当前位置:文档之家› 常微分方程解的存在唯一性定理

常微分方程解的存在唯一性定理

常微分方程解的存在唯一性定理
常微分方程解的存在唯一性定理

常微分方程解的存在唯一性定理

一阶微分方程(1)

其中是在矩形域上的连续函数。

定义1 如果存在常数,使得不等式

对于所有都成立,则函数称为在上关于满足Lipschitz条件。

定理1 如果在上连续且关于满足Lipschitz条件,则方程(1)存在唯一的解,定义于区间上,连续且满足初始条件

,这里,。

Picard逐步逼近法来证明这个定理的主要思想。

首先证明求微分方程的初值问题的解等价于求积分方程

的连续解。然后去证明积分方程的解的存在唯一性。

任取一个连续函数代入上面积分方程右端的,就得到函数

,显然也是连续函数,如果,

那末就是积分方程的解。否则,我们又把代入积分方程右端的,得到

,如果,那末就是积分方程的解。否则我们继续这个步骤。一般地作函数

(3.1.1.4)

这样就得到连续函数序列:,,…,,…如果,那末就是积分方程的解。如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数,即存在,因而对(3.1.1.4)取

极限时,就得到

即,这就是说是积分方程的解。这种一步一步地求出方程的解的方法就称为逐步逼近法。函数称为初值问题的第次近似解。

命题1设是方程(1)的定义于区间上,满足初始条件

的解,则是积分方程

的定义于上的连续解。反之亦然。

现在取,构造皮卡逐步逼近函数序列如下:

命题2对于所有的,函数在上有定义、连续且满足不等式。

命题3函数序列在上是一致收敛的。

设则也在上连续,且。

命题4是积分方程的定义于上的连续解。

命题5设是积分方程的定义于上的一个连续解,则

,。

综合命题1—5,即得到存在唯一性定理的证明。

解的存在唯一性定理证明

解的存在唯一性定理 利用逐次逼近法,来证明微分方程的初值问题的解存在与唯一性定理。 一、【存在、唯一性定理叙述】 如果方程的右端函数在闭矩形区域上满足如下条件: (1)、在上连续; (2)、在上关于变量满足利普希茨条件,即存在常数,使对于上任何一点和有以下不等式:。 则初值问题在区间上存在唯一解, 其中

二、【证明】 逐步迫近法: 微分方程等价于积分方程。 取,定义 可证明的满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设是微分方程定义于区间上满足初值条件 的解,则是积分方程定义于区间上的连续解。反之亦然。 证: 因是微分方程的解,有 两边从到取定积分,得: 代入初值条件得: 即是积分方程定义于区间上的连续解。 反之,则有 微分得: 且当时有。即是微分方程定义于区间上满足初值条件的解。 现取,代入积分方程的右端,所得函数用表示,则,再将代入积分方程的右端,所得函数用表示,则,以上称为1次近似, 称为2次近似。以此类推得到次近似。 从而构造逐步迫近函数序列为: 命 题 2:对所有,函数序列在上有定义、连续且满足不等式 证:当时, 。显然在上有定义、连续且有 ,即命题2当时成立。 由数学归纳法,设命题2当时成立,则对有: 知在上有定义、连续且有 命题2当时也成立。 由数学归纳法原理得命题2对所有均成立。 命 题 3:函数序列在上一致收敛。

证:只须考虑级数-----(*) 在上一致收敛。 因其部分和为:,因, 设对成立。 则当时有 即对所有,在成立 。 其右端组成正项收敛级数 由魏氏判别法,级数(*)在上一致收敛。即在上一致收敛。命题3得证。 现设 则在上有定义、连续且 命 题 4: 是积分方程在上的连续解。 证: 由利普希茨条件 及在上一致收敛于,知函数序列在上一致收敛于。 于是即 是积分方程在上的连续解。 命题5:设是积分方程在上的另一连续解。则。 证: 现证也是序列在上的一致收敛极限函数。由, , 得: , 。 设,则 。由数学归纳法,对所有,有 。 因此,对所有,在有成立。但当时。故在上的一致收敛于。由极限的唯一性,得。

解的存在唯一性

解的存在唯一性定理证明及其研究 专业名称:数学与数学应用 组长:赵亚平 组员:刘粉娟、王蓓、孙翠莲 指导老师:岳宗敏

解的存在唯一性定理证明及其研究 摘要 线性微分方程是常微分课本中的重要组成部分,线性微分方程组解的存在唯一性是最重要,也是不可或缺的一部分,通过课本所学知识运用逐步逼近法以及压缩映射原理分别对一阶,高阶线性微分方程组解的存在唯一性进行的详细的论述证明。对于线性方程组解的情况,主要是通过对增广矩阵进行初等行变换,了解其秩的情况,在运用克莱默法则,从而得出其解的存在唯一性的情况。 关键词:解的存在唯一性 线性微分方程组 线性方程组 (一)一阶微分方程的解的存在唯一性定理与逐步逼近法 存在唯一性定理 考虑初值问题 ),(y x f dx dy = 00)(y x y = (1) 其中f(x,y)在矩形区域R : b y y a x x ≤-≤-||,||00 (2) 上连续,并且对y 满足Lipschits 条件:即存在常数L>0(L 为利普

希茨常数),使不等式 |||),(),(|2121y y L y x f y x f -≤- 对所有R y x y x ∈),(),,(21都成立,则初值问题(1)在区间h x x ≤-||0上解存在且唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路: 1.初值问题(1)的解存在等价于求积分方程 ?+=x x dy y x f y y 0),(0 (3) 的连续解。 2.构造(3)所得解函数序列{)(x n ?},任取一连续函数)(0x ?, b y x ≤-|)(|00?代入(3)右端的y ,得 …… 2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为 )(x n ?=dx x x f y n x x n ))(,(lim 1-00 ??∞ →+ dx x x f y x x f y x x x x n ??+ =+=∞ →0 ))(,()) (,(lim 01-n 0?? 4.)(x ?为(3)的连续解且唯一。首先在区间],[00h x x +是讨论,在错误!未找到引用源。上类似。 证明过程: 命题1 :初值问题(1)等价于积分方程

Peano定理解的存在性定理的应用主讲范进军

第二讲 Peano 定理(解的存在性定理)的应用 (主讲:范进军) 例 利用 Peano 存在定理证明如下隐函数存在定理: 设D 是空间 n R R ′ 内的一个区域,函数 :?(,)(,) n F D R t x F t x ?? 是连续可微的, 而且满足条件 00 (,)0 F t x = 和 00 det{(,)}0, x F t x 1 其中初值 00 (,) t x D ? 。 则方程 (,)0 F t x = 确定一个满足条件 00 () x t x = 的隐函数 () x x t = 。 证明 由条件 00 det{(,)}0 x F t x 1 (其中 00 (,) t x D ? )知,存在充分小的矩形区域 { } 00 (,):||,||||(,0) n Q t x R R t t a x x b a b =?′-£-£> , 使得当(,) t x Q ? 时矩阵 00 (,) x F t x 是可逆的. 因此函数 1 (,){(,)}(,) x t f t x F t x F t x - =- 在区域Q 上是连续的。 根据 Peano 定理知,初值问题 00 (,), () dx f t x dt x t x ì = ? í ? = ? 存在一个局部解 00 (),[,](0) x t t t h t h h j =?-+> 。 从而 1 () {(,())}(,()) x t d t F t t F t t dt j j j - =- , 0 || t t h -£ 。 它等价于 () (,())(,()) 0 t x d t F t t F t t dt j j j += , 0 || t t h -£ , 即 (,()) 0 dF t t dt j = , 0 || t t h -£ 。

函数零点存在性定理

?函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

Picard存在和唯一性定理

Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程 (2.1) 的初值问题 (2.2) 的解的存在与唯一性定理. 定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域 上满足如下条件: (1) 在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解 其中 在证明定理之前,我们先对定理的条件与结论作些说明: 1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的, 但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数 存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有 其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,

但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。 3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这 时,过点 的积 图 2-5 分曲线 当 或 时,其中 , ,到 达R 的上边界 或下边界 .于是,当 时,曲线 便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间 上存在. 由于定理假定 在R 上连续,从而存在 于是,如果从点 引两条斜率分别等于M 和-M 的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取 则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之 中. 图 2-6

根的存在性证明(零点定理)

根的存在性定理:如果)(x f 在闭区间[a,b]上连续 0)(,,0)()(=∈<ξξf b a b f a f )使得(则存在。 证明 利用构造法的思想,将)(x f 的零点范围逐步缩小。先将[a,b]二等分为],2[],2, [b b a b a a ++,如果0)2 (=+b a f 。则定理获证。如果0)2(≠+b a f ,则f(a)和f(b)中必然有一个与)2 (b a f +异号,记这个小区间为[11,b a ],它满足2-0)()(1111a b a b b f a f -=<且区间的长度。又将[11,b a ]二等分,考虑中点的函数值,要么为零,要么不为零。如果中点的函数值为零,则定理获证。如果中点的函数值不为零,那么必然可以选出一个小区间,使得f(x)在这个区间的端点值异号,记这个小区间为 ],[22b a ,它满足[a,b]?[11,b a ]],[22b a ?,0)()(2222 22<-=-a f b f a b a b 且。采用这样的方法一直进行下去,或者到有限步时,某个区间的中点的函数值为零,这样定理的结论成立。或者所有区间的中点的函数值不为零,那么我们就会得到一个无穷的区间序列{],[n n b a },它满足:① [a,b]?[11,b a ]?????],[22b a ;②n n n a b a b 2-=-;③0)()(δ,使得f(x)在],[),(b a ?+-δξδξ上与)(ξf 同号。根据所构造的区间的性质②,存在正整数N ,当n>N 时, ],[),(],[b a b a n n ?+-?δξδξ。根据区间的性质③,0)()(

存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程 (,),dy f x y dx =在区间0x x h -≤上存在唯一解00 (),()y x x y ??== ,其中 (,)min ,, max (,) x y R b h a M f x y M ∈? ?== ??? 逐步迫近法 微分方程(,)dy f x y dx =等价于积分方程0 0(,)x x y y f x y dx =+ ? 取00()x y ?= , 定义0 01()(,()), 1,2,x n n x x y f x x dx n ??-=+=? 可证明lim ()() n n x x ??→∞ =的 ()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命题1 先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间00x x x h ≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+≤≤+?定义于区 间0 0x x x h ≤≤+上的连续解。反之亦然。

证 因()y x ?=是微分方程 (,)dy f x y dx =的解,有 ()(,())d x f x x dx ??= 两边从0x 到0 x h +取定积分 000()()(,()), x x x x f x x dx x x x h ???-= ≤≤+? 代入初值条件00()x y ?=得 000()(,()),x x x y f x x dx x x x h ??=+ ≤≤+? 即()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+ ≤≤+?定义于区间00x x x h ≤≤+上的连续解。 反之,则有 000()(,()), x x x y f x x dx x x x h ??=+ ≤≤+? 微分之 ()(,())d x f x x dx ??= 且当0x x = 时有00 ()x y ?=。即 () y x ?=是微分方程 (,) dy f x y dx =定义于区间 00x x x h ≤≤+上满足初值条件00()x y ?=的解。 现取00()x y ?=,构造逐步迫近函数序列 000001()1,2,()(,()), x n n x x y x x x h n x y f x x dx ???-=??≤≤+=? =+?? ? 命题2 对所有n ,函数序列()n x ?在0 0x x x h ≤≤+上有定义、连续且满足不等 式 0()n x y b ?-≤ 证 当1n =时0 100()(,)x x x y f x y dx ?=+ ?。显然1()x ?在0 0x x x h ≤≤+上有定义、 连续且有 0000()(,)(,)()x x n x x x y f x y dx f x y dx M x x M h b ?-= ≤ ≤-≤≤?? 命题2当1n =时成立。设命题2当n k =时成立,则对1n k =+

根心定理

根心定理 根心定理:三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一: (1)三根轴两两平行; (2)三根轴完全重合; (3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。 该定理是平面几何上非常重要的定理。 一、点对圆的幂 平面上任意一点对圆的幂定义为以下函数: 考虑到圆的方程也可以写为圆心-半径的形式: 由此也可以把点对圆的幂定义为: 这里 是点到圆心的距离,是圆的半径。 点对圆的幂的几何意义是明显的: 若点在圆外,则幂为点到圆的切线长度的平方; 若点在圆上,则幂为0; 若点在圆内,则幂为负数,其绝对值等于过点且垂直于的弦长的一半的平方。 二、根轴 平面上两不同心的圆 显然,对两圆等幂的点集是直线: 该直线称为两圆的根轴。根轴必垂直于两圆的连心线。 若两圆相交,则根轴就是连接二公共点的直线; 若两圆相切,则根轴就是过切点的公切线; 若两圆相离或内含,则根轴完全位于两圆之外,但仍垂直于两圆的连心线。

当圆1和圆2相离或内含时,用尺规作出这两圆的根轴需要依赖“根心定理”(见第三部分)。具体的做法是:另作一个适当的圆3与前两圆都相交,圆3分别与前两圆形成根轴,这两条根轴的交点即是圆1、圆2和圆3的根心,它必定在圆1和圆2所形成的根轴上;同理,再找一个适当的圆4,找到圆1、圆2和圆4的根心。连接所找到的两个根心,即得到圆1和圆2的根轴。 三、根心与根心定理(解析几何证法) 三个两两不同心的圆 任意两圆形成一条根轴,因而共有三条根轴: 这三条根轴的直线方程(以下简称为根轴方程)是线性相关的,即由其中两个根轴方程进行线性组合,可以得出第三个根轴方程。因此: (i)若平面上某一点是其中两个根轴方程的公共解(亦即两根轴的公共点),则必定也是第三条根轴上的点。 (ii)若某两个根轴方程无公共解(即平行),则三个根轴方程中的任意两个均无公共解(即三条根轴两两平行)。 具体而言,三个两两不同心的圆的根轴,仅仅包含下面三种情况: (1)三根轴两两平行; (2)三根轴完全重合; (3)三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心。 上面所证明的即是“根心定理”。 以上用解析几何的方法证明了根心定理。在平面上,二元方程对应一条曲线,而方程组的解对应着曲线的公共点。利用这个思想,从根轴方程的线性相关性出发,容易得到平面几何上的根心定理。这种证明方法十分简单。 四、根心定理的相关例题 以下例题选自2013年(第54届)国际数学奥林匹克竞赛(IMO)第二天第4题:

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dx dy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 对于所有的 都成立,L 称 2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dx dy +=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ?=h x x ≤-0且满足初始条件: 这里 00)(y x =?),min(M b a h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只 就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

函数零点存在性定理.

? ? 函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

[整理]一阶微分方程解的存在定理.

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2 y x =或更一般地,函数 2 0 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性 和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

纳什均衡的存在性定理中的相关解释

纳什均衡的存在性定理中的相关解释 教材(《经济博弈与应用》)p33,图2.1表明不动点是曲线()?f 与45o 线的交点。当函数()x f 定义在[]1,0∈x 区间上且因变量()x f y =的值域也为[]1,0区间时,如果()x f 是连续的,则必然存在不动点。 图2.1 [0,1]区间上的自变换函数的不动点 直接用来证明纳什存在性定理的不动点定理不是Brouwer 角谷静夫(Kakutani)不动点定理。 定义1 S 是凸的(Convex)当且仅当对任意的M M R y R x ∈∈,及满足1 ≤≤λ的λ,只要S x ∈和S y ∈,则有 ()S y x ∈-+λλ1 定义2 S 是闭的(Closed)当且仅当对每个收敛的序列()}{∞ =1j j x ,如果对每个 j 都有()S j x ∈,则有 ()S j x j ∈∞ →lim 定义3 R M 中的子集S 是开的(open)当且仅当它的补集R M /S 是闭的。 定义4 S 是有界的(bounded)当且仅当存在某个正数K 使得对S 中的每个元素x 都有 ∑ ∈≤M m m K x 定义5 当函数()x f 满足下述性质时,我们称其为凹的: ()()()()()[]n R x x x f x f x x f ∈∈-+≥-+212121, 1,0,11λλλλλ x x 第一季第二季第三季第四季)(x f x 1

如果当()1,0∈λ时上面的不等式严格成立,则称()x f 为严格凹的。一个函数 ()x f 是凸的当且仅当函数-()x f 是凹的;()x f 为严格凸函数当且仅当-()x f 为严 格凹函数。 拟凹函数是凹函数概念的一种推广,它包括了凹函数在内的一大类函数,而这类函数在经济学中有着广泛应用,关于拟凹函数的定义如下: 定义6 函数()x f 定义在R n 中的子集D 上,当且仅当()x f 满足如下性质时, ()x f 是拟凹的: ()()()()()2121,min 1x f x f x x f ≥-+λλ ∈λ[0,1] 显然,凹函数是拟凹的,但反过来并不成立,即拟凹函数不一定是凹函数。在下图中,函数()x f 是拟凹的,但不是凹的。 图 不是凹函数的拟凹函数 x 1 y x 2 x () x f

函数零点存在性定理图文稿

函数零点存在性定理文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有 f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1:

若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有 ______(写出所有正确结论的序号). 答案 由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,16)内无零点. (3)正确, (1)不能确定, (2)中零点可能为1, (4)中单调性也不能确定. 故答案为:(3) 例题2: 已知函数有零点,则实数的取值范围是() 答案: 例题3: 例题4: 函数f(x)=3ax-2a+1在[-1,1]上存在一个零点,则实数a的取值范围是()A. a ≥ 1/5; B. a ≤ -1 ; C. -1 ≤ a ≤ 1/5 ; D. a ≥ 1/5 或 a ≤ -1答案:由题意可得f(-1)×f(1)≤0,解得 ∴(5a-1)(a+1)≥0 ∴a≥ 1/5 或a≤-1 故选D .

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程)()(x q y x p dx dy +=解的存在唯一性定理的证明 摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:b y y a x x ≤-≤-00,上的连续函数. 函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 2121),(),(y y L y x f y x f -≤- 对于所有的R y x y x ∈),(),,(21 都成立,L 称为 利普希兹常数 下面我们给出一阶线形微分方程)()(x q y x p dx dy +=(1)解的存在唯一性定理: 如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹 条件,则方程(1)存在唯一的解)(x y ?=,定义于区间h x x ≤-0上,连续且满足初始条件: 00)(y x =? 这里 ), min(M b a h = ),(max y x f M = R y x ∈),( 我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见, 只就区间h x x x +≤≤00来讨论,对于00x x h x ≤≤-的讨论完全一样. 现在简单叙述一下运用逐步逼近法证明定理的主要思想,首

先证明求微分方程的初值问题的解等价于求积分方程 []?++=x x dx x q y x p y y 0)()(0的连续解这里我们用f(x,y)=p(x)y+q(x)来替 代,因此也就等价于求积分方程 ?+=x x dx y x f y y 0 ),(0 的连续解,然后 去证明积分方程的解的存在唯一性. 任取一个连续函数)(0x ? 代入上面的积分方程右端的y 就得 到函数 dx x x f y x x x ))(,()(0 001?+≡?? 显然)(1x ?也是连续解,如果)(1x ?≡)(0x ?那么)(0x ?就是积分方 程的解.否则,我们又把)(1x ?代入积分方程右端的y 得到 dx x x f y x x x ))(,()(0 102?+≡?? 如果 ≡)(2x ?)(1x ?,那么)(1x ?就是积分方程的解,否则我们继 续这个步骤.一般地做函数 dx x x f y x x x n n ))(,()(0 10?-+≡?? (2) 这样就得到连续函数序列 )(0x ? ,)(1x ?…)(x n ?… 如果≡+)(1x n ?)(x n ?那么)(x n ?就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(x ?即 )()(lim x x n n ??=∞ → 存在因此对(2)取极限就得到 dx x x f y x x x n n n n ))(,(lim )(lim 0 10?-∞→∞ →+=?? =dx x x f y x x n n ))(,(lim 0 10?-∞ →+? =dx x x f y x x ))(,(0 0?+? 即 dx x x f y x x x ))(,()(0 0?+≡??

唯一性定理

唯一性定理 蒋文佼(080320124)宋宝璋(080320125)夏世宇 (080320126) 李宝平 (080320127) 章文显 (080320129) 常 悦 (080320130) 1、试用唯一性定理证明:封闭导体壳内部的电场不受壳外电荷(包括壳外表面)的影响。 证:导体壳无论是用电势还是用总电量给定,壳的内外一般存在着四部分电荷。 如图所示,壳内外的电荷分布分别为 ρ 和 ρe ,壳内、外表面 1 S 、2S 上各自的面电荷分布为 σ 和 σe 。壳内外的场是这四 部分电荷共同激发的。 根据定理,首先写出壳内空间电势应满足的条件: (一) 2 ρ?ε ?=- ,ρ 为壳内电荷分布。 (二)壳内表面1S 上的边界条件是:2S 上的总电量 1 s dS q σ=-? (1) 其中 V q dV ρ=? 是壳内的总电量,V 是壳内区域的体积。在壳层 内作一高斯面 0S 后(如图中虚线所示),用高斯定理很容易证明(1) 成立。 因此在给定 ρ 布后, 1S 上边界条件也已经给定为 q - , 和导体壳本身是有电势还是用总电量给定无关。 根据唯一性定理,满足(一)、(二)的 ? 就是解。由于(一) e

和(二)与壳外的 ρe 和 σρ 的电势并不唯一,可以差一个常数。当然当壳用电势 0φ 给定时,1S 上的边界条件就是 1 0|S ?φ= 。所以壳内不但电场唯一,而且电势也是唯一。 2.如图,有一电势为0φ的导体球壳,球心有一点电荷q ,球壳内外半径分别为2R 和1R 。试用唯一性定理: (一)判断0 R φ是否球壳外空间的电势分布。 (二)求球壳内空间的电势分布 解:(一)首先必须找出球内外电势应满足的条件,他们是: (a )2 0??= (b )球壳外表面1S 上的边界条件,1 0s ?=φ (c )无穷远边界条件,0R →∞?→ 若R φ 是解,根据唯一性定理,它必须满足以上三个条件。下面来 检验: 2 2 0010R R φ? =φ?= (0),R ≠ 方程已满足。 0,0,R R φ→∞→ 满足(c )。 S1的半径是R1代入 0R φ 后, 00 R φ≠φ 所以它不满足1S 上的边界条 件,它不是球壳外空间的界,下面求正确的解。由上述可知,函数 A R 同时满足方程和无穷远边界条件。A 为待定常数,可由(b )定出。在面1S 上 0,A R φ=

阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,) (,,,)x y z v f t x y z v f t x y z v f t x y z =??=??=? 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是 求一阶微分方程组 123(,,,)(,,,) (,,,)x f t x y z y f t x y z z f t x y z =??=??=? 的满足初始条件 00(),x t x = 00(),y t y = 00()z t z = 的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12) ()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

一阶线性微分方程组第一讲一阶微分方程组与解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v = 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是求 一阶微分方程组 的满足初始条件

的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12)()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可 以把它化成等价的一阶微分方程组 注意,这是一个含n 个未知函数11,, ,n y y y - 的一阶微分 方程组. 含有n 个未知函数12,, ,n y y y 的一阶微分方程组的一般形式为: 11122112112(,,,,) (,,,,)(,,,,)n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=???=?????=? ? (3.1) 如果方程组(3.1)右端函数不显含x , 则相应的方程称为是自治的. 方程组(3.1)在[,]a b 上的一个解,是这样的一组函数 使得在[,]a b 上有恒等式 含有n 个任意常数12,,,n C C C 的解 称为(3.1)的通解. 如果通解满足方程组 则称后者为(3.1)的通积分.

高中数学必修一 零点存在性定理及典例

零点存在性定理 如果函数y = f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0那么,函数y = f (x )在区间[a ,b ]内有零点,即存在c ∈(a ,b ),使得f (c ) = 0这个c 也就是方程f (x ) = 0的根 定理的理解 (1)函数在区间[a ,b ]上的图象连续不断,又它在区间[a ,b ]端点的函数值异号,则函数在[a ,b ]上一定存在零点 (2)函数值在区间[a ,b ]上连续且存在零点,则它在区间[a ,b ]端点的函数值可能异号也可能同号 (3)定理只能判定零点的存在性,不能判断零点的个数 例:函数y = f (x ) = x 2 – ax + 2在(0,3)内,①有2个零点. ②有1个零点,分别求a 的取值范围. 解析:①f (x )在(0,1)内有2个零点,则其图象如下 则(0)0(3)00032 f f a b a >??>????≥??<-??>?

函数零点存在性定理

函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a, b]上的图象是连续不断的一条曲线,并且有 f(a) . f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3) 若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a) . f(b)<0,则fx)在(a,b)上有唯一的零点. 函数零点个数的判断方法 (1) 几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找岀零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0 在[0,2]上有两个等根,而函数f (x) =x 2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. ⑵代数法:求方程f(x) =0的实数根. 例题1: 若函数f (x)唯一的一个零点同时在区间(0 ,16 )、( 0,8)、( 0,4 )、( 0,2)内,下列结论: (1)函数f (x)在区间(0, 1)内有零点; (2)函数f (x)在区间(0 , 1)或(1,2)内有零点; (3)函数f (x)在区间[2,16 )内无零点; (4)函数f (x)在区间(0 ,16 )上单调递增或递减. 其中正确的有________ (写岀所有正确结论的序号).

相关主题
文本预览
相关文档 最新文档