当前位置:文档之家› 静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover分析)两种方法剖析
静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析)

■ 简介

Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pus hover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。

计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。

但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。

基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。

Capacity (elastic)

Displacement

V B a s e S h e a r

图 2.24 基于荷载的设计方法中地震作用的计算

Pushover分析是评价结构的变形性能的方法之一,分析后会得到如图2.25所示的荷载-位移能力谱曲线。另外,根据结构耗能情况会得到弹塑性需求谱曲线。两个曲线的交点就是针对该地震作用结构所能发挥的最大内力以及最大位移点。当该交点在目标性能范围内,则表示该结构设计满足了目标性能要求。

图2.25 使用基于位移的设计方法评价结构的耐震性能

■ 分析方法

结构设计必须满足规范的一系列规定和要求,在完成满足规范要求的设计之后,结构的目标性能具体控制在哪个水准上,则由建筑物的使用者和设计者决定。 为了评价结构性能需要进行结构分析,基于性能的耐震设计方法一般有下列四种。

线性静力分析方法(Linear Static Procedure, LSP) 线性动力分析方法(Linear Dynamic Procedure, LDP) 非线性静力分析方法(Nonlinear Static Procedure, NSP) 非线性动力分析方法(Nonlinear Dynamic Procedure, NDP)

MIDAS/Gen 中提供了上述四种分析方法,其中Pushover 分析属于非线性静力分析方法。Pushover 分析又称为静力弹塑性分析,是评价结构进入弹塑性状态后的结构极限状态和稳定状态的有效而简捷的方法。该方法主要适用于低频结构影响较大的结构中(即低振型为主控作用)。Pushover 分析中可以考虑材料和几何非线性,材料非线性特性是通过定义构件截面的荷载-位移的非线性特性实现的。

大底盘高振型作用较强

Pushover 分析是通过逐渐加大预先设定的荷载直到最大性能控制点位置,获得荷载-位移能力曲线(capacity curve)。 多自由度的荷载-位移关系转换为使用单自由度体系的加速度-位移方式表现的能力谱(capacity spectrum),地震作用的响应谱转换为用ADRS(Acceleration-Displacement Response Spectrum)方式表现的需求谱(demand spectrum)。通过比较两个谱曲线,评价结构在弹塑性状态下的最大需求内力和变形能力,通过与目标性能的比较,决定结构的性能水平(performan ce level)。

在MIDAS/Gen 中使用ATC-40(1996)和FEMA-273(1997)中提供的能力谱法(Capacity Spectrum Method, CSM)评价结构的耐震性能。能力谱法(CSM)的原理如图2.26所示。 (a) 计算结构物的能力曲线(capacity curve)和能力谱(capacity spectrum)

(b) 计算需求谱(demand spectrum) (c) 评价性能点(performance point)

Pushover

Analysis

Capacity Spectrum

d

a

S SDOF System

?roof

?Capacity Curve MDOF System F

base

V base

V Demand Spectrum

n,2

T a

22

n d 4T S π

=n,1

T n

d

S S Response Spectrum

transform 5% Elastic Spectrum

Performance Point Demand Spectrum

Capacity Spectrum

a

S d

max

D A

图 2.26 能力谱法(Capacity Spectrum Method, CSM)的原理

Pushover 分析是为了评价结构所拥有的耐震性能,其前提条件是已经完成了初步的分析和设计,即对于混凝土结构必须已经完成了配筋设计。Pushover 分析的优点如下:

可以评价结构进入弹塑性阶段的响应以及所拥有的抵抗能力 可以掌握结构的耗能能力和位移需求 可以掌握各构件屈服的顺序

对确定需要维修和加固的构件提供计算依据

■ 分析中适用的单元类型

MIDAS/Gen 中Pushover 分析中适用的单元类型有二维梁单元(2-dimensional beam element)、三维梁-柱单元(3-dimensional beam-column element)、三维墙单元(3-dimensional wall element)、桁架单元(truss element)。各单元的特性如下。

二维梁单元和三维梁-柱单元

梁单元和梁-柱单元采用的模型如图2.27所示,其位移和荷载如下,其中适用于梁单元时无轴力项。

111111222222{}{, M , , M , , M , , M , , M , , M }T x x y y z z x x y y z z P F F F F F F = (1.a)

111111222222{}{, , , , , , , , , , , }T

x x y y z z x x y y z z u u v u v θθωθθθωθ= (1.b)

图 2.27 二维梁单元和三维梁-柱单元模型

三维墙单元模型

如图2.28所示墙单元模型由中间的线单元,上下两端的刚性杆构成。中间的线单元与三维梁-柱单元相同,刚性杆在xz平面内做刚体运动。

图2.28 墙单元的节点力和节点位移

桁架单元模型

如图2.29所示,桁架单元采用轴向(x方向)的弹簧模型。

图2.29 桁架单元的节点力

■非线性弹簧的特性

在各单元模型中表现的弹簧并非表示弹簧的存在,而是表现分析的方法,即在弹簧位置将发生塑性变形。弹簧具有的特性如下。

?梁单元模型的弹簧特性用荷载-位移、轴力-单向弯矩-位移角、剪力-剪切变形、扭矩-扭转角等关系来表现

?柱以及墙体单元模型的弹簧特性用荷载-位移轴力-双向弯矩-位移角、剪力-剪切变形、扭矩-扭转角等关系来表现

?桁架单元模型的弹簧特性用荷载-位移关系来表现

单元的变形可用下面的各式来表现。

弯曲变形

节点上构件的变形角可用下列三项之和来表现。

e p s

θθθθ

=++

(2)

在此,eθ、sθ、pθ分别为弹性弯曲变形角、塑性弯曲变形角、因剪切产生的弯曲变形角。另外,如图2.30所示弯矩引起的塑性变形将假设集中在L

α区段内。图形中阴影部分表示发生塑性变形的区段。因此包含塑性变形和剪切变形的柔度矩阵(flexibility matrix)如下。

()22

11

12

11111

33

33

o o o

L L

f

EI EI EI EI EI GAL

α

ααα

=+-+-+-+

??????

? ?

??

??????

(3.a)

()

2

1221

12

11111

32

66

o o o

L L

f f

EI EI EI EI EI GAL

α

α

==----+-+

??????

? ?

??

??????

(3.b)

()

22

22

12

11111

33

33

o o o

L L

f

EI EI EI EI EI GAL

α

ααα

=+-+-+-+

??????

? ?

??

??????

(3.c)

图2.30 弯曲刚度的分布假定

构件的荷载-位移关系可用柔度矩阵表现如下。

[]{}

f M

θ=(4)

在此,

[][][][]

e p s

f f f f

=++(5)

如图2.31所示,式(5)中各项分别表示弹性弯曲变形角、塑性变形角、因剪切引起的弯曲变形角。

图2.31 弯矩-变形角关系

轴向变形、扭转变形、剪切变形弹簧

在MIDAS/Gen 的Pushover 分析中假定轴力、扭矩、剪力在构件内不变,塑性铰发生在构件中央。其荷载-位移关系可参照弯曲变形中的各式。

双向弯曲弹簧

双向受弯且受轴力作用时,先计算各向的屈服弯矩后使用下面关系式建立双向受弯相关公式。

1.0ny nx nox noy M M M M α

α

+=???? ? ???

??

(6)

上式适用与钢筋混凝土和钢材等所有构件。

■ 塑性铰(plastic hinge)特性

随着荷载的增加,结构构件将产生塑性铰,结构的刚度会发生变化,横向位移也将逐渐加大。MIDAS/Gen 中采用的塑性铰特性如下。

?

铰特性 : 多折线类型(Multi-Linear Type) - 采用切向刚度矩阵(tangent stiffness matrix)

- 荷载控制(load control)和位移控制(displacement control)均可 - 可考虑P-Delta 效果

?

铰特性 : FEMA 类型(FEMA Type)时 - 割线刚度矩阵(secant stiffness matrix)

- 采用位移控制(displacement control)

- 可考虑P-Delta 效果和大位移(large deformation)效果

因为结构承受的荷载大小为已知条件,所以一般采用荷载控制方法。荷载控制方法就是将荷载从零开始逐渐加载到极限荷载的方法。位移控制是在基于性能的耐震设计中采用比较多的方法。虽然不知道加载的荷载大小,但是可以通过预先设定满足目标性能的位移进行分析。分析过程中可以获得荷载传递能力(load-carrying

capacity)和失稳(unstable)状态。采用位移控制和割线刚度矩阵

(secant stiffness matrix)时,在最大荷载附件可以获得稳定的解。

多折线铰类型

多折线铰类型可以用于荷载控制和位移控制方法中。

- 荷载-位移关系采用双折线(Bilinear)和三折线(Trilinear)两中形式 - 屈服后刚度和抗裂刚度用与初始刚度的比值(stiffness ratio)来表现

- 能表现构件的刚度降低,但不能表现材料的强度降低

图 2.32 多折线铰类型的塑性铰特性

FEMA 铰类型

FEMA 铰类型是将钢筋混凝土构件和钢构件的循环加载试验(reversed cyclic load)获得的资料理想化的结果,其特性如下。MIDAS/Gen 的FEMA 铰特性只能使用位移控制方法。

图 2.33 FEMA 铰类型的塑性铰特性

- 点A 位置: 未加载状态

- AB 区段: 具有构件的初始刚度(initial stiffness),由材料、构件尺寸、配筋率、

边界条件、应力和变形水准决定。

- 点B 位置: 公称屈服强度(nominal yield strength)状态

-

BC 区段: 强度硬化(strain hardening)区段,刚度一般为初始刚度的5-10%,对相

邻构件间的内力重分配有较大影响。

L a t e r a l L o a d

Lateral Deformation

- 点C 位置: 由公称强度(nominal strength)开始构件抵抗能力开始下降

- CD 区段: 构件的初始破坏(initial failure)状态,钢筋混凝土构件的主筋断裂(fracture)或混凝土压碎(spalling)状态,钢构件的抗剪能力急剧下降区段。 - DE 区段: 残余抵抗(residual resitance)状态,公称强度的20%左右 - 点E 位置: 最大变形能力位置,无法继续承受重力荷载的状态。

■ Pushover 分析方法

MIDAS/Gen 中提供两种Pushover 分析方法,即基于荷载增分的荷载控制法和基于目标位移的位移控制法。

基于荷载增分的荷载控制法

MIDAS/Gen 的荷载控制法采用全牛顿-拉普森(Full Newton-Raphson )方法。牛顿-拉普森方法是采用微分原理求解的方法,其优点是速度快。采用荷载增的Pushover 分析方法的图形接介绍如下。

图 2.34 基于荷载增分法的Pushover 分析

荷载采用具有一定分布模式的横向荷载。荷载分布模式既可以采用地震荷载(Q u

d

)也可以采用任意的荷载分布模式。另外,也可以采用包含节点荷载在内的用户

定义的任何荷载工况。

(1) 第1阶段: 计算弹性极限

首先使用用户定义的水平荷载计算构件的应力,然后计算各构件的应力与屈服应力的比值λ。将各构件的比值中的最小值乘以加载的荷载工况重新定义荷载。

(7)

在此 λ: 各铰计算的屈服荷载系数(最大值0.5)

U : 铰的屈服应力

L : 初始应力

(坍塌荷载) Q u

位移

荷载

()U L M

λ=-

M : 荷载工况计算的铰的应力

(2) 第2阶段: 基于等差级数的增分分析

由弹性极限到预估的坍塌荷载(Q ud *X )之间的荷载增量由下面的等差级数计算。

i =等差增分步骤数 (8) 在此 i P : 第i 步的荷载增量 P : 总荷载

X : 预估的坍塌荷载与总荷载的比值(基本值为0.4)

(3) 第3阶段: 预估坍塌荷载之后的荷载增分

使用最终计算的(n+1)步骤的荷载增分。

(4) 终止分析的条件

- 到达最大增分步时

- 层间位移角到达极限层间位移角时 - 分析中计算的水平内力到达指定的大小时 - 刚度矩阵为负(negative)时

基于目标位移的位移控制法

MIDAS/Gen 的位移控制法是由用户定义目标位移,然后逐渐增加荷载直到达到目标位移的方法。目标位移分为整体控制和主节点控制两种,整体控制是所有节点的位移都要满足用户输入最大位移,位移也是整体位移,不设置某一方向的位移控制。主节点控制是用户指定特定节点的特定方向上的最大位移的方法。基于性能的耐震设计大部分是先确定可能发生最大位移的节点和位移方向后给该节点设定目标位移的方法。

初始的目标位移一般可假定为结构总高度的1%、2%、4%。这些数值一般相当于最大层间位移值,于结构的破坏情况相关。ATC-40或FEMA-273中将层间位移为 1%时定义为直接居住水准(Immediate Occupant Level),2%时定义为生命安全水准(Life Safety Level), 4%时定义为坍塌预防水准(Collapse Prevention Level)。这些值在构件级别上的意义可能会稍有不同。

作用荷载

作用荷载应该采用能反映各层惯性力的横向荷载。所以推荐至少使用两种以上的横向荷载分布模式。在MIDAS/Gen 中提供了三种类型的荷载分布模式,即静力荷载分布模式、振型形状分布模式、与各层质量成比例关系的等加速度分布模式。采用静力荷载分布模式时,用户可以定义任意形状的静力荷载分布。采用振型形状荷载分布模式时必须先做特征值分析。

■ 基于性能点的耐震性能评价

()()11n

i i P n i P X i ==+-?????∑

在MIDAS/Gen 中使用能力谱(CSM)原理评价结构的保有内力和耐震性能。结构的保有内力可通过Pushover 分析获得的能力曲线和能力谱进行评价。对地震作用的需求谱可以适用有效阻尼的弹性设计谱来评价。将这两个谱表现在相同的坐标系上将获得意味着结构非线性最大需求内力的交点,即性能点(performance point)。利用性能点位置的变形程度和保有内力来评价结构的耐震性能和性能水准。

能力谱和需求谱

评价结构的耐震性能和性能水准时会使用能力谱和需求谱的概念。通过Pushover 分析将获得荷载-位移关系(V -U ),响应谱也可获得加速度-周期(A-T)的相关关系。为了比较两个谱,需要将其转换为加速度-位移谱(acceleration-displacement response spectrum ,ADRS)。

图 2.35 将荷载-位移关系转换为加速度-位移谱

图 2.36 将加速度-周期谱转换为加速度-位移谱

如图2.35所示,荷载-位移关系转换为加速度-位移关系的方法如下:

k

V A M

=

(9)

k k

U

D Γφ

=

(10)

在此,k

Γ和k

M 为各自方向的k 阶振型的振型参与系数和有效质量系数,计算方法如下:

振型参与系数 1

21

N

j

jk

j k

N

j

jk

j m m φ

Γ

φ

===

∑∑

(11)

振型参与质量

2 1

2

1

N

j jk

j

k

N

j jk

j

m

M

m

φ

φ

=

=

=

??

?

??

(12)

式(9)和(10)为动力学理论的多自由度(MDOF)体系和单自由度(SDOF)体系之间的关系。即A和D为单自由度体系响应谱上的响应加速度和响应位移,V和U为多自由度体系的基底剪力和位移。

如图2.36,弹性响应谱可以利用单自由度体系的位移和加速度关系式(13)进行转换。

2

2

4

n

T

D A

π

=(13)

性能点(performance point)的评价

能力谱和需求谱的交点称为性能点。在MIDAS/Gen中提供的计算性能点的方法为ATC-40的能力谱(CSM)中提供的Procedure-A和Procedure-B两种方法。两种方法的基本原理相同,通过计算有效阻尼反复计算获得性能点的方法为Procedure-A 方法,利用延性比和有效周期原理计算性能点的方法为Procedure-B。

(1) 计算等效阻尼(equivalent damping)

在能力谱法(CSM)中,通过pushover分析获得能力谱后如下图所示使用具有相同面积的双折线(biloinear)曲线来表现。在CSM中使用具有5%阻尼的弹性响应谱和能力谱计算结构的等效阻尼。因为结构的阻尼而耗散的能量等于双折线滞回曲线的面积,可按式(14)计算。

图2.37 利用滞回曲线计算等效阻尼

+0.05 (14)

在此, E D = 结构阻尼引起的耗散能

E SO = 结构的最大变形能

63.7()

1

4

y pi y pi

D

SO pi pi

a d d a

E

E a d

β

π

-

==

eq

ββ

=

将式(14)使用百分率的形式表现如下。 (15)

在此,eq β表示阻尼比(%),在ATC-40中阻尼比超过25%时,需要谨慎的判断,

且不许超过50%。

(2) 计算有效阻尼(effective damping)

地震作用作用下的钢筋混凝土结构的滞回曲线中没有表现刚度退化(stiffness deg radation)和强度退化(strength deterioration)、滑移或握裹(slip or pinching)的特性的理想化的滞回模型。所以在ATC-40中为了反映钢筋混凝土的这些滞回特性,使用阻尼调整系数(damping modification factor)来调整等效阻尼。调整后的等效阻尼称为有效阻尼系数,按下式计算。

(16)

(3) 非线性需求谱

使用前面计算的有效阻尼系数决定非线性响应谱。即利用有效阻尼系数计算响应谱的谱折减系数(spectrum reduction factor ,SR)。如图2.27所示加速度和速度的谱折减系数不同。谱折减系数采用了Newmark 和Hall(1982)的地基运动扩大系数,加速度的谱折减系数(SR A )和速度速度的谱折减系数(SR V )的计算式如下。根据结构的滞回特性,ATC-40中给出了谱折减系数的下限值。

图 2.38 根据谱折减系数计算的非线性响应谱

a

S range

063.7()

55y pi y pi eq pi pi

a d d a a d ββ-=+

=+063.7()

55y pi y pi eq pi pi

a d d a a d κβκβ-=+=+

()()()()

63.73.210.68ln 50.33

0.442.120.56

y pi y pi pi pi A a d d a for Type A a d SR for Type B for Type C κ??

--+????????=≥???

()()

()()

63.72.310.41ln 50.50

0.561.650.67

y pi y pi pi pi V a d d a for Type A a d SR for Type B for Type C κ??

--+????????=≥???

(17)

表 2.2 结构的滞回特性对应的谱折减系数下限值

根据上述的计算过程可以获得设计地震作用或线弹性反应谱对应的非线性需求谱。将获得的非线性地震需求谱和通过Pushover 分析获得的结构的能力谱进行比较,可以获得结构的性能点。

(4) 计算性能点

利用Pushover 分析得到的结构的能力谱和非线性设计响应谱的比较,可以获得表现结构的非线性最大位移和保有内力的性能点,并且利用其来评价结构的性能水准。

■ 确定性能点的方法

MIDAS/Gen 中根据能力谱(CSM)确定性能点的方法采用ATC-40中提供的两种方法。其基本原理为使用有效阻尼系数评价需求谱并求其与能力谱的交点作为性能点。

Procedure-A

是ATC-40中提供的基本方法,首先将能力谱中斜率为初始刚度的切线和阻尼比为5%的弹性设计响应谱的交点作为初始的性能点。然后确定初始性能点位置的等效阻尼,然后求使用有效阻尼系数的非线性设计响应谱,然后重新计算交叉点作为性能点。重复上述过程,直到在使用有效阻尼系数的非线性设计响应谱和能力谱的的交点位置上位移响应和加速度响应的变化量在误差范围内,将此时的交点视为性能点。采用Procedure-A 方法确定性能点的方法参见图2.39。

图2.39 使用Procedure-A方法计算性能点(ATC-40)

Procedure-B

ATC-40中计算性能点的第二种方法是首先假设位移延性比,然后计算对应延性比的结构的结构的有效周期,将有效周期直线和5%弹性设计响应谱的交点作为初始的性能点。对弈于假定的位移延性比的放射线状的有效周期和非线性设计响应谱的交点将形成一个轨迹线,该轨迹线与结构的能力谱的交点为最终的性能点。利用Procedure-B方法计算性能点的原理如图2.40所示。

图2.40 利用Procedure-B方法计算性能点(ATC-40)

该方法是首先假定位移延性比,然后逐步计算有效阻尼系数,所以在交叉点计算的响应误差发散的概率较低。前面介绍的Procedure-A方法在寻找性能点的过程当中收敛性不是很好,而Procedure-B方法不仅收敛性能好,而且不必建立针对多个阻尼比的弹性反应谱,而是根据变化的阻尼比和振动周期获得响应谱的轨迹即可获得性能点,所以Procedure-B方法是相对比较简单的方法。

在MIDAS/Gen中提供的两种方法的操作界面如下图所示。

SAP2000之Pushover分析

SAP2000之Pushover分析 Pushover分析:基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以A TC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。本文中,将两方面的内容统称为“Pushover 分析”。基于结构行为设计使用Pushover分析包括形成结构近似需求和能力曲线并确定曲线交点。需求曲线基于反应谱曲线,能力谱基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需求曲线与能力曲线的有交点,则称此交点为性能点。利用性能点能够得到结构在用需求曲线表征的地震作用下结构底部剪力和位移。通过比较结构在性能点的行为与预先定义的容许准则,判断设计目标是否满足。在结构产生侧向位移的过程中,结构构件的内力和变形可以计算出来,观察其全过程的变化,判别结构和构件的破坏状态,Pushover分析比一般线性抗震分析提供更为有用的设计信息。在大震作用下,结构处于弹塑性工作状态,目前的承载力设计方法,不能有效估计结构在大震作用下的工作性能。Pushover分析可以估计结构和构件的非线性变形,结果比承载力设计更接近实际。Pushover分析相对于非线性时程分析,可以获得较为稳定的分析结果,减少分析结果的偶然性,同时可以大大节省分析时间和工作量。

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方 法的优缺点 Pushover分析法 1、Pushover分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、Pushover分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法 1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量

对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

静力弹塑性分析(Push-over Analysis)方法的研究

静力弹塑性分析(Push-over Analy sis)方法的研究 赵 琦1 桑晓艳2 (1.陕西金泰恒业房地产有限公司 710075 西安; 2.陇县建设工程质量安全监督站 721200 陇县) 摘 要:本文介绍了静力弹塑性分析(Push-over Analysis)的基本原理及实施步骤,为实际工程设计提供了一定的参政价值。 关键词:静力弹塑性;性能评价 引言 随着科技的发展,抗震设计方法在不断的完善,但是人类对自然的认识水平是一个渐进过程,地震运动的自然现象也是一样的,现行的抗震设计方法与抗震构造措施,在建筑结构遭遇罕遇地震时,并不能够保证“大震不倒”。那么,如何正确地把握建筑结构在地震中的破坏状况,追踪结构在地震时反应的全过程,了解结构抗震的薄弱楼层和构件,这些在抗震设计过程中都是非常重要的。因此,在设计中利用结构的弹塑性分析来追踪结构在地震时反应的全过程,便于设计者发现结构抗震的薄弱楼层和构件,故是检验地震时结构抗倒塌能力的有效方法。 我国现行抗震规范实行的是以概率可靠度为基础的三水准设防原则,即“小震不坏,中震可修,大震不倒”。所谓的“不坏、可修、不倒”是规范给定的各类结构的最低功能要求,反映的是结构抗震设计的“共性”,不能根据结构用途以及业主要求的不同确定结构各自不同的功能水平,反映结构的“个性”。我国对高层结构的抗震设计主要是采用传统的抗震设计方法和构造措施来保障。这样,结构在罕遇地震下进入弹塑性阶段后,现有结构措施有可能无法保证结构具有充足的延性来耗散施加在结构上的地震能量,进而可能导致结构发生倒塌。静力弹塑性分析方法(Push -over Analy sis)是近年来国内、外兴起的一种等效非线性的静力分析法。这种方法能够揭示出在罕遇地震作用下结构实际的屈服机制,各塑性铰的出现顺序,进而暴露出结构的薄弱环节。我国抗震规范规定:不规则且具有明显薄弱部位可能导致地震时严重破坏的建筑结构,可根据结构特点采用静力弹塑性分析或弹塑性时程分析方法。因此,采用静力弹塑性的分析方法,可以对结构在罕遇地震下的抗震性能进行分析研究,找出其中的薄弱环节,并通过相应的设计方法和构造措施予以加强,从而实现“大震不倒”的设计要求。静力弹塑性(Push-over)分析作为一种结构非线性响应的简化计算方法,比一般线性抗震分析更为合理和符合实际情况,在多数情况下它能够得出比静力弹性甚至动力分析更多的重要信息,且操作十分简便。 1.Push-over分析原理 静力弹塑性(Push-ov er)分析是一种考虑材料非线性来对建筑物的抗震性能进行评价的方法,其中还结合了最近在抗震设计方面很受重视的以性能为基本的抗震设计理论。性能基本设计法的目的是为了使设计人员明确地设定建筑物的目标性能,并为达到该性能而进行设计。故可采用一般方法进行设计后,通过Push-over分析对建筑物进行评价来判断其是否能够达到所设定的目标性能。 Push-over方法的应用范围主要集中于对现有结构或设计方案进行抗侧力能力的计算,从而得到其抗震能力的估计。这种方法从本质上说是一种静力非线性计算方法,对结构进行静力单调加载下的弹塑性分析。与以往的抗震静力计算方法不同之处主要在于它将设计反应谱引入了计算过程和计算成果的工程解释。具体地说,在结构分析模型上施加按某种方式

PUSHOVER分析

提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。 关键词:Pushover 剪力墙结构超限高层 Midas/Gen 静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。 Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。 对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例): 一 Pushover分析步骤 1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。转换仅需要SATWE中的Stru.sat 和Load.sat文件。转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题: 1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义; 2) 需要定义自重、质量; 3) 需要定义层信息,以及墙编号; 此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。 2. 输入Pushover分析控制用数据 荷载最大增幅次数用于定义达到设定的目标位移(或荷载)的分步数,一般来说,分步越多,每次的增幅越小,最终得到的能力谱曲线越平滑。但是分步过多带来计算时间上的大大增加,所以取值应该由少至多进行试算,直到取得满意的曲线结果为止。 图1 10分步,每步最大10次迭代结果

静力弹塑性分析_PushoverAnalysis_的基本原理和计算实例

收稿日期:2003-02-16; 修订日期:2003-05-12 基金项目:华东建筑设计研究院有限公司第2001年度科研项目. 作者简介:汪大绥(1941-),男,江西乐平人,教授级高工,主要从事大型复杂结构设计与研究工作. 文章编号:100726069(2004)0120045209 静力弹塑性分析(Pushover Analysis )的 基本原理和计算实例 汪大绥 贺军利 张凤新 (华东建筑设计研究院有限公司,上海200002) 摘要:阐述了美国两本手册FE M A273/274和AT C -40中关于静力弹塑性分析的基本原理和方法,给出了利用ET ABS 程序进行适合我国地震烈度分析的计算步骤,并用一框剪结构示例予以说明,表明 Pushover 方法是目前对结构进行在罕遇地震作用下弹塑性分析的有效方法。 关键词:静力弹塑性;能力谱;需求谱;性能点中图分类号:P315.6 文献标识码:A The basic principle and a case study of the static elastoplastic analysis (pushover analysis) W ANG Da 2sui HE Jun 2li ZH ANG Feng 2xin (East China Architectural Design &Research Institute C o.,Ltd ,Shanghai 200002,China ) Abstract :This paper reviews the basic principles and methods of the static elasto 2plastic analysis (pushover analysis )in FE MA273/274and in AT C 240.Its main calculation procedures are summarized and a case study is presented for the frame 2shearwall structure designed according to China C ode for Seismic Design by means of ET ABS.It has been proved that pushover analysis is a effective method of structural elastoplastic analysis under the maximum earthquake action.K ey w ords :static elastoplastic ;capacity spectrum ;demand spectrum ;performance point 1 前言 利用静力弹塑性分析(Pushover Analysis )进行结构分析的优点在于:既能对结构在多遇地震下的弹性设 计进行校核,也能够确定结构在罕遇地震下潜在的破坏机制,找到最先破坏的薄弱环节,从而使设计者仅对局部薄弱环节进行修复和加强,不改变整体结构的性能,就能使整体结构达到预定的使用功能;而利用传统的弹性分析,对不能满足使用要求的结构,可能采取增加新的构件或增大原来构件的截面尺寸的办法,结果是增加了结构刚度,造成了一定程度的浪费,也可能存在新的薄弱环节和隐患。 对多遇地震的计算,可以与弹性分析的结果进行验证,看总侧移和层间位移角、各杆件是否满足弹性极限要求,各杆件是否处于弹性状态;对罕遇地震的计算,可以检验总侧移和层间位移角、各个杆件是否超过弹塑性极限状态,是否满足大震不倒的要求。 20卷1期2004年3月 世 界 地 震 工 程 W OR LD E ARTH QUAKE E NGI NEERI NG V ol.20,N o.1 Mar.,2004

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点 Pushover)分析法 1、静力弹塑性分析方法(Pushover)分析法优点: (1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。 (2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。 2、静力弹塑性分析方法(Pushover)分析法缺点: (1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。 (2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。(3)只能从整体上考察结构的性能,得到的结果较为粗糙。且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。不能完全真实反应结构在地震作用下性状。 二、弹塑性时程分析法

1、时程分析法优点: (1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。 (2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。 (3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。 (4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。 2、时程分析法缺点: (1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。 (2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。所以此法的计算工作十分繁重,必须借助于计算机才能完成。而且对于大型复杂结构对计算机要求更高,耗时耗力。 (3)对工程技术人员素质要求较高,工程应用要求较高。从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

静力弹塑性分析

静力弹塑性分析(Pushover分析) ■简介 Pushover分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pushover分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际

的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算 Pushover 分析是评价结构的变形性能的方法之一,分析后会得到如图2.25所示的荷载-位移能力谱曲线。另外,根据结构耗能情况会得到弹塑性需求谱曲线。两个曲线的交点就是针对该地震作用结构所能发挥的最大内力以及最大位移点。当该交点在目标性能范围内,则表示该结构设计满足了目标性能要求。

地震工程中的静力弹塑性_pushover_分析法

第32卷 第2期 贵州工业大学学报(自然科学版) Vol.32No.2 2003年 4月 JOURNAL OF GUIZHOU UNIVERSI TY OF TEC HNOLOGY April.2003 (Natural Science Edition) 文章编号:1009-0193(2003)02-0089-03 地震工程中的静力弹塑性(pushover)分析法 冯峻辉,闫贵平,钟铁毅 (北方交通大学土建学院,北京100044) 摘 要:静力弹塑性(pushover)分析法在抗震结构的设计和评估中,尤其是基于性能/位移的抗 震设计中,具有很大的潜力。根据其发展背景和近况,评述了它在运用中的一些关键论点用于 性能评估的缺陷。为了预测地震反应,提出了一些可能的发展方向。 关键词:抗震设计;静力弹塑性分析;推倒分析 中图分类号:TU311.3 文献标识码:A 0 引 言 基于性能的抗震结构设计概念,包括了工程的设计,评估和施工等,要求在未来不同强度水平的地震作用下结构达到预期的性能目标[1]。为此需在工程实践中完成一个近似且简易的性能评估方法,通常所指的是静力弹塑性分析法(简称为推倒法)。由于推倒法的优点突出:考虑了结构的弹塑性特性,可用图形方式直观表达结构的能力与需求,通常比同一模型的动力分析更快且易于运行,可提供一个较可靠的结构性能预测等特点,正逐渐受到重视和推广。目前国内外许多组织把其纳入抗震规范,如美国的ATC-40,FE MA274等。我国也把其引入 建筑抗震设计规范 (GB50011-2001)。 1 推倒(Pushover)分析方法的原理,用途和实施过程 1.1 Pushover的原理和用途 推倒法是一个用于预测地震引起的力和变形需求的方法。其基本原理是:在结构分析模型上施加按某种方式(如均匀荷载,倒三角形荷载等)模拟地震水平惯性力的侧向力,并逐级单调加大,直到结构达到预定的状态(位移超限或达到目标位移),然后评估结构的性能。 推倒法可用于建筑物的抗震鉴定和加固,以及对新建结构的抗震设计和性能评估。它可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息,如对潜在脆性单元的真实力的需求,估计单元非弹性变形需求,个别单元强度退化时对结构体系行为作用的影响,对层间移位的估计(考虑了强度和高度不连续),对加载路径的证实等,其中一些是不能从弹性静力或动力分析中获得的。 1.2 Pushover的实施过程 推倒分析法的实施步骤为: 1.准备结构数据。包括建立结构模型,构件的物理常数和恢复力模型等; 2.计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服); 3.在结构每一层的质心处,施加沿高度分布的某种水平荷载。施加水平力的大小按以下原则确定:水平力产生的内力与2步所计算的内力叠加后,使一个或一批构件开裂或屈服; 4.对于开裂或屈服的构件,对其刚度进行修改后,再施加一级荷载,使得又一个或一批构件开裂或屈服; 5.不断重复3,4步,直至结构顶点位移足够大或塑性铰足够多,或达到预定的破坏极限状态。 6.绘制基础剪力 顶部位移关系曲线,即推倒分析曲线。 收稿日期:2002-10-25

SAP2000之Pushover分析

Pushover分析:基本概念静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析) ■ 简介 Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。Pus hover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。 计算等效地震静力荷载一般采用如图2.24所示的方法。该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。这样的设计方法可以说是基于荷载的设计(force-based design)方法。一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。 但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。 基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。 Capacity (elastic) Displacement V B a s e S h e a r 图 2.24 基于荷载的设计方法中地震作用的计算

静力弹塑性分析方法简介

静力弹塑性分析方法简介 摘要:pushover方法是基于性能/位移设计理论的一种等效静力弹塑性近似计算方法,该方法弥补了传统的基于承载力设计方法无法估计结构进入塑性阶段的缺陷,在计算结果相对准确的基础上,改善了动力时程分析方法技术复杂、计算工作量大、处理结果繁琐,又受地震波的不确定性、轴力和弯矩的屈服关系等因素影响的情况,能够非常简捷的求出结构非弹性效应、局部破坏机制、和整体倒塌的形成方式,便于进一步对旧建筑的抗震鉴定和加固,对新建筑的抗震性能评估以及设计方案进行修正等。pushover方法以其概念明确、计算简单、能够图形化表达结构的抗震需求和性能等特点,正逐渐受到研究和设计人员的重视和推广。目前,国内外论述pushover方法的文章已经很多,但大部分是针对某一方面的论述。为了给读者一个比较快速全面的认识,本文在综合大量文献的基础上,对pushover方法的基本原理、分析步骤、等效体系的建立、侧向荷载的分布形式等方面做了比较全面的论述。 关键词:基于性能抗震设计;静力弹塑性分析;动力时程分析方法;恢复力模型;目标位移 abstract:pushover is an equivalent static elastoplastic approximate method which based on performance or displacement design theory. this method offsets the drawback of the force-base method which can’t estimate the inelastic characteristic of the structure, and improves the situation

【结构设计】学习静力弹塑性分析方法总结

学习静力弹塑性分析方法总结 静力弹塑性分析(Push-over)方法最早是1975年由Freeman等提出的,以后虽有一定发展,但未引起更多的重视.九十年代初美国科学家和工程师提出了基于性能(Performance-based)及基于位移(Displacement-based)的设计方法,引起了日本和欧洲同行的极大兴趣,Push-over方法随之重新激发了广大学者和设计人员的兴趣,纷纷展开各方面的研究.一些国家抗震规范也逐渐接受了这一分析方法并纳入其中,如美国ATC-40、FEMA-273&274、日本、韩国等国规范.我国2001规范提出“弹塑性变形分析,可根据结构特点采用静力非线性分析或动力非线性分析”,这里的静力非线性分析,即主要即是指Push-over分析方法. 1、Push-over方法的基本原理和实施步骤 (1)基本原理 Push-over方法从本质上说是一种静力分析方法,对结构进行静力单调加载下的弹塑性分析.具体地说即是,在结构分析模型上施加按某种方式模拟地震水平惯性力的侧向力,并逐级单调加大,构件如有开裂或屈服,修改其刚度,直到结构达到预定的状态(成为机构、位移超限或达到目标位移).其优点突出体现在:较底部剪力法和振型分解反应谱法,它考虑了结构的弹塑性特性;较时程分析法,其输入数据简单,工作量较小. (2)实施步骤 (a)准备结构数据:包括建立结构模型、构件的物理参数和恢复力模型等; (b)计算结构在竖向荷载作用下的内力(将与水平力作用下的内力叠加,作为某一级水 平力作用下构件的内力,以判断构件是否开裂或屈服);

(c)在结构每层的质心处,沿高度施加按某种分布的水平力,确定其大小的原则是:水平力产生的内力与(b)步计算的内力叠加后,恰好 使一个或一批件开裂或屈服; (d)对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服; (e)不断重复(c)、(d)步,直到结构达到某一目标位移(对于普通Push-over方法)、或结构发生破坏(对于能力谱设计方法). 2、Push-over方法研究进展 (1)Push-over方法对结构性能评估的准确性 许多研究成果表明,Push-over方法能够较为准确(或具有一定的适用范围)反映结构的地震反应特征.Lawson和Krawinkler对6个 2~40层的结构(基本周期为0.22~2.05秒)Push-over分析结果与动力时程分析结果比较后,认为对于振动以第一振型为主、基本周期在2秒以内的结构,Push-over方法能够很好地估计结构的整体和局部弹塑性变形,同时也能揭示弹性设计中存在的隐患(包括层屈服机制、过大变形以及强度、刚度突变等).Fajfar通过7层框剪结构试验结果与Push-over方法分析结果的对比得出结论,Push-over方法能够反映结构的真实强度和整体塑性机制,因此适宜于实际工程的设计和已有结构的抗震鉴定.Peter对9层框剪结构的弹塑性时程分析结果与Push-over方法分析结果进行了对比,认为无论是框架结构还是框剪结构,两种方法计算的结构最大位移和层间位移均很一致.Kelly考察了一幢17层框剪结构和一幢9层框架结构分别在1994年美国Northridge地震和1995年日本神户地震中的震害,并采用Push-over方法对两结构进行分析,发现Push-over方法能够对结构的最大反应和结构损伤进行合理地估计.Lew对一幢7层框架结构进行了非线性静力分析和非线性动力分析,发现非线性静力分析估计的构件的变形与非线性动力分析多条波计算结果的平均值大致相同.笔者曾对6榀框架(层数为3~16,基本周期为0.59~2.22秒)进行了Push-over分析与动力时程分析,发现两

静力非线性分析pushover

pushover分析 2011-07-08 20:03:25| 分类:默认分类|举报|字号订阅 SAP2000高级应用: 1.基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具, 得到了重视和发展。 这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。 第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式; 第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应, 目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理 论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移 和结果评价的内容。本文中,将两方面的内容统称为“Pushover分析”。 基于结构行为设计使用Pushover分析可以得到能力曲线,并确定结构近似需 求谱与能力曲线的交点。其中需求曲线是基于反应谱曲线,能力谱是基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表 征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需

现行抗震设计规范中推荐的静力弹塑性分析(push-over)的探索

关于EPDA的静力弹塑性分析程序 (push-over)的探讨 陈辉(厦门市建筑设计院有限公司361004) [提要] 本文简要介绍了静力弹塑性分析的原理和实施步骤,并通过工程实例进行相关的对比和讨论。 [关键词]静力弹塑性分析;push-over;反应谱;结构抗震性能评价 Some Discussion about Push-Over Analysis Abstract:In this paper,the static push-over analysis,POA is briefly introduced,then some contrast and discussion are gived with practical cases. Keywords:nonlinear static analysis,push-over,response spectrum,structural seismic capacity 1 引言 现行的《建筑抗震设计规范》(GB50011-2001)中,3.6.2条为:“……罕遇地震作用下的弹塑性变形分析。此时,可根据结构特点采用静力弹塑性分析或弹塑性时程分析方法。”这里的静力弹塑性分析,即静力非线性分析,除了指一般的与反应谱结合不密切的非线性静力分析外,也包括了push-over 方法。《抗规》条文说明5.5.3明确提出“……较为精确的结构弹塑性分析方法,可以是三维的静力弹塑性(如push-over方法)……”。 因为弹塑性时程分析对计算机软硬件和分析人员要求较高,工作量也较大,在一段时期内不容易成为一种被广泛采用的方法。因此逐步推广push-over这种较一般静力分析有许多改进而且相对简便易行的方法,在目前是一种可行的方向。 2 原理与实施步骤 2.1 原理 Push-over方法是近年来在国外得到广泛应用的一种结构抗震能力评价的新方法,其应用范围主要集中于对现有结构或设计方案进行抗震能力的估计。这种方法从本质上说是一种静力非线性计算方法,与以往的抗震静力计算方法不同之处主要在于它将设计反应谱引入了计算过程和计算成果的工程解释。这种方法的优点在于:水平力的大小是根据结构在不同工作阶段的周期由设计反应谱求得,而分布则根据结构的振型变化求得。 2.2实施步骤 (1)准备工作:建立结构模型,包括几何尺寸、物理参数以及节点和构件的编号,并输入构件的实配钢筋以便求出各个构件的塑性承载力。 (2)求出结构在竖向荷载作用下的内力。这时还要求出结构的基本自振周期。 (3)施加一定量的水平荷载。水平力大小的确定原则是:水平力产生的内力与第(2)步竖向荷载产生的内力叠加后,恰好能使一个或一批构件进入屈服。 (4)对在上一步进入屈服的构件的端部,设定塑性铰点变更结构的刚度,这样,相当于形成了一个新的结构。求出这个“新”结构的自振周期,在其上再施加一定量的水平荷载,又使一个或一批构件恰好进入屈服。 (5)不断地重复第(4)步,直到结构的侧向位移达到预定的破坏极限。记录每一次有新的塑性铰出现后结构的周期,累计每一次施加的荷载。 (6)成果整理:将每一个不同的结构自振周期及其对应的地震影响系数绘成曲线,也把相应场地的各条反应谱曲线绘在一起,如图1所示。这样如果结构反应曲线能够穿过某条反应谱,就说明结构能够抵抗那条反应谱所对应的地震烈度。还可以在 3 工程实例 以下两个工程为作者参与设计的工程,均用SATWE进行过振型分解法分析,现用EPDA进行 周期 图1 分析成果曲线

建筑结构弹塑性分析方法简介

弹塑性分析方法 静力弹塑性分析(PUSH-OVER ANAL YSIS)方法也称为推覆法,该方法基于美国的FEMA-273抗震评估方法和A TC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。 弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。 1引言 《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。 历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando 地震、1975年日本大分地震也出现了类似的情况。相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。 可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。 2静力弹塑性分析 计算方法 (1) 建立结构的计算模型、构件的物理参数和恢复力模型等; (2) 计算结构在竖向荷载作用下的内力; (3) 建立侧向荷载作用下的荷载分布形式,将地震力等效为倒三角或与第一振型等效的水平荷载模式。在结构各层的质心处,沿高度施加以上形式的水平荷载。确定其大小的原则是:水平力产生的内力与前一步计算的内力叠加后,恰好使一个或一批杆件开裂或屈服; (4) 对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服; (5) 不断重复步骤(3)、(4),直至结构达到某一目标位移或发生破坏,将此时的结构的变形和承载力与允许值比较,以此来判断是否满足“大震不倒”的要求。 计算模型 POA方法中结构的弹塑性是通过定义构件力和变形的关系曲线实现。对于梁和柱,可以较为准确的模拟。但是对于剪力墙,一直没有理想的计算模型,目前可以进行POA的商用计算软件包括MIDAS/GEN等,是将剪力墙简化为两根刚体梁通过非线性弹簧(包括轴向变形、弯曲变形、剪切变形弹簧)连接的形式,如图1所示,相对于壳单元而言比较粗糙。而SAP2000、ETABS等程序目前只能对框架结构进行POA分析,对于带剪力墙的结构只能人为简化为杆系模拟。 POA方法的优缺点

相关主题
文本预览
相关文档 最新文档