染问题

在进行站点规划时___________,避免出现几个站点的环形分布情况。这样有可能在环形区域

的中心出现导频污染的情况。

进行仿真的过程中,注意比较不同仿真条件下的结果,通过调整PCCPCH_RSCP

的功率和频率规划来实现最佳的导频覆盖和C/I 的覆盖。调整扇区方位角和下倾角,

实现最佳的扇区仿真覆盖,避免多小区重叠覆盖区域。

● 导频污染问题优化

? 天线调整

天线调整内容主要包括:天线位置调整、天线方位角调整、天线下倾角

调整、广播信道波束赋形宽度调整。

◆ 天线位置调整:可以根据实际情况调整天线的安装位置,以达到相

应小区内具有较好的无线传播路径。

◆ 天线方位角调整:调整天线的朝向,以改变相应扇区的地理分布区

域。

◆ 天线下倾角调整:调整天线的下倾角度,以减少相应小区的覆盖距

离,减小对其他小区的影响。目前TD-SCDMA天线还没有电子下倾

类型,下倾角的调整全部要进行机械下倾。

TD-SCDMA系统技术培训手册-优化篇

30

◆ 广播信道波束赋形宽度调整:通过更换天线的广播信道波束赋形加

权算法,来改善服务扇区内的信号强度,降低副瓣对其他扇区的影

响。目前可以调整的值为30 度、65 度、90 度、120度可供选择。

? 无线参数调整

调整扇区的发射功率,来改变覆盖距离。TD-SCDMA功率调整时需要对

PCCPCH、DwPCH、FPACH 三个参数都要进行调整。通过调整发射功率来实

现最佳的功率配置。

? 采用RRU

在某些导频污染严重的地方,可以考虑采用单通道RRU来单独增强该区

域的覆盖,使得该区域只出现一个足够强的导频。

? 邻小区频点等参数优化

在实际的网络优化过程中,由于各种各样的原因,有时候没有办法或者

无法及时地采用上述方法进行导频污染区域的优化时,此时根据实际的网络

情况,通过增删邻小区关系或者频率、扰码的调整,来进行导频污染地区的

网络性能的优化。

调整小区的个体偏移,通过对小区个体偏移的调整来改善扇区之间的切

换性能。将小区的个体偏移调整为正值,则手机在该服务小区是“易进难出”,

调整为负值,则手机在该服务小区是“易出难进”。建议调整值为正负3 个dB

以内。

调整小区内的重选参数,通过修改小区的重选服务小区迟滞,来调整服

务小区的重选性能。

这里需要强调的是,消除多个互相干扰的强导频依然是优化导频污染问题的首要

手段。上面这种方法只是在实际网络环境中由于各种条件的限制无法消除导频污染时,而采取的一种优化网络性能的方法。

常见干扰问题怎么解决

常见干扰问题怎么解决 说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。下面分析一下常见视频干扰现象及其原因。 1、工频干扰 干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。 干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。 2、空间电磁波干扰 干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。 干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。 3、低频干扰(20Hz-nKHz低频噪声干扰) 干扰现象:图像出现静止水平条纹。 现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。 4、高频干扰 干扰现象:图像出现雪花点或高亮点。 现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对

各类干扰的分类及排查方法

各类干扰的分类及排查方法 GSM移动通信技术在我国迅速发展,目前已经发展相当成熟的阶段,在实际的网络优化工作中,发现GSM系统受到的上行干扰问题已经成为网络优化中一个不容忽视的重要问题。上行干扰会使系统掉话率增加,减少基站的覆盖范围,降低通话质量,使网络指标和用户的通话质量受到严重影响。 阿尔卡特GSM系统中采用干扰带Band指标来衡量系统受到上行干扰的程度。干扰带Band指标表示话音信道在空闲模式下收到的上行噪声信号强度,分为Band1—Band5,其中Band5代表上行干扰信号电平强度>-85dBm,Band4代表上行干扰信号电平强度-85dBm-- -90dBm之间,Band3代表上行干扰信号电平强度-90dBm-- -95dBm之间,Band2代表上行干扰信号电平强度-95dBm-- -100dBm之间,Band1代表上行干扰信号电平强度<-100dBm。该统计指标是基于时隙统计的。如果出现Band3以上,一般认为基站受到较强的上行干扰,由此会产生掉话和话音质量差的情况,需要进行解决。 根据在实际网络优化工作中长期对上行干扰问题的分析,基本上可以认为出现上行干扰的原因可以分为以下几类: 一、上行干扰排查思路及排查方法: 根据在实际网络优化工作中长期对上行干扰问题的分析,基本上可以认为出现上行干扰的原因可以分为以下几类:

1、无线系统自身问题造成Band较高排查方法及思路: 无线系统自身问题一般集中在天线器件、基站接收通路的问题上,由于基站子系统问题造成的上行干扰Band较高存在以下规律:Band值随话务量变化,话务量高时,Band也随之增高,到了深夜话务量降低后,Band统计恢复正常。一般如果出现这样的规律,首先要考虑无线子系统的问题(天馈系统问题产生的三阶互调干扰)。三阶互调干扰排查方法有: (1)、利用罗森伯格设备进行现场排查天馈系统具体问题。 (2)、利用频谱仪现场排查,利用八木天线指向基站天线的背板观察扫频仪上的频谱变化,如果频谱整体底噪抬升至-80dB到-50dB之间基本可以判断为天馈系统产生的三阶互调。 (3)、如果一个基站上面只一个小区有上行干扰的话,可以调换两个小区的天馈线来进行判断。例如:某个基站1小区存在上行干扰,2、3小区没有上行干扰。我们可以将1、2小区天馈线进行调换后观察1、2小区的上行干扰变化情况。如果调换后上行干扰转移到2小区上面,这样基本可以判断天馈线系统问题或是外部干扰;如果调换后上行干扰依然在1小区上面,这样基本可以判断为设备内部器件产生的干扰。如果是设备内部器件问题我们需要检查内部器件是否有损坏,如ANC、载频、腔体等,需要更换的及时进行更换。 2、直放站引起的上行干扰问题: 目前存在的最普遍的上行干扰问题是直放站引起的上行干扰,特别是一些用户自行安装的非法直放站,由于价格低廉,各种器件的性

干扰处理方法

技术支持 干扰的来源及影响方式 闭路电视监控系统中传输信号的类型主要有两类:一类是模拟视频信号,传输路径由摄象机到矩阵,从矩阵再到显示器或录象机;一类是数字信号包括矩阵与摄象机之间的控制信息传输,矩阵中计算机部分的数字信号。一般设备成为干扰源的可能性很小,因此干扰主要通过信号传输路径进入系统。闭路电视监控系统的信号传输路径是能通过视频电缆和传输控制信号的双绞线耦合进系统的干扰有:各种高频噪声比如大电感负载启停,地电位不等引入的工频干扰,平衡传输线路失衡使抑噪能力下降将共频干扰转成了差模干扰,传输线上阻抗不匹配造成信号的反射使信号传输质量下降,静电放电沿传输线进入设备造成接口芯片损伤或损坏。具体表现如下:由于阻抗不匹配造成的影响在视频图象上表现为重影。在信号传输线上会将在脉冲序列的前后沿形成震荡。震荡的存在使高低电平间的阈值差变小,当震荡的幅值再大或有其他干扰引入时就无法正确分辨出脉冲电平值,导致通信时间变长或通信中断。接地和屏蔽不好会导致传输线抑制外部电磁干扰能力的下降,体现在视频图象就是雪花噪点、网纹干扰以及横纹滚动等;在信号传输线上形成尖峰干扰,造成通信错误。平衡传输线路失衡也会在信号传输线上形成尖峰干扰。静电放电除了会造成设备损坏外,还会影响存储器内的数据,使设备出现些莫名其妙的错误。 抗干扰的方法 从干扰源的分析了解到并没有特别的干扰源,消除或者减少上述干扰的理论探讨也有许多,如何针对闭路电视监控工程解决干扰问题,很少有文献涉及,下面就闭路电视监控工种中常见的干扰及解决方法进行些探讨。 视频信号的干扰 视频信号的干扰在图象上表现为地花点和50HZ横纹滚动,对于雪花点干扰是由于传输线上信号衰减以及耦合了高频干扰所致,这种干扰比较容易消除,在摄象机与控制矩阵之间合理位置增加一个视频放大器,将信号的受噪比提高,或者改变视频电缆的路径避开高频干扰源,高频干扰的问题可基本上得到解决。较难解决的是50HZ横纹滚动及进一步加高频干扰的情况,比如电梯轿厢内摄象机的输出图象。为了抑制上述干扰,首先分析一 下造成上述问题的原因。 摄象机要求的供电电源一般有三种:直流12V、交流24V或220V,大多数工程应用中不从电梯轿厢的供电电源上取,而是另外布设供电电源给摄象机供电,摄象机输出图象经过一条软性的视频电缆从井道的上方

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

常见电磁兼容(EMC)问题及解决办法

常见电磁兼容(EMC)问题及解决办法 通讯类电子产品不光包括以上三项:RE,CE,ESD,还有Surge--浪涌(雷击,打雷)医疗器械最容易出现的问题是:ESD--静电,EFT--瞬态脉冲抗干扰,CS--传导抗干扰,RS--辐射抗干扰。针对于北方干燥地区,产品的ESD--静电要求要很高。针对于像四川和一些西南多雷地区,EFT防雷要求要很高。 如何提高电子产品的抗干扰能力和电磁兼容性: 1、下面的一些系统要特别注意抗电磁干扰: (1)微控制器时钟频率特别高,总线周期特别快的系统。 (2)系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3)含微弱模拟信号电路以及高精度A/D变换电路的系统。 2、为增加系统的抗电磁干扰能力采取如下措施: (1)选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 (2)减小信号传输中的畸变微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS 电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在

化工仪表常见的外部干扰问题及处理措施孙爱敏

化工仪表常见的外部干扰问题及处理措施孙爱敏 发表时间:2019-11-20T12:45:08.563Z 来源:《中国电业》2019年15期作者:孙爱敏 [导读] 随着时代的快速发展,进而相关的化工行业也紧随其后不断发展 摘要:随着时代的快速发展,进而相关的化工行业也紧随其后不断发展,在整个化工行业的生产过程中相应的化工仪表是其中非常关键工具,相应的化工仪表在整体的生产过程中起着监测和显示的作用,从而保证整体化工生产的有序安全进行。 关键词:化工仪表常;外部干扰问题;处理措施 引言 化工仪表就是化工自动化仪表的简称,指的就是化工生产中对压力、温度、流量、液位等变量进行自动控制与监测的显示仪表。随着化工仪表智能化水平的不断提高,化工生产中仪表技术越来越成熟,逐渐实现了化工仪表的网络自动化,具有非常广泛的应用范围。 1造成化工仪表外部干扰的一些因素 在整体的化工生产过程中,对于相应的化工仪表可能产生干扰的主要因素包括电磁场的突变,高频电压干扰因素以及电磁场高压的影响等等。这些因素的存在都会对于相应的化工仪表的正常运行产生影响,对于这些因素的存在有些是化工的生产过程中不可避免的,所以相应的人员对于这些影响相应的化工仪表正常工作的一些外部因素进行充分了解,了解其产生的原因以及造成影响的程度,从而才能做到对于相应的干扰因素采取相应的有效措施,以下对于这些对于化工仪表外部产生的一些干扰因素进行简要的陈述和分析。 1.1横向干扰 在化工生产的过程中,影响化工仪表横向干扰的主要因素有以下3个:①体现在电磁场的突变上。电磁场的突变是横向干扰中最为典型的一种电磁干扰,尤其是在化工生产过程中,由于需要设置较多的强电流机器设备,比如高频率变压器及其电流较强的电网等,导致化工广场的磁场稳定性不足,易受到影响,进而导致化工仪表的测量准确性有所偏差。同时,如果化工厂的磁场干扰强度不断上升并达到所限制的强度范围,不仅会导致化工仪表无法正常运转,还会造成化工仪表的信号传输端口出现问题。②化工仪表会受到高频干扰因素的影响。与突变电磁场相比,高频电压对化工仪表的影响相对较小,其原因主要是在化工仪表的输入回路带电容的情况下,进行自我闭合或断开动作时,其触点会产生花火,而这些花火均为高频干扰源,进而对化工仪表的工作运转造成了影响。由于化工仪表在工作时大多处于低频状态,因此,相比于电磁场突变,该因素的影响度较小。③在实际的化工生产过程中,由于需要设置高频变压器、交流电动机等具有高压的设备,所以,化工仪表还会受到电磁场高压的影响,在对化工仪表产生电势干扰的同时,导致化工仪表的回路出现电容,进而影响了化工仪表的正常运行。 1.2纵向干扰 化工仪表的纵向干扰通常是指由漏电电阻产生的平行干扰。所谓“漏电电阻”,也称为绝缘电阻,即在电容正负之间的介质并不是完全绝对绝缘的,而是作为有限数值存在着。在这种绝缘电阻的影响下,纵向干扰的电压通常处于几伏特到几十伏特之间。因此,纵向干扰对化工仪表产生的影响通常是基于横向干扰的转换之后才造成的。而纵向干扰转向横向干扰的情形主要有以下2方面:①基于入地电流的影响。入地电流主要是指大地中流动着的电流。当化工仪表的周边置放着大功率的电气设备时,由于该电气设备没有较强的绝缘性,易造成地面漏电的情况发生,出现入地电流。除此之外,化工仪表在使用时,其电路的接入点通常不止一个,导致电流在经过地面时接入点出现电位差,进而对化工仪表的正常运转造成影响。②电流泄漏的干扰是影响化工仪表运作的因素。其表现通常为绝缘材料的老化现象。在生产过程中,由于多种变量信号集中传输,加之绝缘材料的老化,导致电流泄漏,进而干扰到了其他信号的输送,阻碍了化工仪表的工作运转。比如在化工仪表工作时,采用220V的供电,使电源与其信号线产生短路,设备被烧坏,进而影响了化工仪表的正常运转。 1.3大功率设备 在化工生产的过程中,如果在化工仪表的周边存在着较大功率的设备时,也会对于仪表的正常工作产生影响。主要原因是相应大功率的电气设备没有较强的绝缘性,这样就非常容易出现地面漏电的现场的产生,如果出现了相应的地面漏电现象的发生,就会产生入地的电流,进而对于设备的整体的运转造成非常大的影响。在实际的化工生产过程中,以上这些因素的存在都会对于相应的化工仪表的正常工作产生干扰,存在的这些干扰因素中,有些干扰因素对于相应的化工仪表的正常运行的影响是非常严重的,所以相应的人员就需要对于这些存在的干扰因素进行有效的排除,如果不采取一定的措施,很容易造成相应化学仪表的工作异常甚至损坏,严重还会影响整体化工的正常生产运行。 2化工仪表外部干扰问题的处理措施 2.1屏蔽法 为了避免电磁场干扰,可以对电缆线加设屏蔽管,或者用导线穿线管对化工仪表电缆予以覆盖,也就是说,把电缆穿入穿线管当中,金属在本身磁阻作用下,屏蔽之后的交变磁场就不会对穿线管中德电缆产生影响;屏蔽之后的干扰电压将会降低为原来的1/20。此外,对导线进行绞合,之后穿入屏蔽管,能够有效降低干扰。 2.2滤波法 感性原件具有储能作用,当化工仪表输入信号源与输出驱动为感性原件的时候,在接点闭合的状态下就会发生电弧,断开的状态下就会出现高于电源电压的反电势,对于此种干扰源而言,可以通过滤波法予以处理,在化工仪表输入端设置R-C或者L-C滤波电路,削弱干扰程度,并且以触发电平的方式,对杂波信号予以拦截。 2.3隔离法 隔离法指的就是借助放大器浮空避免干扰,也就是说,避免放大器和化工仪表之间的直接接触。在化工生产中,在放大器和化工仪表之间放置绝缘材料,将放大器垫起,使其和化工仪表之间保持一定的距离,这是切断纵向干扰的有效手段,此种做法可以避免电压泄露,有效杜绝了纵向干扰。电源也是干扰化工仪表正常运转的主要因素,此种干扰主要指的就是由供电线路阻抗耦合产生的,部分大功率用电设备均会成为干扰源,一般指的是大功率变频器。为了有效防治此种干扰,可以在仪器交流电源输入端设置隔离变压器,使电源和供电线路之间保持一定的距离,尽可能降低干扰程度。 2.4接地法 通常情况下,干扰源频率均在1MHz以下,可以一点接地;而针对干扰源频率超出10MHz的情况而言,需要设置多点接地;当干扰源频

抗干扰的方法

一、抗干扰方法: 为了使高频电路板的设计更合理,抗干扰性能更好,在进行PCB 设计时应从以下几个方面考虑: 1、合理选择层数:利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、降低信号间的交叉干扰,一般情况下,四层板比两层板的噪声低20dB。 2、走线方式:走线必须按照45°角拐弯,这样可以减小高频信号的发射和相互之间的耦合。 3、走线长度:走线长度越短越好,两根线并行距离越短越好。 4、过孔数量:过孔数量越少越好。 5、层间布线方向:层间布线方向应该取垂直方向,就是顶层为水平方向,底层为垂直方向,这样可以减小信号间的干扰。 6、敷铜:增加接地的敷铜可以减小信号间的干扰。 7、包地:对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 8、信号线:信号走线不能环路,需要按照菊花链方式布线。 9、去耦电容:在集成电路的电源端跨接去耦电容。 10、高频扼流。数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。 二、包地法 抗干扰包地: 电路板设计中抗干扰的措施还可以采取包地的办法,即用接地的导线将某一网络包住,采用接地屏蔽的办法来抵抗外界干扰。 网络包地的使用步骤如下: 1.1、选择需要包地的网络或者导线。从主菜单中执行命令Edit/Select/Net (E+S+N),光标将变成十字形状,移动光标一要进行包 地的网络处单击,选中该网络。如果是组件没有定义网络,可以执行主菜单命令Select/Connected Copper 选中要包地的导 线。 1.2、放置包地导线。从主菜单中执行命令Tools/Outline Selected Objects(T+J)。系统自动对已经选中的网络或导线进行包地操 作。 1.3、对包地导线的删除。如果不再需要包地的导线,可以在主菜单中执行命令Edit/Select/Connected Copper 。此时光标将变成 十字形状,移动光标选中要删除的包地导线,按Delect键即可删除不需要的包地导线。

信号抗干扰解决办法

信号抗干扰解决办法 The Standardization Office was revised on the afternoon of December 13, 2020

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例. 图一 PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换

siRNA干扰常见问题

siRNA干扰常见问题 Q:如何选择转染方法和转染试剂? A:我们的siRNA适用于各种转染方法。转染方法和转染试剂的选择,需要根据细胞来选择,对于容易转染的细胞,常用的转染方法是脂质体转染。 Q:对于难转染的细胞,应该如何提高其转染效率?转染效率又该如何确定? A:1)对于贴壁细胞,推荐采用转染试剂转染即可;2)对于难转染的细胞的转染,如何提高转染效率的问题也是目前研究的技术难题。一般建议使用电转的方法,但是由于电转的方法对细胞损伤比较大,该方法也未必是最佳的。 转染效率的确定,常用的是使用荧光标记的siRNA,通过荧光显微镜,共聚焦显微镜,流式细胞仪检测的方法。具体可以参考我们的产品说明书。 Q:细胞的转染效率是否与siRNA序列相关?

A:转染效率的高低取决于与细胞自身及转染方法,而于siRNA的序列并没有直接关系。因此,siRNA在不同的细胞转染效率可能不一样。 Q:转染siRNA时候的细胞密度多少为宜? A:依不同的转染方法或转染试剂而定。如使用lipofectamine 2000作为转染试剂,单独转染siRNA,30%~50%密度较佳;而siRNA与质粒共转染,密度可以到80%-90%。 Q:siRNA转染时的培养基要求,可否含血清? A:不同的转染试剂可能有不同的要求,对于lipofectamine 2000,在配制siRNA和lipofectamine 2000混合物时不能含有血清,但细胞培养基可以含有血清,但不能含有抗生素。 Q:siRNA的储存液体浓度和工作浓度有何区别? A:siRNA的贮存浓度就是保存的最佳浓度,锐博推荐的贮存液浓度为20 μM;而siRNA的工作浓度就是使siRNA能够达到最佳沉默效果的转染浓度,一般10~100 nM范围内,锐博生物推荐的转染浓度是50nM。

干扰分类分析方法

1 干扰分类 干扰从它的来源可分为系统内部干扰和外部干扰;而从对通话链路的干扰方向来分又可分为上行干扰和下行干扰。 干扰分析 图表1 干扰分类 2 干扰定位分析方法 2.1 下行干扰小区的定义及定位思路 2.1.1 下行干扰定义 目前网络中还没有直接可反映小区下行干扰程度的指标,本次评估通过MRR 报告统计结果中的下行强信号高质差小区来定位下行干扰小区(排除设备硬件故障、天馈异常及低话务造成的高质差),定义如下: a、MRR报告中下行质差话务比例大于等于5%,且下行弱信号话务比例小于

5%的小区为强信号高质差小区; b、接收电平<-90dbm为弱信号话务样本,即小于-90dbm的采样点和 / 下行信号强度采样点总和 = 下行弱信号话务比例。 2.1.2 下行干扰原因定位思路 1. 频率干扰 频率干扰是常见的网内干扰的原因,通过被干扰系数定位下行频率干扰小区: 被干扰系数大于0.4即可认为该小区受到了网络内部的频率干扰,会造成上、下行的网络干扰。 被干扰系数的计算方法请参见:频率干扰分析评估规范(v1[1].0).doc 产生频率干扰的原因可能有: a. 频率资源应用瓶颈,在话务密集区域现有频率资源不足造成的分配冲突; 覆盖影响(关联)小区集的总载频数大于可用频点数的小区,其中900M网络取大于95,1800M取大于125。 覆盖关联的定义:跟服务小区的CoInfRatio大于3%的小区认为有覆盖关联,这些小区集合做为覆盖关联集合。 具体还可细分为容量是否冗余,如果小区存在可减容余量,即按最忙时话务量和数据业务量折算的配置载波数可减容2个以上或半速率占比配置为20%时可减容载波数大于1的小区。 b. 因小区过覆盖(高层站、覆盖参数设置不当、湖面反射等)等造成的同 邻频干扰冲突。 通过动态覆盖分析系统排查发现的过覆盖小区,及被过覆盖小区干扰的小区,都归结为过覆盖造成的频率干扰。 过覆盖小区: 以服务小区覆盖方位角120度范围内最近的3个小区的距离做为服务小区的

信号抗干扰解决办法

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例.

图一PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将0.1V电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换后,由12个光耦实现与主机隔离。它的八个通道输入之间并没有隔离,致使八个通道输入信号每个单独接入采集板均正常,接入两个或多于两个外部信号时,显示数字乱跳,故障无法排除。又如航天某部门测试发动机各点温度,使用K型偶作为传感器,同上述相似,仅测试一点一切正常,但是向主机接入两点或两点以上温度时,显示的温度明显错误。这两种情况在接入隔离器后,均正常。隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着+10V干扰的10V-20V经隔离后均为0-10V,也即隔离后新建立的PLC“地”与外部设备、仪表“地”没关系。正是由于这个原因,也实现输入到PLC主机

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

干扰问题的定位流程与基本处理方法

干扰问题的定位流程与基本处理方法 干扰问题定位流程 我们一般将干扰大致分为三类:硬件设备导致的干扰,网内干扰,网外干扰。 当通过分析怀疑某小区可能存在干扰时,首先应该检查该小区所在基站是否正常工作。在远端应检查有无天馈告警,有无关于TRX的告警,有无基站时钟告警等;在近端则应检查有无天线损坏、进水;馈线(包括跳线)损坏、进水;CDU故障、TRX故障、基站跳线接错、时钟失锁。然后再判断是否频率计划、数据配置错误导致的网内同邻频干扰,最后再确定是否是网外干扰。 基站干扰可以分为上行干扰和下行干扰。 对于上行干扰可以采用上行频点扫描,结合话务统计信令进行分析,对于下行干扰可以利用Mobile Show 和测试手机的SCAN RF功能观察下行各频点电平。 如果有频谱仪和定向天线则可以利用其进一步查找干扰源。 我们可以从无线信号的各个环节入手,逐步排除,找出产生干扰的原因。基站射频信号路径如下: 外界->天线->馈线->CDU ->TRX 这当中任何一个环节都可能产生干扰,我们可以利用频谱仪由下至上逐步测试,确认干扰的来源。关于测试方法下一节将详细介绍。 干扰问题定位流程图

注:上述流程的排查思路是:网内干扰->硬件问题->网外干扰,只是提供一种思路,请现场根据实际情况由易到难,灵活考虑排查步骤。

基站内部干扰现场处理的基本步骤: 如果该干扰带一直存在,或者干扰带随话务量增加而增强,并且通过更换频点等方法排除了基站外部干扰,就可以初步判断为基站内部干扰。可采取如下措施: 1、首先检查是否是载频或者CDU故障导致内部干扰,处理比较简单,主要是闭塞和更换单板进行处理。 2、其次检查机顶输出口与跳线,以及跳线与馈管的连接。如果端口匹配不好的话,有可能导致基站前端电路刚好处于不稳定的状态,导致电路自激振荡形成对接收带内的宽带干扰。 3、最后检查天馈系统是否产生无源互调,主要方法是关闭部分TCH载频或互换小区天馈系统,来判断是否是由于天馈互调导致的干扰问题。 这里着重介绍最常见的上行干扰的基本定位步骤,以BTS3X基站为例: (1) 登记话务统计,主要是TCH性能测量,小区性能测量,上行频点扫描,上下行平衡测量。话务统计周期可以设置为30分钟或更短。 (2) 只开一个TRX,把该基站其余的全部关掉,观察话务统计结果,此步骤目的查看是否为互调干扰,如果干扰带消失,说明为互调干扰,则进行步骤(6)。如果干扰带没有消失,则进行步骤(3)。 (3) 将TRX的主/分集接收两个输入电缆旋下,接上假负载,一般CDU未使用的接收端口处都有,观察Abis 接口上报的干扰带(现场主导,请机房同事配合观察),如果干扰带很高,说明干扰来自TRX,更换TRX,如果干扰带全在干扰带一中说明干扰来自TRX以上环节进行步骤(4)。 (4) 将TRX的接头和电缆还,将CDU连接输入处TX/RX,接功率计假负载,吸收其输出功率的同时使主集接受支路的输入信号为0,同时将CDU分集接收电缆也断开,接上匹配负载,使其输入信号也为0。观察Abis接口上报的干扰带,如果干扰带很高,说明干扰来自CDU,更换CDU;如果更换CDU和TRX均不起作用,则可能基站时钟有问题,检查TMU13MHz时钟,检查TMU至TRX之间的时钟总线,检查时钟匹配拨码开关,检查机顶时钟匹配头,如果干扰带全在干扰带一中,说明干扰来自CDU以上环节,进行步骤(5) (5) 将CDU的接头和电缆还原,将机顶该小区TX/RX和RXD的射频软跳线断开,在机顶TX/RX和RXD端口接上匹配负载。观察Abis接口上报的干扰带,如果干扰带很高,说明干扰来自CDU至机顶端口的射频电缆,更换之;如果干扰带全在干扰带一中,说明干扰来自机顶以上环节,进行步骤(6) (6) 打开所有TRX,在机顶将该小区和邻近小区该邻近小区无干扰天馈互换,观察Abis接口上报的干扰带,

LTE-NI干扰分析方法

LTE NI干扰分析方法 一、互调干扰 由于发射机的非线性特点,当多个不同频率的干扰信号通过非线性电路时,将会产生和有用信号相同或者相近的频率组合,形成干扰。 在同一个地点,有两台发射机以上,就可能产生互调干扰。发射机A发出的射频信号f A从空中再通过发射机B的天线,进入发射机B的功放级,与该机发射频率f B相互调制,产生出第三个频率f C。反之,同时产生f D。所以,在该处两台发射机发出四个频点的射频功率信号。其中f C和f D是互调产物(见图一)。 简单来说,当两个或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。由此形成的干扰,称为互调干扰。 二阶互调是乘以二就是二倍,三阶互调是乘以三也就是三倍 1 干扰来源 从频谱上看(见附录),LTE互调干扰主要有以下几种: 1、GSM900(上行890~915下行935~960)下行信号(包含移动联通信号)二阶互调影响F 频段。 2、DCS1800下行信号(包含移动联通信号)三阶或五阶互调影响F频段。 3、CDMA下行信号(800MHz)三阶互调影响E频段。 4、多网合路室分系统,GSM900与DCS1800三阶或五阶互调影响E频段。

(GSM系统, 上行/ MHz, 下行/ MHz, 带宽/ MHz, 双工间隔/ MHz, 双工信道数 GSM900, 890 ~ 915, 935 ~ 960, 2 ×25, 45, 124 GSM900E, 880 ~ 890, 925 ~ 935, 2 ×35, 45, 174 GSM1800, 1710 ~ 1785, 1805 ~ 1880, 2 ×75, 95, 374 GSM1900, 1850~1910, 1930~1990, 2 ×60, 80) 2 波形特点 1)小区级平均干扰电平跟2G话务关联大,2G话务忙时TD-LLTE干扰越大。 2)PRB级干扰呈现的特点是有一个多个干扰凸起,突起范围2~3RB数。 3 定位干扰小区方法 定位干扰小区主要有以下几步: ①频段定位 由于互调干扰主要来自GSM频段(包括移动联通),且主要影响F频段(D、E频段互调干扰来源为非移动手机无线频段,该干扰源必须通过现场扫频去定位)。CDMA下行占用800MHz频段,可能对E频段造成三阶互调。 ②站点勘察,筛选干扰小区 通过上站勘察,或根据小区工参,筛选出附近GSM小区,由于同一扇区的GSM900小区频点产生的二阶互调所对应的频率和LTE受干扰的PRB所对应的频率相同,可通过计算,列举出疑似干扰小区集。 ③GSM后台调整参数,LTE后台观察干扰 GSM后台逐个对“疑似干扰小区”进行临时降功率或更换频点方式调整15至30分钟,LTE后台同步观察干扰情况,若调整后干扰明显减弱,则可定位该小区为干扰小区。

关于自动化装置受干扰及抗干扰措施的分析(精)

关于自动化装置受干扰及抗干扰措施的分析 摘要:电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 关键词:自动化装置干扰抗干扰措施分析 电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 本文先以一台同期装置作为被试产品,对其干扰及抗干扰措施进行分析,随后提出一系列在设计实践中的经验抗干扰措施。干扰源是一个简单的电磁式的中间继电器。 干扰源分析:在上面简单的电路中可能会存在以下三种干扰源。 1、如图(一)中操作电源带有一个电感性负载(即许继中间继电器),当切断电感性负载时,在电感线圈上产生很高的感生电动势,一般在5~10倍电源电压,高达几千伏,我在试验中测得大于1千伏。该高电压使得断开接点击穿,产生火花或电弧,而火花或电弧是一个发射高频噪声的干扰源,该干扰直接串入电源中,形成串模干扰,该干扰是本线路中试验发现最明显的。 火花或电弧熄灭时间很短,又将产生感应电压,所以在不断地“通断”的瞬变过程中电源上串入了很大的高频干扰信号和浪涌电流。而自动装置内部的电子元件尤其IC片都是弱

电工作元器件,该干扰信号和浪涌流对继电器造成逻辑紊乱,以致误动,实际上对继电器内部元器件也具有很大的伤害性。尤其是静态的继电器产品表现更为严重,对于同期继电器,内部回路复杂,电源(稳压管)负载较重,在此重负荷下受干扰就会显得影响很大。 对于这种干扰实际上最有效的办法是在电感负载上并接一个吸收回路即可,但是电感负载是多种不同设备,且有很多是在运行中的产品,这样就自然的把问题踢给了新产品(被试产品)。 在试验中本人启用了图(二)接线的抑制回路,作用是用以抑制高频干扰,试验效果明显。 2、直流电压纹波引起的工频干扰,该种干扰在一般的产品设计中都有措施抑制,在试验中很少发现这种干扰。对于这种干扰,在试验中采用了以下图三的电路,该电路具有消除低频干扰和高频干扰双重作用,但对于电容耐压要求较高。 3、线间串扰,该干扰是因信号线(电源、交流等)靠近和平行放置在一起而引起,虽在电压不高时显示不出来,但在受冲击电压时难免会引起干扰,这就是该干扰最难预测和最难控制的因素之一。这一点要求在布线方面注意干扰。 以上仅是一个简单的电路,旨在只说明干扰存在的普遍性,根据电力系统的运行环境和自动化装置发展的实际情况,现在很多产品在“静电放电干扰、快速瞬变干扰和辐射电磁场干扰”方面实际上都没有很好办法,有些产品对电磁干扰还非常敏感,拒动、误动、死机、改变定值等现象都有发生。因此,自动化装置抗电磁干扰能力的提高,仍然需各位专业人士艰苦努力。以下是根据我在多年的产品设计中,针对“静电放电干扰、快速瞬变干扰和辐射电磁场干扰电磁干扰”采取的一些措施和方法,供大家参考,不当之处请批评指正。 一、抗静电放电干扰

LTE-FDD测试频段干扰分析

1. 概述 在某运营商开始规模建设LTE-FDD试验网初期,因为使用的是1755MHz-1785MHz和1850MHz-1880MHz这未使用的60MHz的频段,需要对该频段整体的干扰情况进行了解,并由针对性的提出解决办法,将优化前移到网络的建设前,建设一张精品网络,为LTE-FDD试验网和商用建网提供技术支撑,保障网络的性能质量。 本文基于以上考虑,研究对该频段可能的干扰情况,并结合实际案例进行分析并提出解决方法。 2. LTE频段理论底噪 RBW(ResolutionBandwidth)扫频仪频率分辨率,代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异。 NFrev(NoiseFactor)为扫频仪接收噪声系数,决定扫频仪接收机灵敏度。 理论低噪=-174+10*log(RBW)+NFrev (公式2-1) 测试过程中,设置以下参数: 1. RBW取值为15KHz, 2. NFrev为噪声系数,不同的扫频仪该值不同,根据扫频仪厂家提供为8dB, 得到本次测试的理论低噪为-124dBm. 3. 频谱干扰分析 对1755MHz-1785MHz的频段和1850MHz-1880MHz的频段进行可能的干扰分析。

1755MHz-1785MHz的频段 1. 该频段被非法占用 2. 阻塞干扰:DCS1800(上行频段1710MHz-1755MHz) 3. 杂散干扰:DCS1800(上行频段1710MHz-1755MHz) 4. 互调干扰: a) DCS1800(上行频段1710MHz-1755MHz,下行1805MHz-1850MHz) b) GSM900/E-GSM(上行频段889MHz-909MHz) c) CDMA下行频段(下行频段870MHz-880MHz) 5. 二次谐波: a) GSM900/E-GSM(上行频段889MHz-909MHz使用) b) CDMA下行频段(870MHz-880MHz) 1850MHz-1880MHz频段 1. 该频段被非法占用 2. 阻塞干扰: a) DCS1800(下行频段1805MHz-1850MHz) b) F频段(1880MHz-1920MHz)

相关主题
文本预览
相关文档 最新文档