当前位置:文档之家› 电子自动化控制装置的常见干扰问题及策略

电子自动化控制装置的常见干扰问题及策略

电子自动化控制装置的常见干扰问题及策略
电子自动化控制装置的常见干扰问题及策略

电子自动化控制装置的常见干扰问题及策略

摘要:在进入新世纪,我国社会经济持续增长,电子自动化行业获得了良好的

发展,越来越多先进技术和设备应用其中,推动行业朝着更加智能化和自动化方

向发展。电子自动化技术作为一项社会前沿技术,未来应用范围将进一步扩大,

但是现行技术背景下,电子自动化装置运行很容易受到外界因素干扰,为了保证

电子自动化装置安全稳定运行,运用抑制技术,可以降低外界电磁波信号的干扰,促使信号频率稳定,其作用较为突出。由此看来,加强对其研究,有助于推动干

扰抑制技术创新,降低外界干扰,为后续的电子自动化装置正常运行技术研究提

供参考。

关键词:电子自动化;控制装置;干扰问题;策略

随着科学技术的发展,人们对电子自动化控制装置的要求也越来越高。为了

更好实现电子自动化控制装置的正常运行,要对其常见的内外部干扰因素做好防

范处理,尽可能减少干扰。并且也要加大对新技术的研究力度,从而促使电子自

动化控制装置的稳定运行,进而推动我国工业化健康稳定发展。

1电子自动化控制装置的概念

电子自动化就是在工业生产中发动机汽缸能够自动传送、加工完成生产或者

管理的过程,自动按照生产要求进行检测、分析、处理、操纵控制等环节,均在

无人管理状态下机器自行运作,完成生产任务。电子自动化控制装置的工作原理

是在设备运行过程中,对其进行实施有效的控制和调整,确保其安全、可靠运行,实现自动化生产操作。当前电子自动化控制装置已在各行各业中广泛应用,给我

们的生产生活带来便利。

2电子自动化装置的干扰种类

2.1静电干扰

静电是日常生活中较为常见的现象,同时也是工业生产中影响电子自动化装

置正常运行的主要因素之一,电子自动化装置在正常运行中,会产生电磁场,电

磁信号会产生干扰作用。由于电子自动化装置的运行需要在电流基础上实现,所

以电子自动化装置电流越大,受电磁干扰越大。除此之外,还会受到其他电子自

动化装置电磁信号干扰,电动机和变压器都会产生影响。工业生产环境较为复杂,多数的电子设备和装置均会形成特定的电场,发射不同频率的电磁信号,将会在

不同程度上影响着电子自动化装置的正常运行。需要注意的是,静电干扰强度和

电流强度之间存在密切联系,如果电流较大,那么相应的干扰信号波动频率随之

增加,不仅会影响到电子自动化装置正常运行,还会为其他线路装置运行带来不

良的影响。如果未能选择合理措施予以预防和控制,抑制干扰信号,可能导致电

子自动化装置出现电弧火花,装置内部结构受到破坏,电子自动化装置无法安全

稳定运行。

2.2磁场耦合干扰

磁场耦合干扰也会给电子自动化装置带来很大的干扰。磁场耦合干扰是当周

围的电路中通过较大电流时,就会产生磁场,进而对整个装置回路带来一定的影响,对回路中的交流电动机和电磁铁都会产生一定的影响。在电磁铁和动力线等

的作用下,整个装置就会产生很强的交变电磁场,电磁场同时又会和周围的电子

线路相互作用,产生感应电路,进而感应电流和电磁场都会对电子自动化控制装

置产生一定的干扰。

2.3电磁干扰

电力电子装置及系统复习题及答案

概念部分(小题) 1、电力电子装置的主要类型:AC/DC、DC/DC、DC/AC、AC/AC、静态开关 通信电源交流稳压电源 充电电源通用逆变电源 3、直流电源装置电解电镀直流电源交流电源装置不间断UPS电源 开关电源 4、缓冲电路的主要作用:抑制开关器件的di/dt 、du/dt,改变开关轨迹,减少开关损耗 ,使之工作在安全工作区内。 5、常用耗能式缓冲电路:无极性、有极性、复合型注:p14电路模型区分。 6、过电流保护方法:(1)利用参数状态识别对单个期间进行自适保护 (2)利用常规方法进行最终保护。 7、为防止桥臂中两个开关器件直通,通常对两个开关器件的驱动信号进行互锁并设置死区 8、缓冲电路类型(判断或者填空) 无源功率因数校正(在电源输入端加入低频大电感) 9、功率因数校正有源滤波器无功谐波补偿 有源功率因数校正 功率因数校正电路(单项有源校正装置主要是 boost,可分为不连续电流模式和连续电流模式) 10、UPS典型结构:稳压器整流器逆变器转换开关 UPS主要分类:后备式、双变换在线式、在线互动式、双变换电压补偿在线式(delta 变换式) 其中:后备式是以市电供电为主的UPS,一般后备式UPS功率多在2kV A以下。其工作原理图见书P95图4.2 双变换在线式是以逆变器为主的工作方式,原理图书P95图4.3 11此外,在相同开关频率下,单极性的波动频率较双极性波提高一倍。 13、无源的功率因数校正是在输入端加电容电感进行被动补偿这是一种预补偿 有源的是主动补偿比如我们讲的Boost功率因数校正器 14、逆变类型:全桥半桥推挽 15、开关电源结构, 16、功率因数校正概念, 17、逆变器结构, 18、感应加热电源 (这些有的没有写出答案的大家自己对着书看一下啊,要断电了,来不及找了)

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

电磁兼容中差模与共模干扰及抑制技术

电磁兼容中差模与共模干扰及抑制技术 于 虹 (国家计算机外设质检中心,杭州310012) 摘 要 本文分析了引起差模和共模干扰现象的原因,提出了测量和确定辐射场源特性的方法,对差模干扰和共模干扰提出了抑制方法。 关键词 电磁兼容 差模干扰 共模干扰 一、引起差模与共模干扰的物理原因 电磁兼容辐射干扰问题主要来自电路中的电流突变产生的磁场变化或电压突变产生的电场变化;当把距辐射源的距离与波长λ作比较作为近场与远场区域的分界点(一般把距离λ的区域定义为近场区域,把距离 λ的区域定义为远场区域),若近场范围以磁场为主时,表明它与差模电流有密切关系,而电场与共模电流有密切关系。 电流的变化会引起电压的变化,反之亦然。但在实际电路中是其中之一占主导地位。辐射源的阻抗决定着近场是以磁场为主还是以电场为主。一般来讲,磁场是由仪器中某一局部回路产生的,这些回路可以分解为不同的模式。 电路中的阻抗概念是正确理解问题的一个重要概念,这里所提及的阻抗是指在特定辐射频率下的总的阻抗,这与通常所理解的阻抗概念有所不同。比如,电路中的连结器常被认为是低阻抗,但在高频条件下由于电路中的感应现象而实际上呈高阻抗。在一个电路中所有导线变为高阻抗的最常见方式就是线路中接地线显著的感应现象,在有些频率下,地线被感应成为高阻抗状态。对于整个线路来讲,地线实际上是以高阻抗状态与线路中其它线相串联起来了。在这种情形下,通过电容耦合形成回流。低阻场或者由电流产生的场,主要是磁场,在近场处以磁场为主。低阻场与低阻源相联系,也就是说与差模干扰有密切关系。 二、确定差模与共模干扰的诊断技术 低源阻抗引起电流变化的场,这决定了在近场区域以磁场为主,反之亦然,这就是确定辐射是否为差模干扰的基础。测量场阻的变化采用近场探头和频谱分析仪联合进行,其仪器配置及测试方法见图1所示。设E∶E场场强; H∶H场场强;P F∶探头性能因子;Z∶场阻抗;则H=Vh+P Fh-52;E=Ve+PFe;Z= 10(e-h)/20;若Z<377Ψ,那么d i/d t是主要的,辐射可能是差模;若Z>377Ψ,d v/d t是主要的,辐射可能是共模的 。 图1 在测量H场时要注意探头的取向,一般沿着源的两个径向测量,每个方向上测量2~6个点,点距为1~4m,在近场处间距要小一点。每个测量点上同时测出H场和E场的数据。 对于得到的实验数据采用两种方式处理均可:①作出H场和E场场强随距离变化的曲线,其中一个比另一个变化快。当H场变化较快时,为低阻抗源问题;当E场变化较快时为高阻抗源问题。②在同一测量点上(近场范围)利用Z=E/H来求出该测量点的场阻,并 25 计量技术 1997.№2

485通信中干扰抑制方法

485通信中干扰抑制方法 RS-485匹配电阻 RS-485就是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻。推荐在通信速率大于19、2Kbps或线路长度大于500米时,才考虑加接匹配电阻。 RS-485接地 RS-485通信双方的地电位差要求小于1V,所以建议将两边RS-485接口的信号地相连,注意信号地不要接大地。 还有,就就是采用隔离措施 变频器应用中的干扰抑制措施 在进线侧加装电抗器,可以抑制变频器产生的谐波对电网的干扰。 输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数。 避免变频器的动力线与信号线平行布线与集束布线,应分散布线。检测器的连接线、控制用信号线要使用双绞屏蔽线。变频器、电机的接地线应接到同一点上。在大量产生噪声的机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器的连接线、控制用信号线的屏蔽层用电缆金属夹钳接地。 信号线与动力线使用屏蔽线并分别套入金属管后,效果更好。 容易受干扰的其它设备的信号线,应远离变频器与她的输入输出线。 如何解决中频炉的谐波干扰

中频炉在使用中产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输与利用的效率降低,使电气设备过热,产生振动与噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护与自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备与电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。 滤除中频炉系统谐波的传统方法就是LC滤波器,LC滤波器就是传统的无源谐波抑制装置,由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌与高次谐波,存在节能的漏洞。 谐波抑制的另一个比较新的方法就是采用有源电力滤波器(Active Power Filter--APF)。它就是一种电力电子装置,其基本原理就是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率与幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。 MF-Saver吸收融合了LC技术与APF技术的优点,同时引入TOPSPARK G5的核心技术,扬长避短,创造性地解决了上述技术的不足,以独特的方式为中频炉环保节能提供了更有效的解决方案。

武汉晴川学院级电力电子装置总复习思考题期末复习提纲

1.电力电子装置的定义及基本类型。 电力电子装置是以满足用电要求为目标,以电力电子器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。(p1) 二、电力电子装置的主要类型 AC/DC变换器、DC/AC变换器、DC/DC变换器、AC/AC变换器、静态开关 2.电力电子装置和电力电子技术有哪些相同和不同 之处(p1) 相同之处:所用的电力电子器件、电力变换的功能 不同之处:研究的侧重点不同 电力单子技术主要从技术的层面出发,侧重于研究怎样用相应的电路来试验电力变换,以及电能变换的过程和原理电力电子装置主要从应用的层面出发,侧重于研究如何采用新技术新方法来提高整机的性能和效率,以满足用电对象的要求。 二者关系:电力电子技术的核心是电能形式的变换和控制,它通过电力电子装置来实现。 3.常用的散热措施有哪些(p14) (1)减小器件接触热阻Rθcs:提高接触面的光洁度,接触面上涂导热硅脂,施加合适的安装压力等。 (2)减小散热热阻Rθsa:选择有效散热面积大的铝型材散热器,将散热器作黑 化处理,必要时可采用紫铜材料制作散热器等。 (3)降低环境温度,加快散热过程:注意机箱的通风,装置内部安装风机, 必要时可用水、油或其他液体介质管道,以降低装置内部环境温度帮助冷却。4.缓冲电路的作用与分类。(p14) 抑制开关器件的du/dt和di/dt,减小器件的开关损耗,使开关器件工作在安全区内。 ?关断缓冲电路(du/dt抑制电路) 用于吸收器件的关断过电压和抑制du/dt,减小关断损耗。 ?开通缓冲电路(di/dt抑制电路) 用于抑制器件开通时的di/dt,减小开通损耗。 1)关断缓冲电路和开通缓冲电路 2)耗能缓冲电路和馈能缓冲电路 ?耗能缓冲电路 缓冲电路中储能元件的能量消耗在其内部的吸收电阻上。 ?馈能缓冲电路 将缓冲电路中储能元件上的能量回馈给负载或电源。 3)有极性缓冲电路和无极性缓冲电路 5.常用的过电流过电压保护措施,能看懂主电路中的 主要保护措施。 常用的过电压保护措施(p18): 1)封锁驱动信号 2)阻容吸收电路保护 3)压敏电阻保护 常用的过电流保护措施:(p17) ?电子电路保护——封锁驱动信号 ?快速熔断器保护——熔断器熔断切断回路 动作时间:约20ms ?过电流继电器保护——跳开交流断路器 动作时间:~

开关电源防共模干扰的方法

开关电源防共模干扰的方法 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射干扰加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。 开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施, 共模噪声则主要由较高的dv/dt与杂散参数间相互作用而产生的高频振荡引起。如图1所示。 采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。 在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上。

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

串模干扰共模干扰概念以及抑制方法

串模干扰共模干扰概念以及抑制方法 发布日期:2010-03-11 仪表在工业生产的现场使用的条件常常是很复杂的。被测量的参数又往往被转换成微弱的低电平电压信号,并通过长距离传输至二次表或者计算机系统。因此除了有用的信号外,经常会出现一些与被测信号无关的电压或电流存在。这种无关的电压或电流信号我们称之为“干扰”(也叫噪声)。 干扰的来源有很多种,通常我们所说的干扰是电气的干扰,但是在广义上热噪声、温度效应、化学效应、振动等都可能给测量带来影响,产生干扰。在测量过程中,如果不能排除这些干扰的影响,仪表就不能够正常的工作。 根据仪表输入端干扰的作用方式,可分为串模干扰和共模干扰。串模干扰是指叠加在被测信号上的干扰;共模干扰是加在仪表任一输入端与地之间的干扰。 干扰来自于干扰源,它们在仪表内外都可能存在。在仪表外部,一些大功率的用电设备以及电力设备都可能成为干扰源,而在仪表内部的电源变压器、机电器、开关以及电源线等也均可能成为干扰源 1) 串模干扰的抑制 串模干扰与被测信号所处的地位相同,因此一旦产生串模干扰,就不容易消除。所以应当首先防止它的产生。防止串模干扰的措施一般有以下这些: * 信号导线的扭绞。由于把信号导线扭绞在一起能使信号回路包围的面积大为减少,而且是两根信号导线到干扰源的距离能大致相等,分布电容也能大致相同,所以能使由磁场和电场通过感应耦合进入回路的串模干扰大为减小。 * 屏蔽。为了防止电场的干扰,可以把信号导线用金属包起来。通常的做法是在导线外包一层金属网(或者铁磁材料),外套绝缘层。屏蔽的目的就是隔断“场”的耦合,抑制各种“场”的干扰。 屏蔽层需要接地,才能够防止干扰。 * 滤波。对于变化速度很慢的直流信号,可以在仪表的输入端加入滤波电路,以使混杂于信号的干扰衰减到最小。但是在实际的工程设计中,这种方法一般很少用,通常,这一点在仪表的电路设计过程中就已经考虑了。 以上的几种方法是主要是针对与不可避免的干扰场形成后的被动抑制措施,但是在实际过程中,我们应当尽量避免干扰场的形成。譬如注意将信号导线远离动力线;合理布线,减少杂散磁场的产生;对变压器等电器元件加以磁屏蔽等等,采取主动隔离的措施。

共模干扰抑制技术

开关电源的共模干扰抑制技术 0 引言 由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。 传导是电力电子装置中干扰传播的重要途径。差模干扰和共模干扰是主要的传导干扰形态。多数情况下,功率变换器的传导干扰以共模干扰为主。本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。 1 &n bsp; 补偿原理 共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。如图1所示。共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。图2给出了这种新型共模噪声抑制电路所依据的本质概念。开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。 图1 CM及DM噪声电流的耦合路径示意图

电力电子装置及系统

电力电子装置及系统概述 张密李静怡牟书丹李子君 0 引言 在电力系统中,许多功能的实现都需要靠电力电子装置来完成。比如说可再生能源的并网发电、无功和谐波的动态补偿、储能装置的功率转换、配用电能的双向流动、交直流电网的柔性互联等。 随着科技的日益发展,大功率、高电压电力电子器件的发展,变换器单元化、模块化以及智能化水平的提高,控制策略和调制策略性能的提升,电力电子装置在电力系统中的作用会越来越大。 1 电力电子装置及系统的概念 电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。 电力电子装置和负载组成的闭环控制系统称为电力电子控制系统,其基本组成如图所示。它是通过弱电控制强电实现其功能的。控制系统根据运行指令和输入、输出的各种状态,产生控制信号,用来驱动对应的开关器件,完成其特定功能。 2 电力电子装置的主要类型 电力电子装置的种类繁多,根据电能转换形式的不同,基本上可以分为5大类:交流-直流变换器(AC/DC)、直流-交流变换器(DC/AC)、直流-直流变换器(DC/DC)、交流-交流变换器(AC/AC)和电力电子静态开关。 1.AC/DC变换器 AC/DC变换器又称整流器。用于将交流电能变换为直流电能。 2.DC/DC变换器 DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流电能。采用PWM 控制的DC/DC变换器也称直流斩波器,主要用于直流电机驱动和开关电源。 3.DC/AC变换器 DC/AC变换器又称逆变器。用于将直流电能变换为交流电能。根据输出电压及频率的变化情况,可分为恒压恒频(CVCF)及变压变频(VVVF)两类,前者用作稳压电源,后者用于交流电动机变频调速系统。 4.AC/AC变换器 AC/AC变换器用于将一种规格的交流电能变换为另一种规格的直流电能。输入和输出频率相同的称为交流调压器,频率发生变化的称为周波变换器或变频器。 5.静态开关 静态开关又称无触点开关,它是由电力电子器件组成的可控电力开关。 根据需要,以上各类变换可以组合应用。此外,各类变换器正在向模块化发展,可方便地组成不同功率等级的变换器。 3 电力电子装置的应用概况 3.1发电阶段中的应用 (1)发电机组励磁。 大型发电机组应用静止励磁技术,与励磁机相比,具有调节速度快、控制简单的特点,显著提高

浅谈基于EMC的共模干扰与差模干扰以及抑制方法

基于EMC的共模干扰与差模干扰以及抑制方法什么是共模与差模 电器设备的电源线,电话等的通信线, 与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是"地线"。电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为"差模";另一种是两根导线做去路,地线做返回传输, 我们称之为"共模"。 如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为"差模";而黄信号是在信号与地线之间传输的,我们称之为"共模"。 共模干扰与差模干扰 任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。差模干扰幅度小、频率低、所造成的干扰较小。

共模干扰信号 共模干扰的电流大小不一定相等,但是方向(相位)相同的。电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。 差模干扰信号 差模干扰的电流大小相等,方向(相位)相反。由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。 共模干扰产生原因 1. 电网串入共模干扰电压。 2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。 3.接地电压不一样,简单的说就电位差而造就了共模干扰。

论述电力电子装置的控制方式(直接拿去打印吧)

信息工程系 电力电子装置论文 题目: 论述电力电子装置的控制方式 专业:电气工程及其自动化 班级:K0309414 学号:K030941410 学生姓名:蔡泉权 电力电子装置(power electronic equipment)由各类电力电子电路组成的装置。用于大

功率电能的变换和控制。又称变流装置。它包括整流器、逆变器、直流变流器、交流变流器、各类电源和开关、电机调速装置、直流输电装置、感应加热装置、无功补偿装置、电镀电解装置、家用电器变流装置等。 其中,直流电源可由整流器或直流变流器组成,用于直流电动机调速、充电(备充电电源)、电镀和科学仪器等的电源。交流电源可由变频器(见交流变换电路)组成。分为变频变压电源(用于交流笼式异步电动机调速)、恒频恒压电源(用以构成交流不停电电源)、交流稳压电源、中频感应加热电源(电源输出频率达8千赫,用于感应加热和淬火)、高频加热电源(电源输出频率高于8千赫,用于淬火和焊接)等。利用电力电子器件的快速开关性能,可构成静止式无触点大功率开关,代替传统的电磁式有触点大功率开关。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。 SVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。SVPWM的主要特点有: 1.在每个小区间虽有多次开关切换,但每次开关切换只涉及一个器件,所以开关损耗小。 2.利用电压空间矢量直接生成三相PWM波,计算简单。 3.逆变器输出线电压基波最大值为直流侧电压,比一般的SPWM逆变器输出电压高15% VVVF(Variable Voltage Variable Frequency)装置是在早期采用的。PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。

DJDK-1型电力电子技术及电机控制实验装置简介及操作

DJDK-1 型电力电子技术及电机控制实验装置简介及操作 1-1 控制屏介绍及操作说明 一、特点 (1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程的主要实验。 (2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。 (3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组。 (4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成该设备损坏;电路连接方式安全、可靠、迅速、简便;除电源控制屏和挂件外,还设置有实验桌,桌面上可放置机组、示波器等实验仪器,操作舒适、方便。电机采用导轨式安装,更换机组简捷、方便;实验台底部安装有轮子和不锈钢固定调节机构,便于移动和固定。 (5)控制屏供电采用三相隔离变压器隔离,设有电压型漏电保护装置和电流型漏电保护装置,切实保护操作者的安全,为开放性的实验室创造了安全条件。 (6)挂件面板分为三种接线孔,强电、弱电及波形观测孔,三者有明显区别,不能互插。 (7)实验线路选择紧跟教材的变化,完全配合教学内容,满足教学大纲要求。 二、技术参数 (1)输入电压三相四线制380V±10% 50Hz (2)工作环境环境温度范围为-5—40℃,相对湿度<75%,海拔<1000m (3)装置容量:<1.5kVA (4)电机输出功率:<200W (5)外形尺寸:长×宽×高=1870㎜×730㎜×1600㎜ 1-2 DJK01电源控制屏 电源控制屏主要为实验提供各种电源,如三相交流电源、直流励磁电源等;同时为实验提供所需的仪表,如直流电压、电流表,交流电压、电流表。屏上还设有定时器兼报警

共模干扰抑制实例

共模干扰抑制实例 安徽电子科学研究所李浩 共模干扰无处不在,一般情况下,消除或抑制共模干扰是设计信号调理电路必须面对的问题。尤其是针对微弱信号采集调理电路,只有采集妥当的措施才能保证电路具备良好的抑制共模干扰性能,并正常工作。例如心电采集电路,电路所要采集的是人体不同电位点间的电位差,此电位差正常在8mV以下,典型值为1mV。人体又通常不可避免的暴露在工频干扰的空间之中,良好的抑制50Hz工频共模干扰是心电采集电路的基本要求之一。下面以单导联心电采集电路为例,分析共模干扰转化为差模干扰对测量产生影响及右腿驱动电路引入对共模干扰的抑制能力。 单导联包括LA、RA和LL。LA和RA为I导联检测电极,LL为右腿驱动电极。心电芯片中集成的仪表放大器本身具有一定的共模抑制能力,但由于所接导联线长度长,线路布局差异等因数,导致差分输入的两端阻抗不能完全对称,较强的共模干扰就会转换为差分干扰进入仪表放大器,造成较大的输出干扰。心电电路中LL电极实际上是取差分输入端的共模电压经反相后输入到人体,以将差分输入端的共模电压成分抵消或减小。 通过图示分析如下。 (1)理想状态下,无共模干扰,差分输入两端阻抗完全匹配,输出信号完全是两点间电位差。 图1 (2)实际情况下,空间存在共模干扰。 图2 (3)为便于立即结算等效为下图,如果差分输入两端阻抗完全匹配,一定范围内的共模干扰电压V仍不会对输出产生影响。

图3 (4)实际上,差分输入端存在阻抗,如果两端阻抗完全对称,则仍不会对输出产生影响。 图4 (5)等效为以下电路便于理解计算,R LA和R RA等效为两个输入端的阻抗,其差异设计为51kΩ(依据YY1139-2013标准),该阻抗的差异主要源自皮肤-电极阻抗不平衡,即同一患者身上连接的两个电极间的阻抗预期变化较大。如果皮肤-电极阻抗存在不平衡,考虑到任何电极对地的有限阻抗,共模电路将产生差分信号。共模电压之所以取值10V,也是依据YY1139-2013标准。 按下图电路举例计算,差分输入两端将存在0.5mV的差异。由于人体心电信号本身就是在8mV以下,典型值为1mV,由此可见0.5mV的干扰信号不容忽视,如果不采取有效措施,将对输出产生较严重的干扰。 图5 (6)引入驱动电极,抵消共模电压,有效降低共模电压转换为差模电压,进入测量系统产生干扰。右腿驱动电路部分的作用是,获取LA和RA两端的共模电压,经过反相后变

《电力电子装置及控制》课程教学大纲

《电力电子装置及控制》课程教学大纲 Power Electronic Devices and Control 课程编号:2000151 适用专业:电气工程及其自动化 学时数:48 学分数:3 执笔者:叶斌编写日期:2002.5 一、课程的性质和目的 课程性质:《电力电子装置及控制》是电气工程及其自动化专业的专业课、必修课,主要内容为电力电子实用技术和典型电力电子装置的控制技术。 主要任务 1.使学生了解电力电子技术在国民经济中的重大作用以及电力电子技术的发展现状,扩大学生视野,启发学生创新思维; 2.在先修课“电力电子器件”和“电力电子技术”课程的基础上,进一步介绍大功率变流电路的结构、工作原理、功能指标,理解大功率电力电子实用装置的构成、基本电量的计算方法和所有装置需解决的共同技术问题; 3.介绍几类电力电子实用装置,使学生掌握其工作原理、运行特性、以及依据装置所服务的实际负载特点所采用的控制手段,培养学生面向生产、面向实际、面向工程的实际运用能力。 4.本门课是在学生学习过多门技术基础课的基础上开设的,它涵盖知识的内容多,面广,难度大,实用性强,能培养学生融会贯通知识、提高综合应用知识解决实际问题的能力。 二、课程教学内容 第一章整流装置(6学时) 内容:介绍大功率整流电路的典型结构和控制方式;整流装置的功能指标、改善功率因数的措施;电力电子装置的谐波及其抑制、快速静止无功补偿装置的基本原则。 学习要求及重点:掌握大功率整流的典型电路结构,技术性能,功能指标、抑制谐波以及提高功率因数的措施。 作业本章作业4~6题,内容:大功率多相整流基本电量计算2题;多重化整流电路的谐波分析计算2题;功率因数的计算1题;静止无功补尝装置原理分析1题。 第二章逆变装置(6学时) 内容:重点介绍逆变器输出谐波的抑制及波形的改善、三点式逆变电路工作原理、谐振直流环节逆变器以及DC/AC变换技术的应用。 学习要求及重点:重点掌握谐波的抑制、SPWM波调制技术、三电平逆变器和谐振直流环节逆变器的工作原理,以及DC/AC变换技术的应用。 作业:基本逆变电路的计算2题;逆变器的多重化技术2题;结合教学内容,查阅文献资料,写出有关逆变技术的应用论文1篇。 第三章直流传动装置(10学时) 内容:本章主要内容为由AC/DC和DC/DC变流装置供电的直流电动机系统特性及典型系统的控制技术。重点介绍V—M系统的开、闭环控制特性、直流电动机不可逆双闭环调速系统及可逆调速系统的控制技术及系统性能。

电力电子装置-打印版

一、电力电子装置GC 1.电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现和控制的装置。 2.电力电子装置和负载组成的闭环控制系统称为电力电子控制系统。3.电力电子装置及其控制系统的基本组成:它是通过弱电控制强电实现其功能的 4.电力电子装置的主要类型 (1)根据电能转换形式的不 同,基本上可以分为5大 类:交流-直流变换器(AC/ DC)、直流-交流变换器(D C/AC)、直流-直流变换器 (DC/DC)、交流-交流变换 器(AC/AC)和电力电子静 态开关。 ① AC/DC变换器又称整流器。用于将交流电能变换为直流电能。 ② DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流 电能。 ③ DC/AC变换器又称逆变器。用于将直流电能变换为交流电能。 ④ AC/AC变换器用于将一种规格的交流电能变换为另一种规格的交流 电能。 ⑤静态开关又称无触点开关,它是由电力电子器件组成的可控电力开 关。 5.电力电子装置的应用概况: (1)电力电子装置在供电电源、电机调速、电方至统'等方面都得到了广泛的应用。 ①直流电源装置通信电源充电电源电解、电镀直流电源开关电源 ②交流电源装置交流稳压电源通用逆变电源不间断电源UPS ③特种电源装置静电除尘用高压电超声波电源感应加热电源焊 接电源④电力系统用装置高压直流输电无功功率补偿装置和电力有源滤 波器电力开关 ⑤电机调速用电力电子装置交、直流调速装置 ⑥其他实用装置电子整流器和电子变压器空调电源微波炉、应急 灯等电源 6.发展前景 (1)交流变频调速绿色电力电子装置电动车新能源发电信息电源7.应用技术: (1)散热技术:PN结的性能与温度密切相关,每种电力电子器件都要规定最高允许结温Tim,器件在运行时不应超过7V和功耗的最大允许值Pm,否则器件的许多特性和参数都要有较大变化,甚至使器件被永久性地烧坏。 (2)缓冲电路:抑制开关器件的di/dt、du/d t,改变开关轨迹,减少开关损耗,使之 工作在安全工作区内。能量以热的形式 消耗在缓冲电路的电阻上。采用有极性 的缓冲电路,以便加快电容或电感的抑 制作用。 (3)保护技术 ①防止过电流的措施:为了防止桥臂中两个 开关器件直通,通常对两个开关器件的 驱动信号进行互锁并设置死区。 1)互锁就是桥臂中一开关器件有驱动信号 时,绝对不允许另一开关器件有驱动信号,可以利用门电路将桥臂中两个驱动信号进行互锁。 2)死区是指桥臂中两个开关器件都不允许开通的时间。一般元件的关断时间往往大于开通时间,当接收到开通信号后应该推迟一定的死区时间再驱动开关管,才能避免(死区t取关断t1.5~2倍) ②电流信号检测慢速型快速型;输出过压保护;输入瞬态电压抑制; 输入欠压保护;过温保护;器件控制极保护;自锁式保护电路 二、高频开关电源 1 / 4

共模与差模传导干扰分析及抑制技术研究(西电,邱杨教授)

ELECTRONICS QUALITY?2004第10期? 电子质量1.引言 随着电子和电气设备的密度急剧增加,无线电频谱日益拥挤,对电子设 备的电磁兼容性的要求也越来越高。电磁兼容性(ElectromagneticCompatibility,EMC)是指仪器设备在可能的电磁干扰环境下仍然能正常工作的能力。它主要是研究在有限空间和频谱范围内,可能发出电磁干扰的各种电子、电气等系统如何在合理的条件下使其互不干扰,即实现共存。而在电磁兼容中要解决的根本问题则是对电磁干扰的抑制。电磁干扰(Electromagnetic Interference,EMI)是导致电气、电子设备在某种电 磁环境中不能可靠工作的主要原因,按其模式主要可分为两种:共模干扰和差模干扰。在实际中,大多数产品电磁兼容性能不合格都是由于不能很好抑制这两种干扰的结果。电磁干扰对 电子设备造成的危害,轻则设备损坏,重则损失惨重。如1967年发生在越南美军基地的一起由于电磁耦合而引起的爆炸事故,导致134人丧生、27枚导弹被引爆,造成了200亿美元的重大损失。因此,正确区分共模和差模干扰以 及对其进行抑制技术研究具有非常重要的现实意义。下面就着重对这两种干扰的成因、诊断及抑制分别进行阐 述。2.电磁干扰的形式和起因 电磁干扰涉及的范围很广,包括工业、军事、科研、医疗等社会生活的各个方面。它从耦合途径上来分,主要有传导电磁干扰和辐射电磁干扰。传导电磁干扰又可分为共模和差模传导干扰,同样辐射电磁干扰也可分为共模和差模辐射干扰。 共模干扰指的是干扰电压在信号线及其回线(一般称为信号地线)上的 幅度相同,这里的电压以附近任何一个物体(大地、参考地线板、金属机箱等)为参考电位,干扰电流回路则是在导线与参考物体构成的路中流动,如图1所示(图1、2中模块A、B分别指发 送部分——源端和接收部分——负载端, 、 分别为信号线和回流线阻抗)。 差模干扰指的是干扰电压存在于信号线及其回线(一般称为信号地线)之间,干扰电流回路则是在导线与参考物体构成的回路中流动,如图2所示。 一般来说,对于传导干扰,在相线 (信号线)或中线(回线)与地线之间的都是共模干扰,相线(信号线)与中线(回线)之间的则是差模干扰。而对于辐射干扰,低频干扰多是差模干扰,高频则是共模干扰。下面则重点介绍共模与差模传导干扰的诊断与抑制。 3.确定共模与差模干扰的诊断技术 由于抑制共模干扰和差模干扰的方法完全不同,因此采取抑制措施之

电力电子装置与系统考试资料

电力电子装置与系统考试资料仅供参考 学院:机电学院 专业:应用电子 班级: 学号: 姓名:

摘要:本文简单回顾了电力电子技术及其器件的发展过程,介绍了现在主流的电力电子器件的工作原理、应用范围及其优缺点,探讨了在21世纪中新型电力电子器件的应用展望。关键词:电力电子技术;晶闸管;功率集成电路; 引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从1958年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。 由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR、GTO、功率MOSET等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如IGPT、MCT、HVIC等就是这种发展的产物。 电力整流管 整流管产生于本世纪40年代,是电力电子器件中结构最简单、使用最广泛的一种器件。目前已形成普通整流管、快恢复整流管和肖特基整流管等三种主要类型。其中普通整流管的特点是:漏电流小、通态压降较高(1.0~1.8V)、反向恢复时间较长(几十微秒)、可获得很高的电压和电流定额。多用于牵引、充电、电镀等对转换速度要求不高的装置中。较快的反向恢复时间(几百纳秒至几微秒)是快恢复整流管的显著特点,但是它的通态压降却很高(1.6~4.0V)。它主要用于斩波、逆变等电路中充当旁路二极管或阻塞二极管。肖特基整流管兼有快的反向恢复时间(几乎为零)和低的通态压降(0.3~0.6V)的优点,不过其漏电流较大、耐压能力低,常用于高频低压仪表和开关电源。目前的研制水平为:普通整流管(8000V/5000A/400Hz);快恢复整流管(6000V/1200A/1000Hz);肖特基整流管(1000V/100A/200kHz)。

相关主题
文本预览
相关文档 最新文档