当前位置:文档之家› 外文翻译---齿轮的设计、制造和应用

外文翻译---齿轮的设计、制造和应用

外文翻译---齿轮的设计、制造和应用
外文翻译---齿轮的设计、制造和应用

毕业设计(论文)外文资料翻译

学院:

专业:机械设计制造及其自动化

姓名:

学号:

外文出处: Mechanism and Machine Theory

34 (1999) 857-876

(用外文写)

附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文

动力传动圆锥渐开线齿轮的设计、制造和应用

Dr. J. B?rner,K. Humm,Dr. F. Joachim,Dr. H. akaria,

ZF Friedrichshafen AG , 88038Friedrichshafen, Germany;

[摘要]圆锥渐开线齿轮(斜面体齿轮)被用于交叉或倾斜轴变速器和平行轴自由侧隙变速器中。圆锥齿轮是在齿宽横断面上具有不同齿顶高修正(齿厚)的直齿或斜齿圆柱齿轮。这类齿轮的几何形状是已知的,但应用在动力传动上则多少是个例外。ZF公司已将该斜面体齿轮装置应用于各种场合:4W D轿车传动装置、船用变速器(主要用于快艇)机器人齿轮箱和工业传动等领域。斜面体齿轮的模数在0. 7 mm-8 mm之间,交叉传动角在0°- 25°。之间。这些边界条件需要对斜面体齿轮的设计、制造和质量有一个深入的理解。在锥齿轮传动中为获得高承载能力和低噪声所必须进行的齿侧修形可采用范成法磨削工艺制造。为降低制造成本,机床设定和由于磨削加工造成的齿侧偏差可在设计阶段利用仿真制造进行计算。本文从总体上介绍了动力传动变速器斜面体齿轮的研发,包括:基本几何形状、宏观及微观几何形状的设计、仿真、制造、齿轮测量和试验。

1前言

在变速器中如果各轴轴线不平行的话,转矩传递可采用多种设计,例如:伞齿轮或冠齿轮、万向节轴或圆锥渐开线齿轮(斜面体齿轮)。圆锥渐开线齿轮特别适用于小轴线角度(小于15°),该齿轮的优点是在制造、结构特点和输入多样性等方而的简易。圆锥渐开线齿轮被用于直角或交叉轴传动的变速器或被用于平行轴自由侧隙工况的变速器。由于锥角的选择并不取决于轴线交角,配对的齿轮也可能采用圆柱齿轮。斜面体齿轮可

制成外啮合和内齿轮,整个可选齿轮副矩阵见表1,它为设计者提供了高度的灵活性。

圆锥齿轮是在齿宽横截面上具有不同齿顶高修正(齿厚)量的直齿轮或斜齿轮。它们能与各种用同一把基准齿条刀具切制成的齿轮相啮合。斜面体齿轮的几何形状是已知的,但它们很少应用在动力传动上。过去,未曾对斜面体齿轮的承载能力和噪声进行

过任何大范围的试验研究。标准(诸如适用于圆柱齿轮的IS06336)、计算方

法和强度值都是未知的。因此,必须开发计算方法、获得承载能力数值和算出用于生产和质量保证的规范。在过去的15年中,ZF 公司已为锥齿轮开发了多种应用:

1、输出轴具有下倾角的船用变速[1、3]

图.1

2、转向器[1]

3、机器人用小齿隙行星齿轮装置(交叉轴角度1°一3°)[2]

4、商用车辆的输送齿轮箱(垃圾倾倒车)

5、AWD 用自动变速器[ 4],图2 2齿轮几何形状 2. 1 宏观几何形状

简而言之,斜面体齿轮可看成是一个在齿宽横截面上连续改变齿顶高修正的圆柱齿轮,如图3。为此,根据齿根锥角δ刀具向齿轮轴线倾斜[ 1]。结果形成了齿轮基圆尺寸。

螺旋角,左/右

tan β

L R ,=tan β

·cos δ

β

δ

ασcos sin tan ?n (l)

横向压力角 左/右

δββ

δ

αα?±?=

tan cos cos tan tan ,no L tR (2)

基圆直径 左/右

L

R L

tR n L dR Zim d ,,,cos cos βα=

(3)

左右侧不同的基圆导致斜齿轮齿廓形状的不均匀,图3。采用齿条类刀具加工将使得齿根锥具有相应的根锥角δ。齿顶角设计成这样以使得顶端避免与被啮合齿轮发生干涉,并获得最大接触区域。由此导致在齿宽横截面上具有不同的齿高。由于几何设计限制了根切和齿顶形状,实际齿宽随锥角增加而减小。锥齿轮传动合适的锥角最大约为15°。

2. 2微观几何形状

一对伞齿轮通常形成点状接触。除接触外,在齿侧还存在间隙,如图7。齿轮修形设计的目的是减小这些间隙以形成平坦而均匀的接触。通过逐步应用啮合定律有可能对齿侧进行精确的计算[5],图4。最后,在原始侧生成半径为rp 1和法向矢量为n 1的P1点。这生成速度矢量V 1P 及对于在啮合一侧所生成的点,有半径矢量rp 2:

??

?

??

?????'*'*?='0cos sin 1

111γγP P P r r v (4) 12P P r a r -= (5) 和速度矢量2P

V '' ??

?

???????'*'*?=''0cos sin 212122γγωP P P

r r V (6) 角速度根据齿轮速比确定:

122

1z z

-=ωω (7)

角度γ被反复迭代直至满足下代。

()0121=-?P P v v n (8) 啮合点Pa 偏转2φ角度

2

1

12z z ?

-=φφ (9) 绕齿轮轴转动,形成共轭点P 2。

3传动装置设计

3. 1根切和齿顶形状 斜面体齿轮的可用齿宽受到大端齿顶形状和小端根切的限制,见图3。齿高愈高(为获得较大的齿高变位量),理论可用齿宽愈窄。小端根切和大端齿顶形状导致齿高变位量沿齿宽方向发生变化。当一对齿轮的锥角大致相同时可获得最大的可用齿宽。若齿轮副中小

齿轮愈小,则该小齿轮必须采用更小的锥角。齿顶锥角小于齿根锥角时,通常能在小端获得有用的渐开线,而在大端处有足够齿顶间隙,这时大端的齿顶形状并不太严重。

3. 2工作区域和滑动速度

斜面体齿轮工作区域产生扭歪的原因是圆锥半径有形成平行四边形趋势。另外,工作压力角在齿宽横截面方向的改变也造成工作区域的扭曲。图5是一个例子。在交叉轴传动的斜面体齿轮上存在一滚动轴;如同圆柱齿轮副的滚动点一样,在该轴上不存在滑动。对于

倾斜轴布置而言,在轮齿啮合处总存在另外的轴向滑动。由于工作压力角在齿宽横截面上变化,从小端到大端的接触区内的接触轨迹有很大的变化。因此,沿齿宽方向在齿顶和齿根处具有明显不同的滑动速度。在齿轮中部,齿顶高修正的选择是基于圆柱齿轮副的规范;在主动齿轮根部的接触轨迹将小于齿顶的接触轨迹。图6给出了斜面体齿轮副

主动齿轮滑动速度的分布。

4接触分析和修形

4. 1点接触和间隙

在未修正齿轮传动中,

由于轴线倾斜,通常仅有一点接

触。沿可能接触线出现的间隙可

大致解释为螺旋凸起和齿侧廓线

角度的偏差所致。圆柱齿轮左右

侧间隙与轴线交叉无关。对于螺

旋齿轮而言,当两斜面体齿轮锥

角大致相同时,其产生的间隙也

几乎相等。随两齿轮锥角和螺旋

角不一致的增加,左右侧间隙的

不同程度也增加。

在工作压力角较小时将导致

更大的间隙。图7给出了具有相

同锥角交叉轴传动的斜面体齿轮

副所出现的间隙。图8显示了具

有相同10°交叉轴线和30°螺

旋角齿轮在左右侧间隙方而的差

异。两侧平均间隙的数值在很大

程度上与螺旋角无关,但与两齿

轮的锥角相关。

螺旋角和锥角的选择决定了

齿轮左右侧平均间隙的分布。倾

斜轴线布置对接触间隙产生额外影响。这将有效减少齿轮一侧的螺旋凸形。如果垂直轴线与总基圆半径相同,并且基圆柱螺旋角之差等于交叉轴角的话,间隙减小到零并出现线接触。然而,在另一侧将出现明显的间隙。如果正交的轴线进一步扩大直至变成圆柱交叉轴螺旋齿轮副的话,其两侧间隙等同于较小的螺旋凸形。除螺旋凸形外,明显的齿廓扭曲(见图8)也是斜面体齿轮的间隙特征。随螺旋角增加齿廓扭曲也随之增加。图9表明图7所示齿轮装置的齿廓是如何扭曲。为补偿齿轮啮合中所存在的间隙,必须采用齿侧拓扑修形,该类修形可明显补偿螺旋凸形和轮廓扭曲。未对齿廓扭曲作补偿的话,在工作区域仅有一个对角线状的接触带,见图10。

4.2 齿侧修形

对于一定程度的补偿而言,必需

的齿面形状可由实际间隙所决定。图

11给出了这些样品的齿形几何特

征。采用修正后的接触率得到了很大

改善如图12所示。为应用在系列生

产中,其目标总是能使用磨床加工这

类齿面,对此的选择在第6节论述。

除间隙补偿外,齿顶修形也是有益

的。修形减少了啮合开始和结束阶段

的负荷,并能提供一较低的噪声激励

源。然而,斜面体齿轮的齿顶修形在

齿宽横截面上的加工总量上和长度

上是不同的。问题主要出现在具有一

个大根锥角但顶锥角与根锥角存在

偏差的齿轮上。因此齿顶修形在小端

明显大于大端。如齿轮需要在啮合开

始和结束处修形,则必须接受这种不

均匀的齿顶修形。利用其它锥角如根

锥角进行齿顶修形加工也是可行的。

但是,这样需要专门用于齿顶卸载的

专用磨削设备。与范成法磨

削方法无关,齿侧修正可采

用诸如珩磨等手段;但在斜

面体齿轮上应用这些方法尚

处在早期开发阶段。5 承载

能力和噪声激励

5.1 计算标准的应用

斜面体齿轮齿侧和

根部承载能力仅可用圆柱齿

轮的计算标准(ISO 6336,

DIN 3990, AGMAC95) 作近似估算。具体计算时用圆柱齿轮副替代斜面体齿轮,用斜面体齿轮中部的齿宽来定义圆柱

齿轮的参数。虽然斜面体齿轮

齿廓是非对称的,但在替代齿

轮中可不予考虑。替代齿轮的

中心距由斜面体齿轮中部齿

宽处的工作节圆半径确定。当

计及齿宽横截面时,各项独立

的参数都会变化,这将明显影

响承载能力。

表2给出了影响齿

根和齿侧承载能力的主要因

素。由于沿大端方向减小轮齿

齿根圆角半径所产生较大的

凹口效应阻止了根部齿厚的

增加。另外,在大端处,较大的

节圆直径可获得较小的切向

力;然而,大端处的齿高变位

量也随之变小。由于主要影响

得到很好的平衡,因此可用替代齿轮副获得十分近似的承载能力计算结果。齿宽横截面上的载荷分布可用齿宽系数(例如

DIN/ISO标准中的K

β

H 和K

β

F

)表示和利

用补充的负载曲线图分析来确定。

5.2 轮齿接触分析

如同在圆柱齿轮副中那样,更精确的承载能力计算可采用三维轮齿接触分析。同样采用替代齿轮,而且齿侧处接触状况被认为非常理想。该齿侧形状通过叠加经齿侧修正的无负载接触间隙而获得。在这里,接触线由替代齿轮所确定,它们和斜面体齿轮的接触状况稍有不同。图13给出了以这方法获得的载荷分布,并与已有的负载曲线图作对比,两者的相关性非常好。

轮齿接触分析也将生成一个作为激振源的由轮齿啮合产生的传动误差。然而这仅能作为一个粗略的引导。在传动误差方面,斜面体齿轮接触计算的不精确性是一个比载荷分布更大的影响因素。

5.3 采用有限元法的精确建模

斜面体齿轮的应力也能利用有限元法计算。图14是齿轮横断面建模的实例。图15给出了使用PERMAS软件由计算机生成的主动齿轮在啮合位置的轮齿啮合区模型和应力分布计算值[7]。可对多个啮

合位置进行计算,并能求出齿轮旋

转产生的传动误差。

5.4 承载能力和噪声试验

在交叉轴背靠背试验台上对AWD变速器进行试验以测量其承载能力,图16。试验齿轮采用不同的修正,以确定它们对承载能力的影响。承载能力的试验与有限元计算结果相当吻合。值得注意的是,由于大端硬度提高使得载荷曲线图朝大端由一个额外的移动。这种移动在替代的圆柱齿轮副计算中不能被辨别。在进行承载能力试验的同时,传动误差和旋转加速度的测量在通用噪声试验台上进行,图17。除了载荷影响外,这些试验还测量了附加轴线倾斜所引起的噪声激励,关于

轴线附加倾斜,试验中未发现有明显的影响。

6 仿真制造

借助于仿真制造,可获得机床设

置及连续范成磨削和产生齿廓扭曲

的运动。齿廓受迫扭曲现象可在变速

器设计阶段就被认识到并与承载能

力及噪声一并进行分析。斜面体齿轮

制造仿真软件由ZF公司开发,详见

[9]。

6.1 适用于斜面体齿轮的制造

方法

斜面体齿轮仅可用范成法加工,因为齿廓形状沿齿宽方向有明显的变化。尽管是锥角非常小的斜面体齿轮,必须承认在修整处理中仍然会出现齿廓角度偏差。滚刀最方便用于预切削。理论上也可采用刨削,但是,所需的运动在现有机床上很难实现。内齿圆锥齿轮仅能用类似小齿轮的刀具精确制造,如果刀具轴线和工具轴线平行并且锥角是通过改变中心距生成的。如果内齿轮利用轴线倾斜的小齿轮刀具如同加工差速器锥齿轮那样来制造的话,将导致齿沟凸起和无修正运动的齿廓扭曲。对于小锥角而言这些偏差足够小,可以被忽略。对于终加工,范成法螺旋磨削是一个最佳选择。如果工件或机床夹具能被另外倾斜,也可采用部分范成法。如果齿轮锥角处于机床控制范围内,拓扑磨削工艺也是可能的(例如5轴机床),但是会耗费巨大的努力。原则上,珩磨等方法也能被用于加工,但是,在斜面体齿轮应用这些方法仍需大量的开发工作。双齿侧范成法磨削工艺并利用中心距弧形减少方法可实现齿沟凸起的目标。该方法所得到的齿廓扭曲与造成啮合间隙

的齿廓扭曲相反。因此该方法可在很大程

度上补偿齿廓扭曲并可承受比圆柱齿轮

更大的载荷。

6.2工件表面形状

以下的关于工件描述被应用在仿真中:

? 原始齿轮(留有磨削所需的余量)

?理想齿轮(来自齿轮数据,无齿侧修形)

?完成的齿轮(具有制造偏差和齿侧修形)

参考文献:

1.J. A. MacBain, J. J. Conover, and A. D. Brooker, “Full-vehicle simulation for series hybrid

vehicles,” presented at the SAE Tech. Paper, Future Transportation Technology Conf., Costa Mesa, CA, Jun. 2003, Paper 2003-01-2301.

2.X. He and I. Hodgson,“Hybrid electric vehicle simulation and evaluation for UT-HEV,”prmented

at the SAE Tech. Paper Series, Future Transpotation Technology Conf., Costa Mesa, CA, Aug.

2000, Paper 2000-01-3105.

3.K. E. Bailey and B. K. Powell,“A hybrid electric vehicle powertrain dynamic model,”inProc.

Amer. Control Conf., Jun. 21-23, 1995, vol. 3, pp. 1677-1682.

4. B. K. Powell, K. E. Bailey, and S. R. Cikanek,“Dynamic modeling and control of hybrid electrie

vehicle powertrain system,”IEEE Control Syst. Mag., vol, 18, no. 5. pp. 17-33, Oct. 1998.

5.K. L. Butler, M. Ehsani, and P. Kamath,“A Matlabbared modeling and simulation package for

electric and hybrid electric vehicle design,”IEEE Trans. Veh.Technol., vol. 48, no. 6, pp.

1770-1778, Nov. 1999.

6.K. B. Wipke, M. R. Cuddy, and S. D. Burch,“ADVISOR 2.1: A user-friendly advanced

powertrain simulation using a combined backward/forward approach,” IEEE Trans. Veh.

Technol., vol. 48. no. 6, pp.1751-1761, Nov. 1999.

7.T. Markel and K. Wipke,“Modeling grid-connected hybrid electric vehicles using

ADVISOR,”inProc.16th Annu. Battery Conf. Appl. and Adv.,Jan. 9-12.2001. pp. 23-29.

8.S. M. Lukic and A. Emadi,“Effects of drivetrain hybridization on fuel economy and dynamic

performance of parallel hybrid electric vehicles,”IEEE Trans. Veh.Techno l., vol. 53, no. 2, pp.

385-389, Mar. 2004.

9. A. Emadi and S. Onoda,“PSIM-based modeling of automotive power systems: Conventional,

electric, and hybrid electric vehicles,”IEEE Trans. Veh. Technol.,vol. 53, no. 2, pp. 390-400, Mar.

2004.

10.J. M. Tyrus, R. M. L ong, M. Kramskaya, Y. Fertman, and A. Emadi,“Hybrid electric sport utility

vehicles,”IEEE Trans. Veh. Technol., vol. 53, no. 5,pp. 1607-1622, Sep. 2004.

附件2:外文原文

Application, Design, and Manufacturing of Conical Involute Gears

for Power Transmissions

Dr. J. B?rner,K. Humm,Dr. F. Joachim,Dr. H. Yakaria,

ZF Friedrichshafen AG , 88038Friedrichshafen, Germany;

[ABSTRACT] Conical involute gears (beveloids) are used in transmissions with intersecting or skew axes and for backlash-free transmissions with parallel axes. Conical gears are spur or helical gears with variable addendum modification (tooth thickness) across the face width. The geometry of such gears is generally known, but applications in power transmissions are more or less exceptional. ZF has implemented beveloid gear sets in various applications: 4WD gear units for passenger cars, marine transmissions (mostly used in yachts), gear boxes for robotics, and industrial drives. The module of these beveloids varies between 0.7 mm and 8 mm in size, and the crossed axes angle varies between 0°and 25°. These boundary conditions require a deep understanding of the design, manufacturing, and quality assurance of beveloid gears. Flank modifications, which are necessary for achieving a high load capacity and a low noise emission in the conical gears, can be produced with the continuous generation grinding process. In order to reduce the manufacturing costs, the machine settings as well as the flank deviations caused by the grinding process can be calculated in the design phase using a manufacturing simulation. This presentation gives an overview of the development of conical gears for power transmissions: Basic geometry, design of macro and micro geometry, simulation, manufacturing, gear measurement, and testing.

1Introduction

In transmissions with shafts that are not arranged parallel to the axis, torque transmission is

possible by means of various designs such as bevel or crown gears , universal shafts , or conical involute gears (beveloids). The use of conical involute gears is particularly ideal for small shaft angles (less than 15°), as they offer benefits with regard to ease of production,

design features, and overall input. Conical involute gears can be used in transmissions with intersecting or skew axes or in transmissions with parallel axes for backlash-free operation. Due to the fact that selection of the cone angle does not depend on the crossed axes angle, pairing is also possible with cylindrical gears. As beveloids can be produced as external and internal gears, a whole matrix of pairing options results and the designer is provided with a high degree of flexibility;

Table 1.

Conical gears are spur or helical

gears with variable addendum

correction (tooth thickness)

across the face width. They can

mesh with all gears made with a tool

with the same basic rack. The geometry

of beveloids is generally known, but

they have so far rarely been used in

power transmissions. Neither the load

capacity nor the noise behavior of

beveloids has been examined to any

great extent in the past. Standards (such

as ISO 6336 for cylindrical gears ),

calculation methods, and strength

values are not available. Therefore, it

was necessary to develop the

calculation method, obtain the load

capacity values, and calculate

specifications for production and

quality assurance. In the last 15 years,

ZF has developed various applications

with conical gears:

? Marine transmissions with

down-angle output shafts /1, 3/, Fig. 1

? Steering transmissions /1/ ?

Low-backlash

planetary

gears (crossed axes angle 1…3°) for robots /2/

?

Transfer

gears

for

commercial vehicles (dumper)

?

Automatic

car

transmissions for AWD /4/, Fig. 2

2 GEAR GEOMETRY 2.1 MACRO GEOMETRY

To put it simply, a beveloid is a spur gear with continuously changing addendum modification across the face width, as shown in Fig. 3. To accomplish this, the tool is tilted towards the gear axis by the root cone angle ? /1/. This results in the basic gear dimensions:

Helix angle, right/left

tan β

L

R ,=tan β·cos δ

β

δ

ασcos sin tan ?n

(1)

Transverse pressure angle right/left

δββ

δ

αα?±?=

tan cos cos tan tan ,no L tR (2)

Base circle diameter right/left

L

R L

tR n L dR Zim d ,,,cos cos βα=

(3)

The differing base circles for the

left and right flanks lead to asymmetrical tooth profiles at helical gears, Fig. 3.

Manufacturing with a rack-type cutter

results in a tooth root cone with root cone angle δ. The addendum angle is designed so that tip edge interferences with the mating gear are avoided and a maximally large contact ratio is obtained. Thus, a differing tooth height results across the face width.Due to the geometric design limits for undercut and

tip formation, the possible face width

decreases as the cone angle increases. Sufficiently well-proportioned gearing is possible up to a cone angle of approx. 15°.

2.2MICRO GEOMETRY

The pairing of two conical gears generally leads to a point-shaped tooth contact. Out-side this contact, there is gaping between the tooth flanks , Fig. 7. The goal of the gearing correction design is to reduce

this gaping in order to create a flat and uniform contact. An exact calculation of the tooth flank is possible with the step-by-step application of the gearing law

) with /5/, Fig. 4. To that end , a point (P

1

the radiusrP1and normal vectorn1is generated on the original flank. This

with generates the speed vector V

1

P

??

?

???????'*'*?='0cos sin 1111γγP P P r r v (4)

For the point created on the mating flank, the radial vector rp 2:

12P P r a r -= (5) and the speed vector 2P

V '' apply ??

?

???????'*'*?=''0cos sin 212

122γγωP P P

r r V (6) The angular velocities are generated from the gear ratio:

122

1z z

-=ωω (7)

The angle γ is iterated until the gearing law in the form

()0121=-?P P v v n (8)

is fulfilled. The meshing point Pa found is then rotated through the angle 2φ

2

1

12z z ?

-=φφ (9) around the gear axis, and this results in the conjugate flank point P 2.

3 GEARING DESIGN

3.1 UNDERCUT AND TIP FORMA TION

The usable face width on the beveloid gearing is limited by tip formation on the heel and undercut on the toe as shown in Fig. 3. The greater the selected tooth height (in order to obtain a larger addendum modification), the smaller the theoretically useable face width is. Undercut on the toe and tip formation on the heel result from changing the addendum modification along the face width. The maximum usable face width is achieved when the cone angle on both gears of the pairing is selected to be approximately the same size. With pairs having a significantly smaller pinion, a smaller cone angle must be used on this pinion.

critical if the tip cone angle is smaller

than the root cone angle, which often

provides good use of the available

involute on the toe and for sufficient

tip clearance in the heel.

3.2FIELD OF ACTION AND

SLIDING VELOCITY

The field of action for the

beveloid gearing is distorted by the

radial conicity with a tendency

towards the shape of a parallelogram.

In addition, the field of action is

twisted due to the working pressure

angle change across the face width.

Fig. 5 shows an example of this. There

is a roll axis on the beveloid gearing

with crossed axes; there is no sliding

on this axis as there is on the roll point

of cylindrical gear pairs. With a skewed axis arrangement, there is always yet another axial slide in the tooth engagement. Due to the working pressure angle that changes across the face width, there is varying distribution of the contact path to the tip and root contact. Thus, significantly differing sliding velocities can result on the tooth tip and the tooth root along the face width. In the center section, the selection of the addendum modification should be based on the specifications for the cylindrical gear pairs; the root contact path at the driver should be smaller than the tip contact path. Fig. 6 shows the distribution of the sliding velocity on the driver of a beveloid gear pair.

4CONTACT ANAL YSIS AND MODIFYCATIONS

4.1POINT CONTACT AND EASE-OFF

At the uncorrected gearing, there is only one point in contact due to the tilting of the axes. The gaping that results along the potential contact line can be approximately described by helix crowning and flank line angle deviation. Crossed axes result in no difference between the gaps on the left and right flanks on spur gears. With helical gearing, the resulting gaping is almost equivalent when both beveloid gears show approximately the same cone angle. The difference between the gap values on the left and right flanks increases as the difference between the cone angles increases and as the helix angle increases. This process results in larger gap values on the flank with the smaller working pressure angle. Fig.7 shows the resulting gaping (ease-off) for a beveloid gear pair with crossed axes and beveloid gears with an identical cone angle. Fig.8 shows the differences in the gaping that results for the left and right flanks for the same crossed axes angle of 10° and a helical angle of approx. 30°. The mean gaping obtained from both flanks is, to a large extent, independent of the helix angle and the distribution of the cone angle to both gears.

The selection of the helical and cone angles only determines the distribution of the mean gaping to the left and right flanks. A skewed axis arrangement results in additional influence on the contact gaping. There is a significant reduction in the effective helix crowning on one flank. If the axis perpendicular is identical to the total of the base radii and the difference in the base helix angle is equivalent to the (projected) crossed axes angle, then the gaping decreases to zero and line contact appears. However, significant gaping remains on the opposite flank. If the axis perpendicular is further enlarged up to the point at which a cylindrical crossed helical gear pair is obtained, this results in equivalent minor helix crowning in the ease-off on both flanks. In addition to helix crowning, a notable profile twist (see Fig. 8) is also characteristic of the ease-off of helical beveloids. This profile twist grows significantly as the helix angle increases. Fig.9 shows how the profile twist on the example gear set from Fig.7 is changed depending on the helix angle. In order to compensate for the existing gaping in the tooth engagement, topological flank corrections are necessary; these corrections greatly compensate for the effective helix crowning as well as the profile twist. Without the compensation of the profile twist, only a diagonally patterned contact strip is obtained in the field of action, as shown in Fig. 10.

4.2 FLANK MODIFICATIONS

For a given degree of compensation, the

necessary

topography

can

be

determined from the existing ease-off. Fig. 11 shows these types of typographies, which were produced on prototypes. The

contact ratios have improved greatly with these corrections as can be seen in Fig.12. For use in series production, the target is always to manufacture such topographies on commonly used grinding machines. The options for this are described in Section 6. In addition to the gaping compensation, tip relief is also beneficial. This relief reduces the load at the start and at the end of meshing and can also provide lower noise excitation. However, tip relief manufactured at beveloid gears is not constant in amount and length across the face width. The problem primarily occurs on gearing with a large root cone angle and a tip cone angle deviating from this angle. The tip relief at the toe is significantly larger than that at the heel. This uneven tip relief must be accepted if relief of the start and end of meshing is required. The production of

冲压模具技术外文翻译(含外文文献)

前言 在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下加工模具是值得认真考虑的问题。模具加工工艺是一项先进的制造工艺,已成为重要发展方向,在航空航天、汽车、机械等各行业得到越来越广泛的应用。模具加工技术,可以提高制造业的综合效益和竞争力。研究和建立模具工艺数据库,为生产企业提供迫切需要的高速切削加工数据,对推广高速切削加工技术具有非常重要的意义。本文的主要目标就是构建一个冲压模具工艺过程,将模具制造企业在实际生产中结合刀具、工件、机床与企业自身的实际情况积累得高速切削加工实例、工艺参数和经验等数据有选择地存储到高速切削数据库中,不但可以节省大量的人力、物力、财力,而且可以指导高速加工生产实践,达到提高加工效率,降低刀具费用,获得更高的经济效益。 1.冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点,主要表现如下; (1) 冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是

机械专业毕业论文外文翻译

附录一英文科技文献翻译 英文原文: Experimental investigation of laser surface textured parallel thrust bearings Performance enhancements by laser surface texturing (LST) of parallel-thrust bearings is experimentally investigated. Test results are compared with a theoretical model and good correlation is found over the relevant operating conditions. A compari- son of the performance of unidirectional and bi-directional partial-LST bearings with that of a baseline, untextured bearing is presented showing the bene?ts of LST in terms of increased clearance and reduced friction. KEY WORDS: ?uid ?lm bearings, slider bearings, surface texturing 1. Introduction The classical theory of hydrodynamic lubrication yields linear (Couette) velocity distribution with zero pressure gradients between smooth parallel surfaces under steady-state sliding. This results in an unstable hydrodynamic ?lm that would collapse under any external force acting normal to the surfaces. However, experience shows that stable lubricating ?lms can develop between parallel sliding surfaces, generally because of some mechanism that relaxes one or more of the assumptions of the classical theory. A stable ?uid ?lm with su?cient load-carrying capacity in parallel sliding surfaces can be obtained, for example, with macro or micro surface structure of di?erent types. These include waviness [1] and protruding microasperities [2–4]. A good literature review on the subject can be found in Ref. [5]. More recently, laser surface texturing (LST) [6–8], as well as inlet roughening by longitudinal or transverse grooves [9] were suggested to provide load capacity in parallel sliding. The inlet roughness concept of Tonder [9] is based on ??e?ective clearance‘‘ reduction in the sliding direction and in this respect it is identical to the par- tial-LST concept described in ref. [10] for generating hydrostatic e?ect in high-pressure mechanical seals. Very recently Wang et al. [11] demonstrated experimentally a doubling of the load-carrying capacity for the surface- texture design by reactive ion etching of SiC

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

齿轮参数 规格标准

齿轮(2模数)标准 齿数外径D内径d齿数外径D内径d齿数外径D内径d 18∮40∮3149∮102∮9380∮164∮155 19∮42∮3350∮104∮9581∮166∮157 20∮44∮3551∮106∮9782∮168∮159 21∮46∮3752∮108∮9983∮170∮161 22∮48∮3953∮110∮10184∮172∮163 23∮50∮4154∮112∮10385∮174∮165 24∮52∮4355∮114∮10586∮176∮167 25∮54∮4556∮116∮10787∮178∮169 26∮56∮4757∮118∮10988∮180∮171 27∮58∮4958∮120∮11189∮182∮173 28∮60∮5159∮122∮11390∮184∮175 29∮62∮5360∮124∮11591∮186∮177 30∮64∮5561∮126∮11792∮188∮179 31∮66∮5762∮128∮11993∮190∮181 32∮68∮5963∮130∮12194∮192∮183 33∮70∮6164∮132∮12395∮194∮185 34∮72∮6365∮134∮12596∮196∮187 35∮74∮6566∮136∮12797∮198∮189 36∮76∮6767∮138∮12998∮200∮191 37∮78∮6968∮140∮13199∮202∮193 38∮80∮7169∮142∮133100∮204∮195 39∮82∮7370∮144∮135101∮206∮197 40∮84∮7571∮146∮137102∮208∮199 41∮86∮7772∮148∮139103∮210∮201 42∮88∮7973∮150∮141104∮212∮203 43∮90∮8174∮152∮143105∮214∮205 44∮92∮8375∮154∮145106∮216∮207 45∮94∮8576∮156∮147107∮218∮209 46∮96∮8777∮158∮149108∮220∮211 47∮98∮8978∮160∮151109∮222∮213 48∮100∮9179∮162∮153110∮224∮215 齿距=(D+d)/2+(间隙0.6~1) 2模数=4.5mm 模具人:何永清 制表

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

机械类毕业设计外文翻译

本科毕业论文(设计) 外文翻译 学院:机电工程学院 专业:机械工程及自动化 姓名:高峰 指导教师:李延胜 2011年05 月10日 教育部办公厅 Failure Analysis,Dimensional Determination And

Analysis,Applications Of Cams INTRODUCTION It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example,brittle materials are considered to be unacceptable where fatigue is involved. Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required function.Sometimes failure may be due to abnormal friction or vibration between two mating parts.Failure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperatures.In addition,the actual shape of a part may be responsible for failure.For example,stress concentrations due to sudden changes in contour must be taken into account.Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile. In general,the design engineer must consider all possible modes of failure,which include the following. ——Stress ——Deformation ——Wear ——Corrosion ——Vibration ——Environmental damage ——Loosening of fastening devices

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

齿轮几何参数设计计算

第2章渐开线圆柱齿轮几何参数设计计算 2.1 概述 渐开线圆柱齿轮设计是齿轮传动设计中最常用、最典型的设计,掌握其设计方法是齿轮设计者必须具备的,对于其它类型的传动也有很大的帮助。在此重点讨论渐开线圆柱齿轮设计的设计技术。 2.2 齿轮传动类型选择 直齿(无轴向力) 斜齿(有轴向力,强度高,平稳) 双斜齿(无轴向力,强度高,平稳、加工复杂) 2.3 齿轮设计的主要步骤 多级速比分配 单级中心距估算 齿轮参数设计 齿轮强度校核 齿轮几何精度计算 2.4 齿轮参数设计原则 (1) 模数的选择 模数的选择取决于齿轮的弯曲承载能力,一般在满足弯曲强度的条件下,选择较小的模数,对减少齿轮副的滑动率、増大重合度,提高平稳性有好处。但在制造质量没有保证时,应选择较大的模数,提高可靠性,模数増大对动特性和胶合不利。 模数一般按模数系列标准选取,对动力传动一般不小于2 对于平稳载荷:mn=(0.007-0.01)a 对于中等冲击:mn=(0.01-0.015)a 对于较大冲击:mn=(0.015-0.02)a (2)压力角选择 an=20 大压力角(25、27、28、30)的优缺点:

优点:齿根厚度和渐开线部分的曲率半径增大,对接触弯曲强度有利。齿面滑动速度减小,不易发生胶合。根切的最小齿数减小。缺点:齿的刚度增大,重合度减小,不利于齿轮的动态特性。轴承所受的载荷增大。过渡曲线长度和曲率半径减小,应力集中系数增大。 小压力角(14.5、15、16、17.5、18)的优缺点: 优点:齿的刚度减小,重合度增大,有利于齿轮的动态特性。轴承所受的载荷减小。缺点:齿根厚度和渐开线部分的曲率半径减小,对接触弯曲强度不利。齿面滑动速度增大,易发生胶合。根切的最小齿数增多。 (3)螺旋角选择 斜齿轮螺旋角一般应优先选取整:10-13. 双斜齿轮螺旋角一般应优先选取:26-33. 螺旋角一般优先取整数,高速级取较大,低速级取较小。 考虑加工的可能性。 螺旋角增大的优缺点: 齿面综合曲率半径增大,对齿面接触强度有利。 纵向重合度增大,对传动平稳性有利。 齿根的弯曲强度也有所提高(大于15度后变化不大)。 轴承所受的轴向力增大。 齿面温升将增加,对胶合不利。 断面重合度减小。 (4)齿数的选择 最小齿数要求(与变位有关) 齿数和的要求 齿数互质要求 大于100齿的质数齿加工可能性问题(滚齿差动机构) 高速齿轮齿数齿数要求 增速传动的齿数要求 (5)齿宽和齿宽系数的选择 一般齿轮的齿宽由齿宽系数来确定, φa=b/a φd=b/d1 φm=b/mn φa=(0.2-0.4)

机械类外文翻译

机械类外文翻译 塑料注塑模具浇口优化 摘要:用单注塑模具浇口位置的优化方法,本文论述。该闸门优化设计的目的是最大限度地减少注塑件翘曲变形,翘曲,是因为对大多数注塑成型质量问题的关键,而这是受了很大的部分浇口位置。特征翘曲定义为最大位移的功能表面到表面的特征描述零件翘曲预测长度比。结合的优化与数值模拟技术,以找出最佳浇口位置,其中模拟armealing算法用于搜索最优。最后,通过实例讨论的文件,它可以得出结论,该方法是有效的。 注塑模具、浇口位臵、优化、特征翘曲变形关键词: 简介 塑料注射成型是一种广泛使用的,但非常复杂的生产的塑料产品,尤其是具有高生产的要求,严密性,以及大量的各种复杂形状的有效方法。质量ofinjection 成型零件是塑料材料,零件几何形状,模具结构和工艺条件的函数。注塑模具的一个最重要的部分主要是以下三个组件集:蛀牙,盖茨和亚军,和冷却系统。拉米夫定、Seow(2000)、金和拉米夫定(2002) 通过改变部分的尼斯达到平衡的腔壁厚度。在平衡型腔充填过程提供了一种均匀分布压力和透射电镜,可以极大地减少高温的翘曲变形的部分~但仅仅是腔平衡的一个重要影响因素的一部分。cially Espe,部分有其功能上的要求,其厚度通常不应该变化。 pointview注塑模具设计的重点是一门的大小和位臵,以及流道系统的大小和布局。大门的大小和转轮布局通常被认定为常量。相对而言,浇口位臵与水口大小布局也更加灵活,可以根据不同的零件的质量。 李和吉姆(姚开屏,1996a)称利用优化流道和尺寸来平衡多流道系统为multiple 注射系统。转轮平衡被形容为入口压力的差异为一多型腔模具用相同的蛀牙,也存

机械类毕业设计外文文献翻译

沈阳工业大学工程学院 毕业设计(论文)外文翻译 毕业设计(论文)题目:工具盒盖注塑模具设计 外文题目:Friction , Lubrication of Bearing 译文题目:轴承的摩擦与润滑 系(部):机械系 专业班级:机械设计制造及其自动化0801 学生姓名:王宝帅 指导教师:魏晓波 2010年10 月15 日

外文文献原文: Friction , Lubrication of Bearing In many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement. Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary. The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt. There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement . Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction . Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction. The friction caused by the wedging action of surface irregularities can be overcome

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.doczj.com/doc/7c1698466.html,,niuzhiguo@https://www.doczj.com/doc/7c1698466.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.doczj.com/doc/7c1698466.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

机械图纸中英文翻译汇总

近几年,我厂和英国、西班牙的几个公司有业务往来,外商传真发来的图纸都是英文标注,平时阅看有一定的困难。下面把我们积累的几点看英文图纸的经验与同行们交流。 1标题栏 英文工程图纸的右下边是标题栏(相当于我们的标题栏和部分技术要求),其中有图纸名称(TILE)、设计者(DRAWN)、审查者(CHECKED)、材料(MATERIAL)、日期(DATE)、比例(SCALE)、热处理(HEAT TREATMENT)和其它一些要求,如: 1)TOLERANCES UNLESS OTHERWISE SPECIFIAL 未注公差。 2)DIMS IN mm UNLESS STATED 如不做特殊要求以毫米为单位。 3)ANGULAR TOLERANCE±1°角度公差±1°。 4)DIMS TOLERANCE±0.1未注尺寸公差±0.1。 5)SURFACE FINISH 3.2 UNLESS STATED未注粗糙度3.2。 2常见尺寸的标注及要求 2.1孔(HOLE)如: (1)毛坯孔:3"DIAO+1CORE 芯子3"0+1; (2)加工孔:1"DIA1"; (3)锪孔:锪孔(注C'BORE=COUNTER BORE锪底面孔); (4)铰孔:1"/4 DIA REAM铰孔1"/4; (5)螺纹孔的标注一般要表示出螺纹的直径,每英寸牙数(螺矩)、螺纹种类、精度等级、钻深、攻深,方向等。如: 例1.6 HOLES EQUI-SPACED ON 5"DIA (6孔均布在5圆周上(EQUI-SPACED=EQUALLY SPACED均布) DRILL 1"DIATHRO' 钻1"通孔(THRO'=THROUGH通) C/SINK22×6DEEP 沉孔22×6 例2.TAP7"/8-14UNF-3BTHRO' 攻统一标准细牙螺纹,每英寸14牙,精度等级3B级 (注UNF=UNIFIED FINE THREAD美国标准细牙螺纹) 1"DRILL 1"/4-20 UNC-3 THD7"/8 DEEP 4HOLES NOT BREAK THRO钻 1"孔,攻1"/4美国粗牙螺纹,每英寸20牙,攻深7"/8,4孔不准钻通(UNC=UCIFIED COARSE THREAD 美国标准粗牙螺纹)

机械毕业设计外文翻译---装载机发展概况

外文资料翻译 学生姓名: 专业班级:机械设计制造及其自动化04级2班指导教师: 2008年6月

装载机发展概况 Abstract This paper have discussed s.s. ZL-50 type fork-lift truck mainly overall fictitious prototype design as well as some kinds of typical schoolwork operating modes imitate and emulate , include equipment and the overall parts needed build mould. In this design course, have applied ADAMS software and the software of PRO/ENGINEER. ADAMS software is used in the emulation of some kinds of schoolwork operating modes, and the software of PRO/ENGINEER is used to build mould mainly. Through the simulated emulation for some kinds of overall schoolwork operating modes, can see relatively distinctly the overall possible condition in actual schoolwork course that met , can in time modify , have reduced actual design time , have raised production efficiency. The innovation of this design Zhi is in in, imitate and have emulated fork-lift truck the 3 kinds of typical schoolwork operating mode in actual schoolwork, is effect again have imitated in actual schoolwork the hydraulic impact of use, so when being helpful to solve actual loading, the actual problem of meeting the stock that is hard to uninstall can so raise production efficiency. Key words: Fork-lift truck 、fictitious prototype , build mould, emulation, optimization、production efficiency Loader Development China's modern 20 wheel loaders began in the mid-1960s of the Z435. The aircraft as a whole rack, rear axle steering. After years of hard work, the attraction was the world's most advanced technology wheel loader on the basis of the successful development of the power of 162 KW of shovel-fit wheel loaders, stereotypes for Z450 (later ZL50), and in 1971 December 18, formally appraised by experts. Thus the birth of China's first articulated wheel loader, thus creating our industry loader formation and development history. Z450-type loader with hydraulic mechanical transmission, power shift, Shuangqiaoshan drive, hydraulic manipulation, articulated power steering, gas oil Afterburner brake wheel loaders, and other modern, the basic structure of the world's advanced level for the time . Basically represent the first generation of wheeled loading the basic structure. The aircraft in the overall performance of dynamic, and insertion force a rise of power and flexibility, manipulation of light, the higher operating efficiency of a series of advantages. 1978, Heavenly Creations by the Department in accordance with the requirements of machinery, worked out to LIUGONG Z450-based type of wheel loaders series of standards. The development of standards, with reservations Z

相关主题
文本预览
相关文档 最新文档