当前位置:文档之家› 伺服电机负载惯量比计算方法以及影响

伺服电机负载惯量比计算方法以及影响

伺服电机负载惯量比计算方法以及影响

伺服电机负载惯量比计算方法以及影响

惯量就是刚体绕轴转动的惯性的度量,转动惯量是表征刚体转动惯性大小的物理量。它与刚体的质量、质量相对于转轴的分布有关。(刚体是指理想状态下的不会有任何变化的物体),选择的时候遇到电机惯量,也是伺服电机的一项重要指标。它指的是伺服电机转子本身的惯量,对于电机的加减速来说相当重要。如果不能很好的匹配惯量,电机的动作会很不平稳。

负载惯量的计算由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。

1)圆柱体惯量如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算:

J=(πγ/32)*D4L(kg cm2)

如机构为钢材,则可按下面公式计算:

J=(0.78*10-6)*D4L(kg cm2)

式中:γ材料的密度(kg/cm2)D圆柱体的直经(cm)L圆柱体的长度(cm)

2)轴向移动物体的惯量工件,工作台等轴向移动物体的惯量,可由下面公式得出:

J=W*(L/2π)2 (kg cm2)

式中:W直线移动物体的重量(kg)L电机每转在直线方向移动的距离(cm)

3)圆柱体围绕中心运动时的惯量:圆柱体围绕中心运动时的惯量属于这种情况的例子:如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算:

J=Jo+W*R2(kg cm2)

式中:Jo为圆柱体围绕其中心线旋转时的惯量(kgcm2)W圆柱体的重量(kg)R旋转半径(cm)

4)相对电机轴机械变速的惯量计算将上图所示的负载惯量Jo折算到电机轴上的计算方法如下:

(完整word版)转动惯量计算公式

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ? ? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1?? ??? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

伺服电机的惯量负载

伺服电机的惯量负载 一、进给驱动伺服电机的选择 1.原则上应该根据负载条件来选择伺服电机。在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。这两种负载都要正确地计算,其值应满足下列条件: 1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。并应小于电机的连续额定转矩。5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。通常,当负载小于电机转子惯量时,上述影响不大。但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。甚至会使伺服放大器不能在正常调节范围内工作。所以对这类惯量应避免使用。 推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下: Jl<5×Jm 1、负载转矩的计算 负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。但不论何种机械,都应计算出折算到电机轴上的负载转矩。 通常,折算到伺服电机轴上的负载转矩可由下列公式计算: Tl=(F*L/2πμ)+T0 式中:Tl折算到电机轴上的负载转矩; F:轴向移动工作台时所需要的力; L:电机轴每转的机械位移量(M); To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值; Μ:驱动系统的效率 F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。 无切削时: F=μ*(W+fg),切削时: F=Fc+μ*(W+fg+Fcf)。 W:滑块的重量(工作台与工件)Kg;

新版-转动惯量计算公式

转动惯量计算公式 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ? ? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax

伺服电机选型必备 惯量匹配和最佳传动比

惯量匹配和最佳传动比 1 功率变化率 伺服电机的基本功能就是将输入的电功率快速的转换为机械功率输出。功率转换的越快,伺服电机的快速性越好。功率转换的快速性用功率变化率(dP/dt)来衡量: P=T·ω T=J·dω/dt dP/dt=d(T·ω)/dt=T·dω/dt=T·T/J dP/dt=T2/J 伺服电机以峰值转矩Tp进行加/减速运动时的功率变化率最大: (dP/dt)max=Tp2/Jm 通常用理想空载时伺服电机的功率变化率来衡量伺服电机的快速性。 衡量伺服电机快速性的性能指标还有: 转矩/惯量比:Tp/Jm= dω/dt 最大理论加速度:(dω/dt)max= Tp/Jm 这些指标都是单一衡量伺服电机加速性能的指标。 2 惯量匹配 伺服系统要求伺服电机能快速跟踪指令的变化。对一个定位运动而言,就是要求以最短的时间到达目标位置。换一种说法,就是在直接驱动负载的定位过程中,负载以最大的功率变化率将输入功率转换为输出功率。 伺服电机驱动惯性负载J L的加速度、加速转矩计算如下: 负载的加速度(系统加速度):dω/dt=Tp/(Jm+J L) 负载的加速转矩:T L= J L·dω/dt= J L·Tp/(Jm+J L) 负载的功率变化率为: dP L/dt=T L2/J L dP L/dt= J L2·Tp2/(Jm+J L)2/J L = J L·Tp2/(Jm+J L)2 从式中可以看出: J L远大于Jm时:dP L/dt= Tp2/J L,负载惯量越大,负载的功率变化率越小。 J L远小于Jm时:dP L/dt= J L·Tp2/Jm,负载惯量越大,负载的功率变化率越小。 负载惯量J L相对电机惯量Jm变化时,负载的功率变化率存在一个最大值。 根据极值定理,对应dP L/dt极值的J L值为使d(dP L/dt)/d(J L) = 0的值。 d(dP L/dt)/d(J L)= d(J L·Tp2/(Jm+J L)2)/d(J L) 利用复合微分法则对(dP L/dt)求导: 设v = (Jm+J L)2 u = Tp2·J L dP L/dt = u/v d(u/v)/d(J L) = [v·du/d(J L)-u·dv/d(J L)]/v2 d(dP L/dt)/d(J L) = {(Jm+J L)2·d(Tp2·J L)/d(J L)-d[(Jm+J L)2]/d(J L)·Tp2·J L}/(Jm+J L)4 d(dP L/dt)/d(J L)=Tp2·[(Jm+J L)2-2(Jm+J L)·J L]/(Jm+J L)4 令d(dP L/dt)/d(J L)=0,则 (Jm+J L)2-2(Jm+J L)·J L=0 (Jm+J L)2-2(Jm+J L)·J L=Jm2+2JmJ L+J L2-2JmJ L-2J L2 =Jm2-J L2

最新转动惯量计算公式

1 2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 3 4 5 8 2 MD J = 6 对于钢材:341032-??= g L rD J π 7 ) (1078.0264s cm kgf L D ???-8 9 M-圆柱体质量(kg); D-圆柱体直径(cm); 11 L-圆柱体长度或厚度(cm); 12 r-材料比重(gf /cm 3)。 13 14 2. 丝杠折算到马达轴上的转动惯量: 15 2i Js J = (kgf·c 16 17 J s –丝杠转动惯量18 (kgf·c m·s 2); 19 i-降速比,1 2 z z i = 21 22 g w 22 ? ?? ???=n v J π 23 g w 2s 2 ? ?? ??=π (kgf·c m·s 2) 24 25 v -工作台移动速度(cm/min); 26 n-丝杠转速(r/min); 27 w-工作台重量(kgf); 28

g-重力加速度,g = 980cm/s 2; 29 s-丝杠螺距(cm) 30 31 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: 32 ()) s cm (kgf 2g w 1 2222 1????????????? ??+++=πs J J i J J S t 33 34 35 36 37 38 39 40 J 1-齿轮z 1及其轴的转动惯量; 41 J 2-齿轮z 2的转动惯量42 (kgf ·cm · s 2); 43 J s -丝杠转动惯量(kgf ·cm ·s 2); 44 s-丝杠螺距,(cm); 45 w-工件及工作台重量(kfg). 46 47 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 48 2 g w R J = (kgf ·c 49 50 R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf) 53 54 55 56 57 58 6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 59 ??? ? ??++ =2221g w 1R J i J J t 60 61 62

伺服电机负载惯量比计算方法以及影响

伺服电机负载惯量比计算方法以及影响 惯量就是刚体绕轴转动的惯性的度量,转动惯量是表征刚体转动惯性大小的物理量。它与刚体的质量、质量相对于转轴的分布有关。(刚体是指理想状态下的不会有任何变化的物体),选择的时候遇到电机惯量,也是伺服电机的一项重要指标。它指的是伺服电机转子本身的惯量,对于电机的加减速来说相当重要。如果不能很好的匹配惯量,电机的动作会很不平稳。 负载惯量的计算由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。 1)圆柱体惯量如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算: J=(πγ/32)*D4L(kg cm2) 如机构为钢材,则可按下面公式计算: J=(0.78*10-6)*D4L(kg cm2) 式中:γ材料的密度(kg/cm2)D圆柱体的直经(cm)L圆柱体的长度(cm) 2)轴向移动物体的惯量工件,工作台等轴向移动物体的惯量,可由下面公式得出: J=W*(L/2π)2 (kg cm2) 式中:W直线移动物体的重量(kg)L电机每转在直线方向移动的距离(cm) 3)圆柱体围绕中心运动时的惯量:圆柱体围绕中心运动时的惯量属于这种情况的例子:如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算: J=Jo+W*R2(kg cm2) 式中:Jo为圆柱体围绕其中心线旋转时的惯量(kgcm2)W圆柱体的重量(kg)R旋转半径(cm) 4)相对电机轴机械变速的惯量计算将上图所示的负载惯量Jo折算到电机轴上的计算方法如下:

转动惯量计算方法

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 2 2112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

伺服电机惯量是什么意思

伺服电机惯量是什么意思 伺服电机惯量是伺服电机的一项重要指标。它指的是转子本身的惯量,对于电机的加减速来说相当重要。惯性大小与物质质量相应惯量J= ∫r dm 其中r为转动半径,m为刚体质量惯量。 电机的转子惯量是电机本身的一个参数。单从响应的角度来讲,电机的转子惯量应小为好。但是,电机总是要接负载的,负载一般可分为二大类,一类为负载转矩,一类为负载惯量。一般来说,小惯量的电机制动性能好,启动,加速停止的反应很快,适合于一些轻负载,高速定位的场合。如果你的负载比较大或是加速特性比较大,而选择了小惯量的电机,可能对电机轴损伤太大,选择应该根据负载的大小,加速度的大小等等因素来选择,一般有理论计算公式。 伺服电机的惯量由转子自身的质量,以及外加的负载而组成。惯量越大,物体的运动状态越不容易改变。无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量,它们的大小有不同的计算方法,因为计算公式较多,就不一一列举。 惯量对伺服电机运行的影响电机轴上的负载惯量大小,对电机的灵敏度和整个伺服系统的精度将产生很大的影响,通常,当负载小于电机转子惯量时,上述影响不大。但当负载惯量达到甚至超过转子惯量的5倍时,会使伺服放大器不能在正常调节范围内工作。所以对这类惯量应避免使用。所以在设计负载时,应尽可能地减小体积和重量。 在伺服系统选型及调试中,常会碰到惯量问题。其具体表现为:在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 什么是“惯量匹配”?1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量 J ×角加速度θ角”。加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加

伺服电机如何进行选型知识讲解

伺服电机选型技术指南 1、机电领域中伺服电机的选择原则 现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。 各种电机的T-ω曲线 (1)传统的选择方法 这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示,对于旋转运动用角速度ω(t),角加速度α(t)和所需扭矩T(t)表示,它们均可以表示为时间的函数,与其他因素无关。很显然。电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。用ω峰值,T峰值表示最大值或者峰值。电机的最大速度决定了减速器减速比的上限,n上限=ω峰值,最大/ω峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。 (2)新的选择方法 一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。 在电机和负载之间的传动比会改变电机提供的动力荷载参数。比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。选择一个合适的传动比就能平衡这相反的两个方面。通常,应用有如下两种方法可以找到这个传动比n,它会把电机与工作任务很好地协调起来。一是,从电机得到的最大速度小于电机自身的最大速度ω电机,最大;二是,电机任意时刻的标准扭矩小于电机额定扭矩M额定。

转动惯量(指导书)

转动惯量指导书 力学实验室 2016年3月

转动惯量的测量 【预习思考】 1.转动惯量的定义式是什么? 2.转动惯量的单位是什么? 3.转动惯量与质量分布的关系? 4.了解单摆中摆长与周期的关系? 5.摆角对周期的影响。 【仪器照片】 【原理简述】 1、转动惯量的定义 构件中各质点或质量单元的质量与其到给定轴线的距离平方乘积的总和,即

∑ =2 J mr(1)转动惯量是刚体转动时惯性的量度,其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。 图1 电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检 流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形 设计上,精确地测定转动惯量,都是十分必要的。 2、转动惯量的公式推导 测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。本实验采用的是三线摆,是通过扭转运动测定物体的转动惯量,其特点是无力图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义本实验的目的就是要求学生掌握用三线摆测定物体转动惯量的方法,并验证转动惯量的平行轴定理。 两半径分别为r'和R'(R'>r')的刚性均匀圆盘,用均匀分布的三条等长l的无弹性、无质量的细线相连,半径为r'的圆盘在上,作为启动盘,其悬点到盘心的距离为r;半径为R'的圆盘在下,作为悬盘,其悬点到盘心的距离为R。将启动盘固定,则构成一振动系统, 称为三线摆(图2)。当施加力矩使悬盘转过角 θ后,悬盘将绕中心轴O O''做角简谐振动。 A A' O O' O'' r R B θ h2 h1 H . . . C'

电动机惯量的说明

惯量,也是伺服电机的一项重要指标。它指的是转子本身的惯量,对于电机的加减速来说相当重要。一般来说,小惯量的电机制动性能好,启动,加速停止的反应很快,适合于一些轻负载,高速定位的场合。如果你的负载比较大或是加速特性比较大,而选择了小惯量的电机,可能对电机轴损伤太大,选择应该根据负载的大小,加速度的大小,等等因素来选择,一般有理论计算公式。电机的转子惯量是电机本身的一个参数。单从响应的角度来讲,电机的转子惯量应小为好。但是,电机总是要接负载的,负载一般可分为二大类,一类为负载转矩,一类为负载惯量。影响伺服电机响应的主要负载是负载惯量。伺服电机驱动器对伺服电机的响应控制,最佳值为负载惯量与电机转子惯量之比为一,最大不可超过五倍。通过机械传动装置的设计,可以使负载惯量与电机转子惯量之比接近一或较小。当负载惯量确实有这样大,机械设计不可能使负载惯量与电机转子惯量之比小于五倍时,则可使用电机转子惯量较大的电机,即所谓的大惯量电机。使用大惯量的电机,要达到一定的响应,驱动器的容量应要大一些。 例题 现在已知:一个直径是80的轴,长度为500,材料是钢材。计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩? 分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m, 由公式ρ=m/v 可以推出m=ρv=ρπr^2*L. 根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度 β=△ω/△t=2πn/60/△t 电机轴我们可以认为是圆柱体过轴线, 所以J=mr^2/2。 所以M=Jβ =mr^2/2*2πn/60/△t =ρπr^2*L*r^2/2*2πn/60/△t =7.8×10^3 ×3.14×0.04^2×0.5×0.04^2÷2 ×500×2π÷60÷0.1 =8.203145 单位J=kgm^2/s^2=N*m 三相异步电动机11kw-4级转速1480r/min。 根据公式:T2=9.55*P/n 解读为:输出力矩T2等于9.55乘以输出功率P,然后除以额定转速N,这样可以计算出电机的输出转矩为:70.9N.m计 算出两个值相比较即可 伺服电机中的大容量,中荣量,小容量什么意思?请朋友们详细介绍一下? 指电机功率大小,<1KW的叫小容量,1~10KW的中容量,>10KW的是大容量

转动惯量计算公式-转动惯量公式

1.圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) D L 2 MD J M 8 rD 4 L3 对于钢材: J10 32 g 0.78 D 4L 106 ( kgf cm s 2 )M- 圆柱体质量 (kg); D-圆柱体直径 (cm); L-圆柱体长度或厚度 (cm);r-材料比重 (gf /cm3)。 2.丝杠折算到马达轴上的转动惯量: Js2 Z2J2 J (kgf cm··s ) i 2 i J1 Z1 3.工作台折算到丝杠上的转动惯量 2 v w J 2n g 2 s w (kgf cm··s2) 2g J S V W J s–丝杠转动惯量 (kgf cm··s2);i-降速比,i z 2 z1 v-工作台移动速度 (cm/min);n- 丝杠转速 (r/min) ; w-工作台重量 (kgf) ;g-重力加 速度, g = 980cm/s2;s-丝杠 螺距 (cm) 2.丝杠传动时传动系统折算到驱轴上的总转动惯量: 1w 2 J t J1 s2 2J2J S g (kgf cm s ) i2 Z2J2W M i J S J1 Z1 5.齿轮齿条传动时折算到小齿轮轴上的转动惯量 J w R 2(kgf cm··s2) g R J1- 齿轮 z1及其轴的转动惯量; J2- 齿轮 z2的转动惯量 (kgf cm··s2 );J s-丝杠转动惯量 (kgf cm··s2 );s-丝杠螺距, (cm); w-工件及工作台重量 (kfg). R-齿轮分度圆半径 (cm); w-工件及工作台重量 (kgf)

6.齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 J t J 11J 2w R 2 J1,J2- 分别为Ⅰ轴,i2g J 2 ⅡW Ⅱ轴上齿轮的转动惯量 (kgf cm··s2 ); R-齿轮 z 分度圆半径 (cm); M J 1Z w-工件及工作台重量 (kgf)。 ⅠZ 马达力矩计算(1)快速空载时所需力矩: M M amax M f M (2)最大切削负载时所需力矩: M M a t M f M 0M t (3)快速进给时所需力矩: M M f M 0 式中M amax—空载启动时折算到马达轴上的加速力矩(kgf m)·; M f—折算到马达轴上的摩擦力矩 (kgf ·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf m)·; M at—切削时折算到马达轴上的加速力矩(kgf m)·; M t—折算到马达轴上的切削负载力矩(kgf m)·。 在采用滚动丝杠螺母传动时,M a、M f、 M0、M t的计算公式如下: (4)加速力矩: M a J r n102 (kgf m)· 9.6T 1 T s 17 J r—折算到马达轴上的总惯量; T—系统时间常数 (s); n—马达转速 ( r/min ) ; 当n = n max时,计算 M amax n = n t时,计算 M at n t—切削时的转速 ( r / min )

-转动惯量及其计算方法

-转动惯量及其计算方法

渤海大学本科毕业论文(设计) 转动惯量及其求法 The Computing Method of Moment of Inertia 学院(系):数理学院 专业:物理师范 学号:12022004 学生姓名:郝政超 入学年度:2012 指导教师:王春艳 完成日期:2016年3月21日 渤海大学 Bohai University

摘要 随着科学与技术的飞速发展,刚体的转动惯量作为一个十分重要的参数,使他在很多领域里受到了重视,尤其是工业领域。近几年来,伴随着高科技的飞速发展,关于刚体转动惯量的研讨,尤其是对于那些质地不均匀和形状不规则刚体的转动惯量的深入探究,已经全然对将来的军事、航空、以及精密仪器的制作等行业产生了极为深远的影响。本篇文章将在这些知识基础上,遵循着循序渐进的原则,对常见刚体的转动惯量以及不同常见规则的刚体的转动惯量的计算进行深入的研究。 本文主要分为四个部分。首先本文系统介绍了刚体以及刚体的动量矩,转动动能和转动惯量的基础知识。其次介绍了刚体的平行轴定理和垂直轴定理,并且给出了转动惯量常见的的计算方法。接着,本文介绍了几类常见的刚体的转动惯量,其中包括圆环、圆柱体、圆盘、杆、空心圆柱体以及六面体的转动惯量。最后,通过具体实例给出了不规则刚体的转动惯量的测量方法。 【关键词】力矩;角加速度;摩擦力

The compute of moment of inertia Abstract Delve into the irregular inhomogeneous along with the science and technology rapid development, the rigid body rotational inertia is a very important parameter, make him in many fields by the attention, especially industrial fields. In recent years, along with the high-tech rapid development of rigid body rotation inertia of research, especially for those texture and shape of rigid body inertia has been completely to the future military, aviation, and precision instrument manufacturing industry produced extremely far-reaching impact. This article will be in the knowledge base, follow the gradual principle of common rigid body inertia and common rules of rigid body rotation The calculation of inertia is deeply studied. This paper is divided into four parts. First of all, this paper systematically introduced the rigid body and the angular momentum of a rigid body, rotational kinetic energy and rotational inertia based knowledge. Followed by the introduction of the parallel axis theorem of rigid body and vertical axis theorem, and gives the rotation inertia common calculation method. Then, this paper introduces the several common types of rigid body's moment of inertia, which include ring, cylinder, disc, rod, hollow cylinder and hexahedron of the moment of inertia. Finally, through specific examples are given irregular rigid body rotational inertia measurement method. Key Words:Moment;Angular Acceleration;Friction

伺服电机惯量的选择

伺服电机惯量的选择 伺服电机的小惯量的高速往复好,大惯量的本身惯量大,机床上用好点. 伺服电机需要惯量匹配,日系列10倍与电机惯量左右(不同品牌有差异),欧系的20左右. 一般来说欧系的惯量都小,因为他们电机做的是细长的. 转动惯量=转动半径*质量。 我们在选择合适的伺服电机的使用常常会遇到扭力选择和惯量选择,对于扭矩的计算相对简单,只需要知道负载重量和传动方式一般能很快的计算 出电机所需要力矩,选型的时候再适当放大,留些余量就可以了. 惯量就是刚体绕轴转动的惯性的度量,转动惯量是表征刚体转动惯性大小的物理量。它与刚体的质量、质量相对于转轴的分布有关。(刚体是指 理想状态下的不会有任何变化的物体),选择的时候遇到电机惯量,也是伺服电机的一项重要指标。它指的是伺服电机转子本身的惯量,对于电机 的加减速来说相当重要。如果不能很好的匹配惯量,电机的动作会很不平稳.一般来说,小惯量的电机制动性能好,启动,加速停止的反

应很快,高 速往复性好,适合于一些轻负载,高速定位的场合,如一些直线高速定位机构。中、大惯量的电机适用大负载、平稳要求比较高的场合,如一些圆 周运动机构和一些机床行业。 如果你的负载比较大或是加速特性比较大,而选择了小惯量的电机,可能对电机轴损伤太大,选择应该根据负载的大小,加速度的大小,等等因素 来选择,一般的选型手册上有相关的能量计算公式,比较复杂,这里就不详列了。 伺服电机驱动器对伺服电机的响应控制,最佳值为负载惯量与电机转子惯量之比为一,最大不可超过五倍。通过机械传动装置的设计,可以使负载 惯量与电机转子惯量之比接近一或较小。当负载惯量确实很大,机械设计不可能使负载惯量与电机转子惯量之比小于五倍时,则可使用电机转子惯 量较大的电机,即所谓的大惯量电机。使用大惯量的电机,要达到一定的响应,驱动器的容量应要大一些。

常用物体转动惯量-与扭矩计算

附录1.常用物体转动惯量的计算 角加速度的公式a = (2n /60) /t 转矩 T=J* a =J*n*2 n /60) /t a -弧度/秒 t-秒 T -Nm n-r/min 图i 矩形结构定义 以a-a 为轴运动的惯量: m = VxS V =Lxhxw 公式中: 以b-b 为轴运动的惯量: 圆柱体的惯量 惯量的计算: / W I ■ b m 3 为 为为 位 位位 单单单 量积度 质体密12 (4L 2 + w 2 ) 矩形体的计算 Ja - a

图2圆柱体定义 m = Vx§ TTD12 V = ------ XL 4 Di r =— 2 mx[> (Dt2 空心柱体惯量

摆臂的惯量 m = Vx3 4 m / (P O 2 +D 2 ')+ L 2> ~4 \ 4 +_ 1 > 图3空心柱体定义 Jx = m x (Do 2 + DF) 8

曲柄连杆的惯量 图4-1摆臂1结构定义 图4-2摆臂2结构定义 J = m.R 2

J = m R? + rm n2 图5曲柄连杆结构定义 带减速机结构的惯量

齿形带传动的惯量 J M :电机惯量 J L :负載惯量 J L

伺服电机惯量问题

伺服电机惯量问题

伺服电机惯量问题 在伺服系统选型及调试中,常会碰到惯量问题。其具体表现为: 在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 一、什么是“惯量匹配”? 1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量 J ×角加速度θ角”。加速度θ影响系统的动态特性,θ越 小,则由控制器发出指令到系统执行完毕的时间越长,系统 反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工 精度。由于马达选定后最大输出T值不变,如果希望θ的变 化小,则J应该尽量小。 2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM +电机轴 换算的负载惯性动量JL。负载惯量JL由(以平面金切机床 为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线

设计手册)。我们曾经做过一试验,在一伺服电机的轴伸,加一大的惯量盘准备用来做测试,结果是:伺服电机低速时停不住,摇头摆尾,不停地振荡怎么也停不下来。后来改为:在两个伺服电机的轴伸对接加装联轴器,对其中一个伺服电机通电,作为动力即主动,另一个伺服电机作为从动,即做为一个小负载。原来那个摇头摆尾的伺服电机,启动、运动、停止,运转一切正常! 三、惯量的理论计算的功式? 惯量计算都有公式,至于多重负载,比如齿轮又带齿轮,或涡轮蜗杆传动,只要分别算出各转动件惯量然后相加即是系统惯量,电机选型时建议根椐不同的电机进行选配。负载的转动惯量肯定是要设计时通过计算算出来拉,如果没有这个值,电机选型肯定是不那么合理的,或者肯定会有问题的,这是选伺服的最重要的几个参数之一。至于电机惯量,电机样本手册上都有标注。当然,对某些伺服,可以通过调整伺服的过程测出负载的惯量,作为理论设计中的计算的参考。毕竟在设计阶段,很多类似摩擦系数之类的参数只能根据经验来猜,不可能准确。理论设计中的计算的公式:(仅供参考)通常将转动惯量J用飞轮矩GD2来表示,它们之间的关系为 J=mp^2= GD^2/4g 式中 m与G-转动部分的质量(kg)与重量(N); 与D-惯性半径与直径(m);

相关主题
文本预览
相关文档 最新文档