当前位置:文档之家› 伺服电机惯量

伺服电机惯量

伺服电机惯量
伺服电机惯量

伺服电机的惯量该怎样选择?

发布时间:2013-09-05 新闻来源:东莞堤斯基机电公司

惯量的大小对伺服电机的工作是有一定影响的指标,通常伺服电机的小惯量的高速往复好,大惯量的本身惯量大,机床上用好点.伺服电机需要惯量匹配,转动惯量=转动半径*质量。我们在选择合适的伺服电机的使用常常会遇到扭力选择和惯量选择,对于扭矩的计算相对简单,只需要知道负载重量和传动方式一般能很快的计算出电机所需要力矩,选型的时候再适当放大,留些余量就可以了.

惯量就是刚体绕轴转动的惯性的度量,转动惯量是表征刚体转动惯性大小的物理量。它与刚体的质量、质量相对于转轴的分布有关。(刚体是指理想状态下的不会有任何变化的物体),选择的时候遇到电机惯量,也是伺服电机的一项重要指标。它指的是伺服电机转子本身的惯量,对于电机的加减速来说相当重要。如果不能很好的匹配惯量,电机的动作会很不平稳.

一般来说,小惯量的电机制动性能好,启动,加速停止的反应很快,高速往复性好,适合于一些轻负载,高速定位的场合,如一些直线高速定位机构。中、大惯量的电机适用大负载、平稳要求比较高的场合,如一些圆周运动机构和一些机床行业。

如果你的负载比较大或是加速特性比较大,而选择了小惯量的电机,可能对电机轴损伤太大,选择应该根据负载的大小,加速度的大小,等等因素来选择,一般的选型手册上有相关的能量计算公式。

伺服电机驱动器对伺服电机的响应控制,最佳值为负载惯量与电机转子惯量之比为一,最大不可超过五倍。通过机械传动装置的设计,可以使负载

惯量与电机转子惯量之比接近一或较小。当负载惯量确实很大,机械设计不可能使负载惯量与电机转子惯量之比小于五倍时,则可使用电机转子惯量较大的电机,即所谓的大惯量电机。使用大惯量的电机,要达到一定的响应,驱动器的容量应要大一些。

10_惯量匹配和最佳减速比

No.10 “惯量匹配”和“最佳传动比” 1 功率变化率 伺服电机的基本功能就是将输入的电功率快速的转换为机械功率输出。功率转换的越快,伺服电机的快速性越好。功率转换的快速性用功率变化率(dP/dt)来衡量: P=T·ω T=J·dω/dt dP/dt=d(T·ω)/dt=T·dω/dt=T·T/J dP/dt=T2/J 伺服电机以峰值转矩Tp进行加/减速运动时的功率变化率最大: (dP/dt)max=Tp2/Jm 通常用理想空载时伺服电机的功率变化率来衡量伺服电机的快速性。 衡量伺服电机快速性的性能指标还有: ●转矩/惯量比:Tp/Jm= dω/dt ●最大理论加速度:(dω/dt)max= Tp/Jm 这些指标都是单一衡量伺服电机加速性能的指标。 2 惯量匹配 伺服系统要求伺服电机能快速跟踪指令的变化。对一个定位运动而言,就是要求以最短的时间到达目标位置。换一种说法,就是在直接驱动负载的定位过程中,负载以最大的功率变化率将输入功率转换为输出功率。 伺服电机驱动惯性负载J L的加速度、加速转矩计算如下: ●负载的加速度(系统加速度):dω/dt=Tp/(Jm+J L) ●负载的加速转矩:T L= J L·dω/dt= J L·Tp/(Jm+J L) 负载的功率变化率为: dP L/dt=T L2/J L dP L/dt= J L2·Tp2/(Jm+J L)2/J L = J L·Tp2/(Jm+J L)2 从式中可以看出: ●J L远大于Jm时:dP L/dt= Tp2/J L,负载惯量越大,负载的功率变化率越小。 ●J L远小于Jm时:dP L/dt= J L·Tp2/Jm,负载惯量越大,负载的功率变化率越小。 ●负载惯量J L相对电机惯量Jm变化时,负载的功率变化率存在一个最大值。 根据极值定理,对应dP L/dt极值的J L值为使d(dP L/dt)/d(J L) = 0的值。 d(dP L/dt)/d(J L)= d(J L·Tp2/(Jm+J L)2)/d(J L) 利用复合微分法则对(dP L/dt)求导: 设v = (Jm+J L)2 u = Tp2·J L dP L/dt = u/v d(u/v)/d(J L) = [v·du/d(J L)-u·dv/d(J L)]/v2 d(dP L/dt)/d(J L) = {(Jm+J L)2·d(Tp2·J L)/d(J L)-d[(Jm+J L)2]/d(J L)·Tp2·J L}/(Jm+J L)4 d(dP L/dt)/d(J L)=Tp2·[(Jm+J L)2-2(Jm+J L)·J L]/(Jm+J L)4 令d(dP L/dt)/d(J L)=0,则 (Jm+J L)2-2(Jm+J L)·J L=0 (Jm+J L)2-2(Jm+J L)·J L=Jm2+2JmJ L+J L2-2JmJ L-2J L2 =Jm2-J L2 =(Jm+J L)(Jm-J L) =0 因为Jm+J L>0 所以Jm-J L=0,J L=Jm

伺服电机的惯量负载

伺服电机的惯量负载 一、进给驱动伺服电机的选择 1.原则上应该根据负载条件来选择伺服电机。在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。这两种负载都要正确地计算,其值应满足下列条件: 1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。并应小于电机的连续额定转矩。5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。通常,当负载小于电机转子惯量时,上述影响不大。但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。甚至会使伺服放大器不能在正常调节范围内工作。所以对这类惯量应避免使用。 推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下: Jl<5×Jm 1、负载转矩的计算 负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。但不论何种机械,都应计算出折算到电机轴上的负载转矩。 通常,折算到伺服电机轴上的负载转矩可由下列公式计算: Tl=(F*L/2πμ)+T0 式中:Tl折算到电机轴上的负载转矩; F:轴向移动工作台时所需要的力; L:电机轴每转的机械位移量(M); To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值; Μ:驱动系统的效率 F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。 无切削时: F=μ*(W+fg),切削时: F=Fc+μ*(W+fg+Fcf)。 W:滑块的重量(工作台与工件)Kg;

惯量匹配基本知识

【惯量匹配】终极版 在伺服系统选型及调试中,常会碰到惯量问题。 其具体表现为: 在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 一、什么是“惯量匹配”? 1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量J ×角加速度θ角”。加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。 2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM +电机轴换算的负载惯性动量JL。负载惯量JL由(以平面金切机床为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。 JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。 二、“惯量匹配”如何确定? 传动惯量对伺服系统的精度,稳定性,动态响应都有影响。惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。 衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,但大多要求JL与JM的比值小于十以内。一句话,惯性匹配的确定需要根据机械的工艺特点及加工质量要求来确定。对于基础金属切削机床,对于伺服电机来说,一般负载惯量建议应小于电机惯量的5倍。 惯量匹配对于电机选型很重要的,同样功率的电机,有些品牌有分轻惯量,中惯量,或大惯量。其实负载惯量最好还是用公式计算出来。常见的形体惯量计算公式在以前学的书里都有现成的(可以去查机械设计手册)。我们曾经做过一试验,在一伺服电机的轴伸,加一大的惯量盘准备用来做测试,结果是:伺服电机低速时停不住,摇头摆尾,不停地振荡怎么也停不下来。后来改为:在两个伺服电机的轴伸对接加装联轴器,对其中一个伺服电机通电,作为动力即主动,另一个伺服电机作为从动,即做为一个小负载。原来那个摇头摆尾的伺服电机,启动、运动、停止,运转一切正常! 三、惯量的理论计算的功式? 惯量计算都有公式,至于多重负载,比如齿轮又带齿轮,或涡轮蜗杆传动,只要分别算出各转动件惯量然后相加即是系统惯量,电机选型时建议根椐不同的电机进行选配。负载的转动惯量肯定是要设计时通过计算算出来拉,如果没有这个值,电机选型肯定是不那么合

(完整word版)转动惯量计算公式

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ? ? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1?? ??? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

惯量匹配和最佳传动比

惯量匹配和最佳传动比 1 功率变化率 伺服电机的基本功能就是将输入的电功率快速的转换为机械功率输出。功率转换的越快,伺服电机的快速性越好。功率转换的快速性用功率变化率(dP/dt)来衡量:P=T·ω T=J·dω/dt dP/dt=d(T·ω)/dt=T·dω/dt=T·T/J dP/dt=T2/J 伺服电机以峰值转矩Tp进行加/减速运动时的功率变化率最大: (dP/dt)max=Tp2/Jm 通常用理想空载时伺服电机的功率变化率来衡量伺服电机的快速性。 衡量伺服电机快速性的性能指标还有: ●转矩/惯量比:Tp/Jm= dω/dt ●最大理论加速度:(dω/dt)max= Tp/Jm 这些指标都是单一衡量伺服电机加速性能的指标。 2 惯量匹配 伺服系统要求伺服电机能快速跟踪指令的变化。对一个定位运动而言,就是要求以最短的时间到达目标位置。换一种说法,就是在直接驱动负载的定位过程中,负载以最大的功率变化率将输入功率转换为输出功率。 伺服电机驱动惯性负载J L的加速度、加速转矩计算如下: ●负载的加速度(系统加速度):dω/dt=Tp/(Jm+J L) ●负载的加速转矩:T L= J L·dω/dt= J L·Tp/(Jm+J L) 负载的功率变化率为: dP L/dt=T L2/J L dP L/dt= J L2·Tp2/(Jm+J L)2/J L = J L·Tp2/(Jm+J L)2 从式中可以看出: ●J L远大于Jm时:dP L/dt= Tp2/J L,负载惯量越大,负载的功率变化率越小。 ●J L远小于Jm时:dP L/dt= J L·Tp2/Jm,负载惯量越大,负载的功率变化率越小。 ●负载惯量J L相对电机惯量Jm变化时,负载的功率变化率存在一个最大值。 根据极值定理,对应dP L/dt极值的J L值为使d(dP L/dt)/d(J L) = 0的值。 d(dP L/dt)/d(J L)= d(J L·Tp2/(Jm+J L)2)/d(J L) 利用复合微分法则对(dP L/dt)求导: 设v = (Jm+J L)2 u = Tp2·J L dP L/dt = u/v d(u/v)/d(J L) = [v·du/d(J L)-u·dv/d(J L)]/v2 d(dP L/dt)/d(J L) = {(Jm+J L)2·d(Tp2·J L)/d(J L)-d[(Jm+J L)2]/d(J L)·Tp2·J L}/(Jm+J L)4 d(dP L/dt)/d(J L)=Tp2·[(Jm+J L)2-2(Jm+J L)·J L]/(Jm+J L)4 令d(dP L/dt)/d(J L)=0,则 (Jm+J L)2-2(Jm+J L)·J L=0 (Jm+J L)2-2(Jm+J L)·J L=Jm2+2JmJ L+J L2-2JmJ L-2J L2 =Jm2-J L2

新版-转动惯量计算公式

转动惯量计算公式 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax

伺服电机负载惯量比计算方法以及影响

伺服电机负载惯量比计算方法以及影响 惯量就是刚体绕轴转动的惯性的度量,转动惯量是表征刚体转动惯性大小的物理量。它与刚体的质量、质量相对于转轴的分布有关。(刚体是指理想状态下的不会有任何变化的物体),选择的时候遇到电机惯量,也是伺服电机的一项重要指标。它指的是伺服电机转子本身的惯量,对于电机的加减速来说相当重要。如果不能很好的匹配惯量,电机的动作会很不平稳。 负载惯量的计算由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。 1)圆柱体惯量如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算: J=(πγ/32)*D4L(kg cm2) 如机构为钢材,则可按下面公式计算: J=(0.78*10-6)*D4L(kg cm2) 式中:γ材料的密度(kg/cm2)D圆柱体的直经(cm)L圆柱体的长度(cm) 2)轴向移动物体的惯量工件,工作台等轴向移动物体的惯量,可由下面公式得出: J=W*(L/2π)2 (kg cm2) 式中:W直线移动物体的重量(kg)L电机每转在直线方向移动的距离(cm) 3)圆柱体围绕中心运动时的惯量:圆柱体围绕中心运动时的惯量属于这种情况的例子:如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算: J=Jo+W*R2(kg cm2) 式中:Jo为圆柱体围绕其中心线旋转时的惯量(kgcm2)W圆柱体的重量(kg)R旋转半径(cm) 4)相对电机轴机械变速的惯量计算将上图所示的负载惯量Jo折算到电机轴上的计算方法如下:

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

最新转动惯量计算公式

1 2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 3 4 5 8 2 MD J = 6 对于钢材:341032-??= g L rD J π 7 ) (1078.0264s cm kgf L D ???-8 9 M-圆柱体质量(kg); D-圆柱体直径(cm); 11 L-圆柱体长度或厚度(cm); 12 r-材料比重(gf /cm 3)。 13 14 2. 丝杠折算到马达轴上的转动惯量: 15 2i Js J = (kgf·c 16 17 J s –丝杠转动惯量18 (kgf·c m·s 2); 19 i-降速比,1 2 z z i = 21 22 g w 22 ? ?? ???=n v J π 23 g w 2s 2 ? ?? ??=π (kgf·c m·s 2) 24 25 v -工作台移动速度(cm/min); 26 n-丝杠转速(r/min); 27 w-工作台重量(kgf); 28

g-重力加速度,g = 980cm/s 2; 29 s-丝杠螺距(cm) 30 31 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: 32 ()) s cm (kgf 2g w 1 2222 1????????????? ??+++=πs J J i J J S t 33 34 35 36 37 38 39 40 J 1-齿轮z 1及其轴的转动惯量; 41 J 2-齿轮z 2的转动惯量42 (kgf ·cm · s 2); 43 J s -丝杠转动惯量(kgf ·cm ·s 2); 44 s-丝杠螺距,(cm); 45 w-工件及工作台重量(kfg). 46 47 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 48 2 g w R J = (kgf ·c 49 50 R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf) 53 54 55 56 57 58 6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 59 ??? ? ??++ =2221g w 1R J i J J t 60 61 62

伺服电机惯量是什么意思

伺服电机惯量是什么意思 伺服电机惯量是伺服电机的一项重要指标。它指的是转子本身的惯量,对于电机的加减速来说相当重要。惯性大小与物质质量相应惯量J= ∫r dm 其中r为转动半径,m为刚体质量惯量。 电机的转子惯量是电机本身的一个参数。单从响应的角度来讲,电机的转子惯量应小为好。但是,电机总是要接负载的,负载一般可分为二大类,一类为负载转矩,一类为负载惯量。一般来说,小惯量的电机制动性能好,启动,加速停止的反应很快,适合于一些轻负载,高速定位的场合。如果你的负载比较大或是加速特性比较大,而选择了小惯量的电机,可能对电机轴损伤太大,选择应该根据负载的大小,加速度的大小等等因素来选择,一般有理论计算公式。 伺服电机的惯量由转子自身的质量,以及外加的负载而组成。惯量越大,物体的运动状态越不容易改变。无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量,它们的大小有不同的计算方法,因为计算公式较多,就不一一列举。 惯量对伺服电机运行的影响电机轴上的负载惯量大小,对电机的灵敏度和整个伺服系统的精度将产生很大的影响,通常,当负载小于电机转子惯量时,上述影响不大。但当负载惯量达到甚至超过转子惯量的5倍时,会使伺服放大器不能在正常调节范围内工作。所以对这类惯量应避免使用。所以在设计负载时,应尽可能地减小体积和重量。 在伺服系统选型及调试中,常会碰到惯量问题。其具体表现为:在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 什么是“惯量匹配”?1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量 J ×角加速度θ角”。加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加

伺服电机惯量的选择

伺服电机惯量的选择 伺服电机的小惯量的高速往复好,大惯量的本身惯量大,机床上用好点. 伺服电机需要惯量匹配,日系列10倍与电机惯量左右(不同品牌有差异),欧系的20左右. 一般来说欧系的惯量都小,因为他们电机做的是细长的. 转动惯量=转动半径*质量。 我们在选择合适的伺服电机的使用常常会遇到扭力选择和惯量选择,对于扭矩的计算相对简单,只需要知道负载重量和传动方式一般能很快的计算 出电机所需要力矩,选型的时候再适当放大,留些余量就可以了. 惯量就是刚体绕轴转动的惯性的度量,转动惯量是表征刚体转动惯性大小的物理量。它与刚体的质量、质量相对于转轴的分布有关。(刚体是指 理想状态下的不会有任何变化的物体),选择的时候遇到电机惯量,也是伺服电机的一项重要指标。它指的是伺服电机转子本身的惯量,对于电机 的加减速来说相当重要。如果不能很好的匹配惯量,电机的动作会很不平稳.一般来说,小惯量的电机制动性能好,启动,加速停止的反

应很快,高 速往复性好,适合于一些轻负载,高速定位的场合,如一些直线高速定位机构。中、大惯量的电机适用大负载、平稳要求比较高的场合,如一些圆 周运动机构和一些机床行业。 如果你的负载比较大或是加速特性比较大,而选择了小惯量的电机,可能对电机轴损伤太大,选择应该根据负载的大小,加速度的大小,等等因素 来选择,一般的选型手册上有相关的能量计算公式,比较复杂,这里就不详列了。 伺服电机驱动器对伺服电机的响应控制,最佳值为负载惯量与电机转子惯量之比为一,最大不可超过五倍。通过机械传动装置的设计,可以使负载 惯量与电机转子惯量之比接近一或较小。当负载惯量确实很大,机械设计不可能使负载惯量与电机转子惯量之比小于五倍时,则可使用电机转子惯 量较大的电机,即所谓的大惯量电机。使用大惯量的电机,要达到一定的响应,驱动器的容量应要大一些。

伺服电机惯量问题

伺服电机惯量问题

伺服电机惯量问题 在伺服系统选型及调试中,常会碰到惯量问题。其具体表现为: 在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 一、什么是“惯量匹配”? 1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量 J ×角加速度θ角”。加速度θ影响系统的动态特性,θ越 小,则由控制器发出指令到系统执行完毕的时间越长,系统 反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工 精度。由于马达选定后最大输出T值不变,如果希望θ的变 化小,则J应该尽量小。 2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM +电机轴 换算的负载惯性动量JL。负载惯量JL由(以平面金切机床 为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线

设计手册)。我们曾经做过一试验,在一伺服电机的轴伸,加一大的惯量盘准备用来做测试,结果是:伺服电机低速时停不住,摇头摆尾,不停地振荡怎么也停不下来。后来改为:在两个伺服电机的轴伸对接加装联轴器,对其中一个伺服电机通电,作为动力即主动,另一个伺服电机作为从动,即做为一个小负载。原来那个摇头摆尾的伺服电机,启动、运动、停止,运转一切正常! 三、惯量的理论计算的功式? 惯量计算都有公式,至于多重负载,比如齿轮又带齿轮,或涡轮蜗杆传动,只要分别算出各转动件惯量然后相加即是系统惯量,电机选型时建议根椐不同的电机进行选配。负载的转动惯量肯定是要设计时通过计算算出来拉,如果没有这个值,电机选型肯定是不那么合理的,或者肯定会有问题的,这是选伺服的最重要的几个参数之一。至于电机惯量,电机样本手册上都有标注。当然,对某些伺服,可以通过调整伺服的过程测出负载的惯量,作为理论设计中的计算的参考。毕竟在设计阶段,很多类似摩擦系数之类的参数只能根据经验来猜,不可能准确。理论设计中的计算的公式:(仅供参考)通常将转动惯量J用飞轮矩GD2来表示,它们之间的关系为 J=mp^2= GD^2/4g 式中 m与G-转动部分的质量(kg)与重量(N); 与D-惯性半径与直径(m);

转动惯量计算公式-转动惯量公式

1.圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) D L 2 MD J M 8 rD 4 L3 对于钢材: J10 32 g 0.78 D 4L 106 ( kgf cm s 2 )M- 圆柱体质量 (kg); D-圆柱体直径 (cm); L-圆柱体长度或厚度 (cm);r-材料比重 (gf /cm3)。 2.丝杠折算到马达轴上的转动惯量: Js2 Z2J2 J (kgf cm··s ) i 2 i J1 Z1 3.工作台折算到丝杠上的转动惯量 2 v w J 2n g 2 s w (kgf cm··s2) 2g J S V W J s–丝杠转动惯量 (kgf cm··s2);i-降速比,i z 2 z1 v-工作台移动速度 (cm/min);n- 丝杠转速 (r/min) ; w-工作台重量 (kgf) ;g-重力加 速度, g = 980cm/s2;s-丝杠 螺距 (cm) 2.丝杠传动时传动系统折算到驱轴上的总转动惯量: 1w 2 J t J1 s2 2J2J S g (kgf cm s ) i2 Z2J2W M i J S J1 Z1 5.齿轮齿条传动时折算到小齿轮轴上的转动惯量 J w R 2(kgf cm··s2) g R J1- 齿轮 z1及其轴的转动惯量; J2- 齿轮 z2的转动惯量 (kgf cm··s2 );J s-丝杠转动惯量 (kgf cm··s2 );s-丝杠螺距, (cm); w-工件及工作台重量 (kfg). R-齿轮分度圆半径 (cm); w-工件及工作台重量 (kgf)

6.齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 J t J 11J 2w R 2 J1,J2- 分别为Ⅰ轴,i2g J 2 ⅡW Ⅱ轴上齿轮的转动惯量 (kgf cm··s2 ); R-齿轮 z 分度圆半径 (cm); M J 1Z w-工件及工作台重量 (kgf)。 ⅠZ 马达力矩计算(1)快速空载时所需力矩: M M amax M f M (2)最大切削负载时所需力矩: M M a t M f M 0M t (3)快速进给时所需力矩: M M f M 0 式中M amax—空载启动时折算到马达轴上的加速力矩(kgf m)·; M f—折算到马达轴上的摩擦力矩 (kgf ·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf m)·; M at—切削时折算到马达轴上的加速力矩(kgf m)·; M t—折算到马达轴上的切削负载力矩(kgf m)·。 在采用滚动丝杠螺母传动时,M a、M f、 M0、M t的计算公式如下: (4)加速力矩: M a J r n102 (kgf m)· 9.6T 1 T s 17 J r—折算到马达轴上的总惯量; T—系统时间常数 (s); n—马达转速 ( r/min ) ; 当n = n max时,计算 M amax n = n t时,计算 M at n t—切削时的转速 ( r / min )

电机转动惯量匹配

真理惟一可靠的标准就是永远自相符合。土地是以它的肥沃和收获而被估价的;才能也是土地,不过它生产的不是粮食,而是真理。如果只能滋生瞑想和幻想的话,即使再大的才能也只是砂地或盐池,那上面连 小草也长不出来的。在伺服系统选型及调试中,常会碰到惯量问题。 其具体表现为: 在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知 机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 一、什么是惯量匹配”?/ g4 j) e* S/ J- o; I/ D4 B 1、根据牛顿第二定律:进给系统所需力矩T =系统传动惯量J X角加速度。角”。加速度。影响系统的动态特性,。越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果0变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望。的变化小,则J应该尽量小。 2、进给轴的总惯量“扣伺服电机的旋转惯性动量JM +电机轴换算的负载惯性动量JL。负载惯量JL由(以平面金切机床为j 例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴 上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工 件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意 义上的惯量匹配”。 二、惯量匹配"如何确定?7 [1 K/ S- m' c4 a! g9 g9 K; ~$ P& _ 传动惯量对伺服系统的精度,稳定性,动态响应都有影响。惯量大,系统的机械常数 大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响 系统刚度的条件下,应尽量减小惯量。 衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构, 对惯量匹配原则有不同的选择,且有不同的作用表现。不同的机构动作及加工质量要求对 JL与JM大小关系有不同的要求,但大多要求JL与JM的比值小于十以内。一句话,惯性匹 配的确定需要根据机械的工艺特点及加工质量要求来确定。对于基础金属切削机床,对于 伺服电机来说,一般负载惯量建议应小于电机惯量的5倍。:B- e* G3 G& m3 k) f3 ': O8 W# d 惯量匹配对于电机选型很重要的,同样功率的电机,有些品牌有分轻惯量,中惯量, 或大惯量。其实负载惯量最好还是用公式计算出来。常见的形体惯量计算公式在以前学的书 里都有现成的(可以去查机械设计手册)。我们曾经做过一试验,在一伺服电机的轴伸,加 一大的惯量盘准备用来做测试,结果是:伺服电机低速时停不住,摇头摆尾,不停地振荡怎 么也停不下来。后来改为:在两个伺服电机的轴伸对接加装联轴器,对其中一个伺服电机 通电,作为动力即主动,另一个伺服电机作为从动,即做为一个小负载。原来那个摇头摆尾的伺服电机,启动、运动、停止,运转一切正常! 三、惯量的理论计算的功式? 惯量计算都有公式,至于多重负载,比如齿轮又带齿轮,或涡轮蜗杆传动,只要分别 算出各转动件惯量然后相加即是系统惯量,电机选型时建议根据不同的电机进行选配。负载的转动惯量肯定是要设计时通过计算算出来拉,如果没有这个值,电机选型肯定是不那么 合理的,或者肯定会有问题的,这是选伺服的最重要的几个参数之一。至于电机惯量,电机 样本手册上都有标注。当然,对某些伺服,可以通过调整伺服的过程测出负载的惯量,作

伺服电机的选型计算方法

伺服电机的选型计算方法
2012-4-17 10:51:00 来源:kingservo
1、
伺服电机和步进电机的性能比较
步进电机作为一种开环控制的系统, 和现代数字控制技术有着本质的联系。 在目前国 内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交 流伺服电机也越来越多地应用于数字控制系统中。 为了适应数字控制的发展趋势, 运动控 制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。 虽然两者在控制方 式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二 者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般 为 0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司 (SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为 1.8°、 0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合 式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以京伺服(KINGSERVO) 全数字式交流伺服电机为例,对于带标准 2500 线编码器的电机而言,由于驱动器内部采 用了四倍频技术,其脉冲当量为 360°/10000=0.036°。对于带 17 位编码器的电机而言, 驱动器每接收 131072 个脉冲电机转一圈,即其脉冲当量为 360°/131072=0.0027466°, 是步距角为 1.8°的步进电机的脉冲当量的 1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。 振动频率与负载情况和驱动器性能有关, 一 般认为振动频率为电机空载起跳频率的一半。 这种由步进电机的工作原理所决定的低频振 动现象对于机器的正常运转非常不利。 当步进电机工作在低速时, 一般应采用阻尼技术来 克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳, 即使在低速时也不会出现振动现象。 交流伺服系统具有 共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检 测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降, 且在较高转速时会急剧下降, 所以其最高工 作转速一般在 300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为 2000RPM 或 3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 四、过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以京伺服 (KINGSERVO)交流伺服系统为例, 它具有速度过载和转矩过载能力。 其最大转矩为额定转 矩的三倍, 可用于克服惯性负载在启动瞬间的惯性力矩。 步进电机因为没有这种过载能力, 在选型时为了克服这种惯性力矩, 往往需要选取较大转矩的电机, 而机器在正常工作期间 又不需要那么大的转矩,便出现了力矩浪费的现象。 五、运行性能不同

惯量匹配和电机选型

惯量匹配和电机选型标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

惯量匹配和伺服电机的选型 惯量匹配 在伺服系统选型及调试中,常会碰到惯量问题。其具体表现为:在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机。在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 根据牛顿第二定律:“进给系统所需力矩T=系统传动惯量J×角加速度θ”。加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于电机选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。进给轴的总惯量J=伺服电机的旋转惯性动量JM+电机轴换算的负载惯性动量JL。负载惯量JL由(以工具机床为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到电机轴上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。 传动惯量对伺服系统的精度,稳定性,动态响应都有影响。惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。

常用物体转动惯量-与扭矩计算

附录1.常用物体转动惯量的计算 角加速度的公式a = (2n /60) /t 转矩 T=J* a =J*n*2 n /60) /t a -弧度/秒 t-秒 T -Nm n-r/min 图i 矩形结构定义 以a-a 为轴运动的惯量: m = VxS V =Lxhxw 公式中: 以b-b 为轴运动的惯量: 圆柱体的惯量 惯量的计算: / W I ■ b m 3 为 为为 位 位位 单单单 量积度 质体密12 (4L 2 + w 2 ) 矩形体的计算 Ja - a

图2圆柱体定义 m = Vx§ TTD12 V = ------ XL 4 Di r =— 2 mx[> (Dt2 空心柱体惯量

摆臂的惯量 m = Vx3 4 m / (P O 2 +D 2 ')+ L 2> ~4 \ 4 +_ 1 > 图3空心柱体定义 Jx = m x (Do 2 + DF) 8

曲柄连杆的惯量 图4-1摆臂1结构定义 图4-2摆臂2结构定义 J = m.R 2

J = m R? + rm n2 图5曲柄连杆结构定义 带减速机结构的惯量

齿形带传动的惯量 J M :电机惯量 J L :负載惯量 J L

相关主题
文本预览
相关文档 最新文档