当前位置:文档之家› 一阶线性微分方程解的存在唯一性证明

一阶线性微分方程解的存在唯一性证明

一阶线性微分方程解的存在唯一性证明
一阶线性微分方程解的存在唯一性证明

一阶线形微分方程)()(x q y x p dx

dy +=解的存在唯一性定理的证明

摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一?

首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:b y y a x x ≤-≤-00,上的连续函数.

函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式

2121),(),(y y L y x f y x f -≤- 对于所有的R y x y x ∈),(),,(21 都成立,L 称为

利普希兹常数

下面我们给出一阶线形微分方程)()(x q y x p dx

dy

+=(1)解的存在唯一性定理:

如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹

条件,则方程(1)存在唯一的解)(x y ?=,定义于区间h x x ≤-0上,连续且满足初始条件:

00)(y x =? 这里 ),

min(M

b

a h = ),(max y x f M = R y x ∈),( 我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,

只就区间h x x x +≤≤00来讨论,对于00x x h x ≤≤-的讨论完全一样.

现在简单叙述一下运用逐步逼近法证明定理的主要思想,首

先证明求微分方程的初值问题的解等价于求积分方程

[]?++=x

x dx x q y x p y y 0)()(0的连续解这里我们用f(x,y)=p(x)y+q(x)来替

代,因此也就等价于求积分方程 ?+=x

x dx y x f y y 0

),(0 的连续解,然后

去证明积分方程的解的存在唯一性.

任取一个连续函数)(0x ? 代入上面的积分方程右端的y 就得

到函数

dx x x f y x x

x ))(,()(0

001?+≡??

显然)(1x ?也是连续解,如果)(1x ?≡)(0x ?那么)(0x ?就是积分方

程的解.否则,我们又把)(1x ?代入积分方程右端的y 得到

dx x x f y x x

x ))(,()(0

102?+≡??

如果 ≡)(2x ?)(1x ?,那么)(1x ?就是积分方程的解,否则我们继

续这个步骤.一般地做函数 dx x x f y x x

x n n ))(,()(0

10?-+≡??

(2)

这样就得到连续函数序列

)(0x ? ,)(1x ?…)(x n ?…

如果≡+)(1x n ?)(x n ?那么)(x n ?就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(x ?即

)()(lim x x n n ??=∞

→ 存在因此对(2)取极限就得到

dx x x f y x x

x n n n n ))(,(lim )(lim 0

10?-∞→∞

→+=??

=dx x x f y x

x n n ))(,(lim 0

10?-∞

→+?

=dx x x f y x

x ))(,(0

0?+?

即 dx x x f y x x

x ))(,()(0

0?+≡??

这就是说)(x ?是积分方程的解,这种一步一步地求出方程的解的方法就成为逐步逼近法,由(2)所确定的函数)(x n ?称为问题(1)的n 次近似解,在定理的假设条件下以上步骤是可以实现的下面我们分四个命题来证明这个定理.

命题1,设)(x y ?=是一阶线形微分方程(1)的定义于区间h x x x +≤≤00上的,且满足初始条件00)(y x =?的解,则)(x y ?=是积分方程

?+=x

x dx y x f y y 0),(0(h x x x +≤≤00)的定义于h x x x +≤≤00上的连续解,

反之亦然.

因为)(x y ?=是一阶线形微分方程(1)的解故有

))(,()

(x x f dx

x d ??= 两边从0x 到x 取定积分得到

dx x x f x x x

x ))(,()()(00?≡-??? h x x x +≤≤00

把00)(y x =?代上式,即有

dx x x f y x x

x ))(,()(0

0?+≡?? h x x x +≤≤00

因此, )(x y ?=是积分方程?+=x

x dx y x f y y 0

),(0定义于h x x x +≤≤00上的

连续解

反之如果)(x y ?=是积分方程?+=x

x dx y x f y y 0

),(0的连续解,则有

dx x x f y x x

x ))(,()(0

0?+≡?? h x x x +≤≤00 (3)

微分之,得到

))(,()

(x x f dx

x d ??= 又把0x x =代入(3)得到

00)(y x =?

因此)(x y ?=是方程(1)的定义于 h x x x +≤≤00上且满足初始条件

00)(y x =?的解.命题1证毕.

现在取00)(y x =?,构造皮卡逐步逼近函数序列如下:

???

??+==?-x x n n

d f y x y x 0))(,()()(1000ξξ?ξ?? h x x x +≤≤00

(n=1,2,…)(4)

命题2 函数序列{})(x n ?在h x x x +≤≤00上是一致收敛的 证明:我们考虑级数[]∑∞

=--+110)()()(k k k x x x ??? h x x x +≤≤00(5)

它的部分和为

[]∑=--+n

k k k x x x 110)()()(???=)(x ?

因此,要证明序列{})(x n ?在h x x x +≤≤00上一致收敛,只需证明级数(5)在h x x x +≤≤00上一致收敛.为此,我们进行如下估计.由(4)有

)())(,()()(00001?-≤≤-x

x x x M d f x x ξξ?ξ?? (6)

及 ?-≤-x

x d f f x x 0

))(,())(,()()(0112ξξ?ξξ?ξ??

利用利普希兹条件及(6)得到

?-≤-x

x d L x x 0

)()()()(0112ξξ?ξ???

ξξd x M L x

x ?-≤0

)(0=

20)(!

2x x ML

- 设对于正整数n,不等式

n n n n x x n ML x x )(!

)()(01

1-≤---?? 成立,则有利普希兹条件,当h x x x +≤≤00时,有

?-+-≤-x

x n n n n d f f x x 0

))(,())(,()()(11ξξ?ξξ?ξ??

?--≤x

x n n d L 0

)()(1ξξ?ξ?

1

00)()!

1()(!0

+-+=-≤?n n x

x n

n x x n ML d x n ML ξξ 于是,由数学归纳法得知,对于所有的正整数k,有如下的估计

k k k k x x k ML x x )(!

)()(01

1-≤---?? h x x x +≤≤00 (7)

从而可知,当h x x x +≤≤00时

k

k k k h k ML x x !

)()(11--≤-?? (8)

(8)的右端是正项收敛级数

∑∞

=1

!k k

k

k h ML

的一般项,由维尔斯特拉斯判别法级数(5)在h x x x +≤≤00上一致收敛,因而序列{})(x n ?也在h x x x +≤≤00上一致收敛,命题2证毕.

命题3 )(x ?是积分方程(2)的定义于h x x x +≤≤00上的连续解. 证明: 由利普希兹条件

)()())(,())(,(x x L x x f x x f n n ????-≤-

以及{})(x n ?在h x x x +≤≤00上一致收敛于)(x ?,即知序列 {}{})(,()(x x f x f n n ?≡

在h x x x +≤≤00上一致收敛于{})(,(x x f ?.因而对于(4)两边取极限,得到

dx x x f y x x

x n n n n ))(,(lim )(lim 0

10?-∞→∞

→+≡??

=?-∞

→+x

x n n d f y 0

))(,(lim 10ξξ?ξ

?+=x

x d f y x 0

))(,()(0ξξ?ξ?

这就是说)(x ?是积分方程(2)的定义于h x x x +≤≤00上的连续解.命题3证毕.

命题4 设)(x φ是积分方程(2)的定义于h x x x +≤≤00上的一个连续解,则)()(x x ?φ≡ , h x x x +≤≤00

证明:我们首先证明)(x φ也是序列{})(x n ?的一致收敛极限函数.为此,从

00)(y x =?

?+=x

x n d f y x 0))(,()(0ξξ?ξ? (n=1,2,…)

ξξφφd x f y x x

x ))(,()(0

0?+≡

我们可以进行如下估计

)()(,()()(000x x M d f x x x

x -≤≤-?ξξφξφ?

ξξφξξ?ξφ?d f f x x x x ?-≤-0

))(,())(,()()(01

ξξφξ?d L x

x ?-≤0

)()(0

200)(!

2)(0

x x ML

d x ML x

x -=

-≤?ξξ 现设n n n x x n ML x x )(!

)()(01

1-≤---φ?,则有 ξξφξξ?ξφ?d f f x x x

x n n ?-≤--0

))(,())(,()()(1

ξξφξ?d L x

x n ?-≤-0

)()(1

100)()!

1()(!

+-+=

-≤

?

n x

x N

x x n ML

d x n ML ξξ 故有数学归纳法得知,对于所有的正整数n,有下面的估计式

10)()!

1()()(+-+≤-n n

n x x n ML x x φ? (10)

因此,在h x x x +≤≤00上有

1

)!1()()(++≤-n n n h n ML x x φ? (11)

1)!1(++n n h n ML 是收敛级数的公项,故0)!

1(1

→+∞→+n n h n ML n 时因而{})(x n ?在h x x x +≤≤00上一致收敛于)(x φ,根据极限的唯一性,即得

)()(x x ?φ≡ h x x x +≤≤00 命题4证毕.

综合1-4,即得到一阶线性微分方程)()(x q y x p dx

dy

+=解的存在唯一定理的证明.

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

以下无正文

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

微分方程复习题(1)

常微分方程复习题 一、填空题 1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:1 2.形如_ 的方程称为齐次方程. 答: )(x y g dx dy = 3.方程04=+''y y 的基本解组是 . 答:cos 2,sin 2x x . 1. 二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零) 2. 方程02=+'-''y y y 的基本解组是 . 答:x x x e ,e 3. 若()t ?和()t ψ都是()X A t X ''=的基解矩阵,则()t ?和()t ψ具有的关系是 。 4.一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 。 5. 方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。有只含y 的积分因子的充要条件是 。 6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。 7. 称为n 阶齐线性微分方程。 8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m P x 是m 次多项式)中,则方程有形如 的特解。 9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解。

10. 微分方程4210y y y ''''''+-=的一般解为 。 9. 微分方程4 230xy y y ''''++=的阶数为 。 10. 若()(0,1,2, ,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的 通解可表为 . 11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2, ,)i x t i n =是其对应的齐次线性 方程的一个基本解组, 则非齐线性方程的所有解可表为 . 12. 若()(0,1,2, ,)i x t i n =是齐次线性方程()(1)11()()()0 n n n n y a x y a x y a x y --'+++=的n 个解,)(t w 为其朗斯基行列式,则)(t w 满足一阶线性方程 。 答:1()0w a x w '+= 13. 函数 是微分方程02=-'-''y y y 的通解. 14. 方程02=+'-''y y y 的基本解组是 . 15. 常系数方程有四个特征根分别为11,0,1λ=-(二重根),那么该方程有基本解组 . 16. ()Y A x Y '=一定存在一个基解矩阵()x Φ,如果()x ψ是()Y A x Y '=的任一解,那么()x ψ= 。 17.若)(t Φ是()X A t X '=的基解矩阵,则向量函数)(t ?= 是 ()()X A t X F t '=+的满足初始条件0)(0=t ?的解;向量函数)(t ?= 是()()X A t X F t '=+的满足初始条件η?=)(0t 的解。 18. 设12(),()X t X t 分别是方程组1()()X A t X F t '=+,2()()X A t X F t '=+的解,则满足方程12()()()X A t X F t F t '=++的一个解可以为 。 19. 设* X 为非齐次线性方程组()()X A t X F t '=+的一个特解, )(t Φ是其对应的齐次线性方程组()X A t X '=的基解矩阵, 则非齐线性方程组()()X A t X F t '=+的所有解可表为 . 20.方程组()X A t X '=的n 个解12(),(), ,()n X t X t X t 线性无关的充要条件

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ==成立,则 )(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21 的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。 令n 维向量函数 Y )(x =? ??? ?? ??????)( )()(21x y x y x y n ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212 211n n n n y y y x f y y y x f y y y x f

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法1

第四讲常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程 式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx (3.20)

其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1 T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2, ,),ij T t i j n == det 0T ≠,将方程组 (3.20)化为 1 dZ T ATZ dx -= (3.22) 我们知道,约当标准型 1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0 n n n n nn a a a a a a A E a a a λλλλ ---= =- 的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根.

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

第三章 一线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n ==L det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-L L M M M L

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλL 这时 12100 n T AT λλλ-??????=?????? 方程组(3.20)变为 11122200n n n dz dx z dz z dx z dz dx λλλ??????????????????????=???????????????? ?????? M M (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=????????M 220010(),,()0001n x x n Z x e Z x e λλ????????????????==???????????????? L M M 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ???? ??==?????? M (1,2,,)i n =L

线性微分方程组

第五章 线性微分方程组 [教学目标] 1. 理解线性微分方程组解的存在唯一性定理,掌握一阶齐(非齐)线性微分方程组解的性质与结构, 2. 理解n 阶线性微分方程与一阶线性微分方程组的关系。 3. 掌握非齐次线性微分方程组的常数变易法, 4. 理解常系数齐线性微分方程组基解矩阵的概念,掌握求基解矩阵的方法。 5. 掌握常系数线性微分方程组的Laplce 变换法。 [教学中难点]求解常系数非齐次线性微分方程组 [教学方法] 讲授,实践。 [教学时间] 16学时 [教学内容] n 阶线性微分方程与一阶线性微分方程组的关系,一阶线性微分方程组解的存在唯一性定理;齐(非齐)线性微分方程组解的性质与结构,求解非齐次线性微分方程组的常数变易法;常系数齐线性微分方程组的基解矩阵及求基解矩阵的方法;求常系数线性微分方程组的Laplce 变换法。 [考核目标] 1.线性微分方程组解的性质与结构。 2.能够求解常系数线性微分方程组。 §5.1 存在唯一性定理 5.1.1记号和定义 考察形如 1 11112211221122222 1122()()()()()()()()()()()()n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++?? ??'=++++? (5.1) 的一阶线性微分方程组,其中已知函数()(,1,2,,)ij a t i j n = 和()(1,2,,)i f t i n = 在区间a t b ≤≤上 上是连续的。方程组(5.1)关于12,,,n x x x 及1 2,,,n x x x ''' 是线性的. 引进下面的记号: 1112121 22 212()() ()()() ()()()() ()n n n n nn a t a t a t a t a t a t A t a t a t a t ??????=?? ? ? ?? (5.2) 这里()A t 是n n ?矩阵,它的元素是2 n 个函数()(,1,2,,)ij a t i j n = . 12()()()()n f t f t f t f t ??????=?????? 12n x x x x ??????=?????? 1 2n x x x x '????'??'=???? '?? (5.3)

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

第三章一阶线性微分方程组第二讲一阶线性微分方程组的一般概念及理论

第二讲 一阶线性微分方程组的一般概念与 一阶线性齐次方程组的一般理论(4课时) 一、 目的与要求: 了解一阶线性微分方程组的一般概念与一阶线性齐次方程组的一般理论, 掌握一阶线性齐次方程组的通解结构, 理解基本解矩阵, Wronsky 行列式等概念. 二、重点:一阶线性齐次方程组的通解结构, 基本解矩阵, Wronsky 行列式. 三、难点:基本解矩阵, Wronsky 行列式. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1. 一阶线性微分方程组的一般概念 如果在一阶微分方程组(3.1)中, 函数12(,,,,)(1,2,,)i n f x y y y i n =, 关于12,,,n y y y 是线性的, 即(3.1)可以写成 1111122112211222221122()()()()()()()()()()()() n n n n n n n nn n n dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx ?=++ ++???=++++?????=++++? ?

(3.6) 则称(3.6)为一阶线性微分方程组. 我们总假设(3.6)的系数()(,1,2,,)ij a x i j n = 及()(1,2,,)i f x i n = 在某个区间I R ? 上连续. 为了方便, 可以把(3.6)写成向量形式. 为此, 记 1112121 22212()()()()()()()()()()n n n n nn a x a x a x a x a x a x A x a x a x a x ??????=?????? 及 12()()()()n f x f x F x f x ???? ??=?????? 根据第13讲的记号, (3.6)就可以写成向量形式 ()()dY A x Y F x dx =+ (3.7) 如果在I 上, ()0F x ≡,方程组(3.7)变成 ()dY A x Y dx = (3.8)

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

微分方程习题及解答

第十二章 微分方程 §12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .

2.微分方程3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5.'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++= 解: 解: 2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2 sin ln ,x y x y y y e π='==; 解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x +=. 解: 解: 3*.设连续函数20()d ln 22x t f x f t ?? =+ ????,求()f x 的非积分表达式. 答:()ln 2x f x e =?.

线性微分方程的解法

§12.4 线性微分方程 一、 线性方程 线性方程: 方程)()(x Q y x P dx dy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dx dy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-) 2(?021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0?y '=3x 2+5x , 是非齐次线性方程. (3) y '+y cos x =e -sin x , 是非齐次线性方程. (4)y x dx dy +=10, 不是线性方程. (5)0)1(32=++x dx dy y ?0)1(23=+-y x dx dy 或3 2)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法: 齐次线性方程 0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P y dy )(-=, 两边积分, 得 1)(||ln C dx x P y +-=? , 或 )( 1)(C dx x P e C Ce y ±=?=-, 这就是齐次线性方程的通解(积分中不再加任意常数). 例1 求方程y dx dy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得 2 -=x dx y dy ,

两边积分得 ln|y |=ln|x -2|+lnC , 方程的通解为y =C (x -2). 非齐次线性方程的解法: 将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把 ?=-dx x P e x u y )()( 设想成非齐次线性方程的通解. 代入非齐次线性方程求得 )()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =?+?-?'---, 化简得 ?='dx x P e x Q x u )()()(, C dx e x Q x u dx x P +?=?)()()(, 于是非齐次线性方程的通解为 ])([)()(C dx e x Q e y dx x P dx x P +??=? -, 或 dx e x Q e Ce y dx x P dx x P dx x P ? ??+?=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和. 例2 求方程25)1(1 2+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程. 先求对应的齐次线性方程 012=+-x y dx dy 的通解. 分离变量得 1 2+=x dx y dy , 两边积分得 ln y =2ln (x +1)+ln C , 齐次线性方程的通解为 y =C (x +1)2. 用常数变易法. 把C 换成u , 即令y =u ?(x +1)2, 代入所给非齐次线性方程, 得

高阶线性微分方程常用解法简介

高阶线性微分方程常用解法简介 摘要:本文主要介绍高阶线性微分方程求解方法,主要的内容有高阶线性微分方程求解的常 用方法如。 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3, ,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++= 其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++ 其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ 是特征方程111()0n n n n F a a a λλλλ--≡++++= 的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ (5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ= 均为实数,则(5)是方程(3)的n 个线性无关的实值解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++ 其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.

相关主题
文本预览
相关文档 最新文档