当前位置:文档之家› C反汇编实例

C反汇编实例

C反汇编实例
C反汇编实例

C反汇编实例(2011-07-13 13:04:41)转载▼

标签:c 反汇编it 分类:驱动与内核

该例的要求是求两个3x3矩阵的乘积,其C源代码如下:

intmyfunction(int a[3][3], int b[3][3], int c[3][3])

{

inti, j;

for (i = 0; i< 3; ++i)

{

for (j = 0; j < 3; ++j)

c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j];

}

return 0;

}

相当简单吧?呵呵,那么希望你看过了下面的反汇编代码后,还能这样乐观。

如下的反汇编代码,据原书作者,在VC2003,debug模式下得到,同时我在VC2008PRO下得到汇编代码完全相同,可以通用,但此处引用原书中的代码。

00411A3E movdwordptr [i],0

00411A45 jmp myfunction+30h (411A50h)

00411A47 moveax,dwordptr [i]

00411A4A add eax,1

00411A4D movdwordptr [i],eax

00411A50 cmpdwordptr [i],3

00411A54 jge myfunction+0AEh (411ACEh)

00411A56 movdwordptr [j],0

00411A5D jmp myfunction+48h (411A68h)

00411A5F moveax,dwordptr [j]

00411A62 add eax,1

00411A65 movdwordptr [j],eax

00411A68 cmpdwordptr [j],3

00411A6C jge myfunction+0A9h (411AC9h)

00411A6E moveax,dwordptr [i]

00411A71 imul eax,eax,0Ch

00411A74 movecx,dwordptr [a]

00411A77 movedx,dwordptr [j]

00411A7A movesi,dwordptr [b]

00411A7D moveax,dwordptr [ecx+eax]

00411A80 imuleax,dwordptr [esi+edx*4]

00411A84 movecx,dwordptr [i]

00411A87 imul ecx,ecx,0Ch

00411A8A movedx,dwordptr [a]

00411A8D movesi,dwordptr [j]

00411A90 movedi,dwordptr [b]

00411A93 movecx,dwordptr [edx+ecx+4]

00411A97 imulecx,dwordptr [edi+esi*4+0Ch]

00411A9C add eax,ecx

00411A9E movedx,dwordptr [i]

00411AA1 imul edx,edx,0Ch

00411AA4 movecx,dwordptr [a]

00411AA7 movesi,dwordptr [j]

00411AAA movedi,dwordptr [b]

00411AAD movedx,dwordptr [ecx+edx+8]

00411AB1 imuledx,dwordptr [edi+esi*4+18h]

00411AB6 add eax,edx

00411AB8 movecx,dwordptr [i]

00411ABB imul ecx,ecx,0Ch

00411ABE add ecx,dwordptr [c]

00411AC1 movedx,dwordptr [j]

00411AC4 movdwordptr [ecx+edx*4],eax

00411AC7 jmp myfunction+3Fh (411A5Fh)

00411AC9 jmp myfunction+27h (411A47h)

首先先简单提一下,C语言中多维数组的存储方式,其存储的规则是,列优先于行,也就是:若有a[3][3],则顺序是a[0][0], a[0][1], a[0][2], a[1][0], a[1][1], a[1][2], a[2][0], a[2][1], a[2][2]。其实所谓的多维数组这样高级语言才有的数据结构,在底层实现中,无非就是一片连续分配的一维内存空间而已,大家千万别看得太过神秘了。

接着要提一下C语言中指针在汇编实现时的情况。汇编可以说把高级语言中几乎所有现象的本质都暴露了出来。现观察一下以下情况:对于int a[3][3]定义的多维数组变量a,a本身表示的是该矩阵首行的地址,而a[0](或者*a)是首行首列元素的地址,两者是不同的指针类型,然而很容易知道在地址数值上两者是相等的,我们引申开来,比如我们要访问a[m][n],我们还可以写作*(*(a + m) + n),但由上段所述,实际上就是把a所含的地址再往后移m * 3 * 4(int占4个字节) + n * 4个字节(此注:a + m不是a所在处后移m个字节!可以把a理解为int[3]这种类型的指针,所以加了m,其实是加了12* m个bytes)就是所要访问的内存,换句话说任何多维数组总可以用一个一维普通指针(比如使用指针类型强制转换)完全访问到,尽管在高级语言中这样的做法是非常不明智且危险的。但汇编却正是这么做的!比如我们有C语句:a[i][j] = 2;,用C还可以写作*(*(a + i) + j) = 2,而用汇编则可能是这样,moveax, dwordptr [i] ; 把i的值读入eax

imuleax, eax, 0Ch ; 把eax乘以12,因为一行有三个int,3 * 4 = 12

lea ecx, a[eax] ; 相当于将a所含的地址与eax相加后存入ecx

movedx, dwordptr [j] ; 把j的值读入edx

movdwordptr [ecx + edx * 4], 2 ; ecx + edx就是a[i][j]的地址

我们尝试省略寄存器的中间步骤、并逐式代入的话,就直接可以推出这个式子:movdwordptr [a + i * 12 + j * 4], 2 ;这个式子和上述的完全一致。

最后提到的就是C中for语句的汇编实现。

for (init; condition; expr)

loop-body

大家都应当很清楚,执行的顺序是:先init初始化循环变量,接着判断condition,若满足则执行循环体(loop-body),再执行expr,判断条件是否满足,满足则执行loop-body……汇编代码是非常机械地对应着上述过程,例:

for (i = 0; i< 5; ++i)

loop-body

则相应汇编代码:

; 初始化代码

movdwordptr [i], 0

jmp (*); 无条件跳转到(*)所在代码,这里不列出具体的代码地址了

; 这段就是expr,类似用一个中间变量(只不过这里是寄存器)的办法来给i加一(#)moveax, dwordptr [i]

addeax, 1

movdwordptr [i], eax

; 这段则是判断条件,condition

(*) cmpdwordptr [i], 5 ; 比较i和5

jge (**) ; jge表示jump to (**) when i is greater than or equal to 5,大于等于5

; 跳转,(**)指向的是for循环后面接着的代码,也就是跳出循环

; 以下段省略,是循环体loop-body

jmp (#) ;无条件跳转到expr,并进而判断条件

; 以下是for循环以外的代码

(**)…

-----------------------------------------------------------------------

那么有了上述三方面的基础,我们就可以来逐一解读那段“传奇”的汇编代码了。初始化i

00411A3E movdwordptr [i],0

跳转至条件判断

00411A45 jmp myfunction+30h (411A50h)

循环表达式,对i每轮加1

00411A47 moveax,dwordptr [i]

00411A4A add eax,1

00411A4D movdwordptr [i],eax

条件判断,若不满足i< 3,则跳出循环

00411A50 cmpdwordptr [i],3

00411A54 jge myfunction+0AEh (411ACEh)

{ i的循环体

这里比较特殊,传说中的“嵌套循环”,可以对比

最前面的C代码看一下,其实是一样的

初始化j

00411A56 movdwordptr [j],0

跳至j循环的条件判断

00411A5D jmp myfunction+48h (411A68h)

每轮对j加1

00411A5F moveax,dwordptr [j]

00411A62 add eax,1

00411A65 movdwordptr [j],eax

j循环的条件判断

00411A68 cmpdwordptr [j],3

00411A6C jge myfunction+0A9h (411AC9h)

{ j的循环体

…这里省略的是数组赋值的过程代码,会在稍后分析

} j 的循环体结束

跳到j的expr

00411AC7 jmp myfunction+3Fh (411A5Fh)

} i的循环体结束

跳至i的expr

00411AC9 jmp myfunction+27h (411A47h)

以下我们再详细分析下上面挖下来的数组赋值的代码。为了方便起见,再把C语句贴如下: c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j];

; 还记得前面所说的汇编访问二维数组的方式么?忘记的话,再回过头去看一下哈

; 第i行,每行3个占4字节的int类型,所以乘以i×12(0Ch),表示行偏移00411A6E moveax,dwordptr [i]

00411A71 imul eax,eax,0Ch

;往寄存器送入一些变量

00411A74 movecx,dwordptr [a]

00411A77 movedx,dwordptr [j]

00411A7A movesi,dwordptr [b]

00411A7D moveax,dwordptr [ecx+eax] ; ecx已经含有a数组的起始地址,这句相当于往

; eax存入基址+i行偏移这个地址开始的int类

; 型值,也就是a[i][0]

00411A80 imuleax,dwordptr [esi+edx*4];这句比较好理解,esi是b数组起始地址

; edx * 4表示列偏移,相当于eax * b[0][j],

; 也就是eax = a[i][0] * b[0][j]

; 同理,ecx获得i行偏移量

00411A84 movecx,dwordptr [i]

00411A87 imul ecx,ecx,0Ch

00411A8A movedx,dwordptr [a]; edx保存的a数组基地址

00411A8D movesi,dwordptr [j] ; esi = j

00411A90 movedi,dwordptr [b] ; edi保存的b数组基地址

00411A93 movecx,dwordptr [edx+ecx+4] ; edx基址= a

; ecx行偏移= 第i行

; 4 列偏移= 第1列

; 综上,ecx = a[i][1]

; edi b的基址;esi = j,第j列;0Ch,行偏移量,相当于是第1行

; 综上,ecx = ecx * b[1][j],即ecx = a[i][1] * b[1][j]

00411A97 imulecx,dwordptr [edi+esi*4+0Ch]

; 把第一项a[i][0] * b[0][j]和第二项相加存入eax,从这也可以看出

; 其实eax就是用来保存最后结果的,此时eax = a[i][0] * b[0][j] + a[i][1] * b[1][j]

00411A9C add eax,ecx

; 以下这段不用解释了吧?依样花葫芦,到411AB6为止

; eax = a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j]

00411A9E movedx,dwordptr [i]

00411AA1 imul edx,edx,0Ch

00411AA4 movecx,dwordptr [a]

00411AA7 movesi,dwordptr [j]

00411AAA movedi,dwordptr [b]

00411AAD movedx,dwordptr [ecx+edx+8]

00411AB1 imuledx,dwordptr [edi+esi*4+18h]

00411AB6 add eax,edx

; 首先是老规矩,通过ecx与edx找到了c[i][j]的内存地址,411AC4这句就是把

; 前边eax中的计算结果写入到内存中代表c[i][j]这个元素的位置

00411AB8 movecx,dwordptr [i]

00411ABB imul ecx,ecx,0Ch

00411ABE add ecx,dwordptr [c]

00411AC1 movedx,dwordptr [j]

00411AC4 movdwordptr [ecx+edx*4],eax

这样就完成了a中第i行每个元素分别与b中第j列的每个元素的乘积保存到c的第i行第j 列元素中,这么一个操作,确实比较复杂。如果看不大懂,不要紧,回过头多看几遍,一定会明白的,如果说有些话我的表述不妥当,也请大侠指出,以免误人子弟J

我的一些朋友问我,研究汇编,尤其研究C反汇编,到底有什么用处?我的理解是,除非你是底层开发人员,否则我们的目的并非是学习如何运用汇编写复杂的算法程序,而是将它应用在排错、性能优化等方面,如果你能看懂一些汇编代码,那么当你的客户程序崩溃时,你打开调试器,就可以先简要分析出出错程序代码的大致意思,这对你的调试是相当有帮助的。而如果汇编懂得较深的话(我只是皮毛而已),那么就可以对C目标程序进行有目的的修改以提高程序性能,因为有时候即便是release模式下的exe文件,仍然有可以优化之处,只是这时一定要谨慎再谨慎,万一捡了芝麻丢了西瓜就太不划算了。当然了还有另外某些用途,呵呵,比较邪恶,就不点破了……总之希望本文能对大家有所帮助!

汇编语言 快速入门

“哎哟,哥们儿,还捣鼓汇编呢?那东西没用,兄弟用VB"钓"一个API就够你忙活个十天半月的,还不一定搞出来。”此君之言倒也不虚,那吾等还有无必要研他一究呢?(废话,当然有啦!要不然你写这篇文章干嘛。)别急,别急,让我把这个中原委慢慢道来:一、所有电脑语言写出的程序运行时在内存中都以机器码方式存储,机器码可以被比较准确的翻译成汇编语言,这是因为汇编语言兼容性最好,故几乎所有跟踪、调试工具(包括WIN95/98下)都是以汇编示人的,如果阁下对CRACK颇感兴趣……;二、汇编直接与硬件打交道,如果你想搞通程序在执行时在电脑中的来龙去脉,也就是搞清电脑每个组成部分究竟在干什么、究竟怎么干?一个真正的硬件发烧友,不懂这些可不行。三、如今玩DOS的多是“高手”,如能像吾一样混入(我不是高手)“高手”内部,不仅可以从“高手”朋友那儿套些黑客级“机密”,还可以自诩“高手”尽情享受强烈的虚荣感--#$%&“醒醒!” 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指

最全的脱壳,反编译 ,汇编工具集合

本文由nbdsb123456贡献 最全的脱壳,反编译,汇编工具集合 破解工具下载连接 1 调试工具 Ollydbg V1.10 正式汉化修改版+最新最全插件2.02m SmartCheck V6.20 20.54M Compuware SoftICE V4.3.1 精简版10.57M Compuware (SoftICE) Driver Studio V3.1 完全版176.52M TRW2000 V1.22 汉化修改版+全部最新插件1.47Mforwin9X 动态破解VB P-code程序的工具 WKTVBDebugger1.4e 2 反汇编工具 W32Dasm是一个静态反汇编工具,也是破解人常用的工具之一,它也被比作破解人的屠龙刀。 W32Dasm10.0修改版是经Killer在W32Dasm8.93基础上修改的,修改后的W32Dasm功能更强大,能完美显示中文字符串及VB程序,内含16进制编辑器,破解修改软件更容易,真可谓是反汇编极品! W32Dasm V10.0 汉化增强版419 KB 反汇编工具老大,功能大大的胜过了w32dasm。学习加解密的朋友不可错过。即使不用你也要收藏一份。:) IDA Pro Standard V4.60.785 零售版 + Flair + SDK33.08 MB C32Asm是集反汇编、16进制工具、Hiew修改功能与一体的新工具。强烈推荐! C32Asm V0.4.12 1.97 MB C32Asm V0.4.12 破解补丁 650 KB 3 反编译工具 Delphi DeDe3.50.04 Fix增强版5.3 MB 4 PE相关工具 PE编辑工具 Stud_PE1.8 PE工具,用来学习PE格式十分方便。 https://www.doczj.com/doc/754205956.html,/tools/PE_tools/Editor/stdupe/Stud_PE1.8.zip ProcDump32 v1.6.2 FINAL Windows下的脱壳工具并可进行PE编辑。可惜不更新了,己过时,现阶段一般只用来作为PE编辑工具使用。 Win9x/2K 大小:161K https://www.doczj.com/doc/754205956.html,/tools/PE_tools/Editor/ProcDump/PDUMP32.ZIP LordPE DLX 强大的PE编辑工具,有了它,其它的相关工具你可以扔进垃圾堆了。 https://www.doczj.com/doc/754205956.html,/tools/PE_tools/Lordpe/LPE-DLX.ZIP PEditor 1.7 可修复PE文件头,一款相当方便的PE文件头编辑工具。 417K PE Tools v1.5.4 另一款PE编辑工具。 https://www.doczj.com/doc/754205956.html,/tools/PE_tools/Editor/PEditor/PEDITOR.ZIP 输入表重建工具 ImportREC v1.6 FINAL 各类插件可以手工重建Import表,支持UPX、Safedisc 1、PECompact、PKLite32、Shrinker、ASPack, ASProtect、tELock等。 160K

(完整word版)汇编语言常用指令大全,推荐文档

MOV指令为双操作数指令,两个操作数中必须有一个是寄存器. MOV DST , SRC // Byte / Word 执行操作: dst = src 1.目的数可以是通用寄存器, 存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作. PUSH SRC //Word 入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器. 入栈时高位字节先入栈,低位字节后入栈. POP DST //Word 出栈操作数除不允许用立即数和CS段寄存器外, 可以为通用寄存器,段寄存器和存储器. 执行POP SS指令后,堆栈区在存储区的位置要改变. 执行POP SP 指令后,栈顶的位置要改变. XCHG(eXCHanG)交换指令: 将两操作数值交换. XCHG OPR1, OPR2 //Byte/Word 执行操作: Tmp=OPR1 OPR1=OPR2 OPR2=Tmp 1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 3.存储器与存储器之间不能交换数据. XLAT(TRANSLATE)换码指令: 把一种代码转换为另一种代码. XLAT (OPR 可选) //Byte 执行操作: AL=(BX+AL) 指令执行时只使用预先已存入BX中的表格首地址,执行后,AL中内容则是所要转换的代码. LEA(Load Effective Address) 有效地址传送寄存器指令 LEA REG , SRC //指令把源操作数SRC的有效地址送到指定的寄存器中. 执行操作: REG = EAsrc 注: SRC只能是各种寻址方式的存储器操作数,REG只能是16位寄存器 MOV BX , OFFSET OPER_ONE 等价于LEA BX , OPER_ONE MOV SP , [BX] //将BX间接寻址的相继的二个存储单元的内容送入SP中 LEA SP , [BX] //将BX的内容作为存储器有效地址送入SP中 LDS(Load DS with pointer)指针送寄存器和DS指令 LDS REG , SRC //常指定SI寄存器。 执行操作: REG=(SRC), DS=(SRC+2) //将SRC指出的前二个存储单元的内容送入指令中指定的寄存器中,后二个存储单元送入DS段寄存器中。

软件破解入门教程

先教大家一些基础知识,学习破解其实是要和程序打交道的,汇编是破解程序的必备知识,但有可能部分朋友都没有学习过汇编语言,所以我就在这里叫大家一些简单实用的破解语句吧! ---------------------------------------------------------------------------------------------------------------- 语句:cmp a,b //cmp是比较的意思!在这里假如a=1,b=2 那么就是a与b比较大小. mov a,b //mov是赋值语句,把b的值赋给a. je/jz //就是相等就到指定位置(也叫跳转). jne/jnz //不相等就到指定位置. jmp //无条件跳转. jl/jb //若小于就跳. ja/jg //若大于就跳. jge //若大于等于就跳. 这里以一款LRC傻瓜编辑器为例,讲解一下软件的初步破解过程。大家只要认真看我的操作一定会!假如还是不明白的话提出难点帮你解决,还不行的话直接找我!有时间给你补节课!呵呵! 目标:LRC傻瓜编辑器杀杀杀~~~~~~~~~ 简介:本软件可以让你听完一首MP3歌曲,便可编辑完成一首LRC歌词。并且本软件自身还带有MP3音乐播放和LRC歌词播放功能,没注册的软件只能使用15天。 工具/原料 我们破解或给软件脱壳最常用的软件就是OD全名叫Ollydbg,界面如图: 它是一个功能很强大的工具,左上角是cpu窗口,分别是地址,机器码,汇编代码,注释;注释添加方便,而且还能即时显示函数的调用结果,返回值. 右上角是寄存器窗口,但不仅仅反映寄存器的状况,还有好多东东;双击即可改变Eflag的值,对于寄存器,指令执行后发生改变的寄存器会用红色突出显示. cpu窗口下面还有一个小窗口,显示当前操作改变的寄存器状态. 左下角是内存窗口.可以ascii或者unicode两种方式显示内存信息. 右下角的是当前堆栈情况,还有注释啊. 步骤/方法 1. 我们要想破解一个软件就是修改它的代码,我们要想在这代码的海洋里找到我们破解关键的代码确实很棘 手,所以我们必须找到一定的线索,一便我们顺藤摸瓜的找到我们想要的东东,现在的关键问题就是什么

ARM平台下ELF文件反汇编

ARM平台下的反汇编 目的 作为代码插桩过程的前提,首先需要对于所提供的二进制代码进行必要的分析,了解ELF文件的结构以及ARM平台的指令编码,将二进制01码翻译成为用户可读的汇编代码。通过对于汇编代码的分析,用户可以得到程序应用中各个函数起始地址以及程序各个模块的流程调用等重要信息,为代码插桩提供详细的数据。经过插桩的代码最后通过再一次汇编的过程输出到目标文件。因此,正确、快速地进行平台下的反汇编工作显得十分关键。 ARM平台介绍[1-2] ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC(精简指令集计算机)处理器、相关技术及软件。技术具有性能高、成本低和能耗低等特点。经历过早期自己设计和制造芯片的不景气之后,公司自己开始不制造芯片,只将芯片的设计方案授权(licensing)给其他公司,由它们来生产,形成了较为独特的盈利模式。RISC结构优先选取使用频率最高的简单指令,避免复杂指令;将指令长度固定,指令格式和寻地方式种类减少;以控制逻辑为主,不用或少用微码控制等。ARM处理器在秉承RISC体系优点的基础上,进行了针对嵌入式系统的功能扩展,使得指令更加灵活,处理器性能在嵌入式平台上更加突出。 ARM微处理器的核心结构如下图所示: Figure 1.ARM处理器核心结构示意图[2] 数据指令通过数据总线进入到处理器核心,然后在指令被执行之前经由指令解码器翻译。和所有精简指令集处理器一样,ARM采用了load-store架构,load指令将数据从内存拷贝到寄存器,store指令将数据从寄存器转储到内存,所有的数据处理在寄存器中完成。 ARM处理器是32位的处理器,所有的指令默认将寄存器视为32位的值,因此Sign extend会在数据写入寄存器之前将所有8位或者12位的数值转换为32位的数值。ARM指令通常有两个源寄存器: Rn, Rm 以及一个目标寄存器,操作数都是从寄存器通过内部总线读取得到。 核心的ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) 从内部总线A,B上取得操作数进行运算,然后将结果写入目标寄存器。 ARM处理器一个很大的特色是寄存器Rm可以选择性地在进入ALU运算之前在barrel shifter中进

(完整word版)汇编语言指令集合-吐血整理,推荐文档

8086/8088指令系统记忆表 数据寄存器分为: AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据. BH&BL=BX(base):基址寄存器,常用于地址索引; CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器. DH&DL=DX(data):数据寄存器,常用于数据传递。他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。 另一组是指针寄存器和变址寄存器,包括: SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置; BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置; SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针; DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。 指令指针IP(Instruction Pointer) 标志寄存器FR(Flag Register) OF(overflow flag) DF(direction flag) CF(carrier flag) PF(parity flag) AF(auxiliary flag) ZF(zero flag) SF(sign flag) IF(interrupt flag) TF(trap flag) 段寄存器(Segment Register) 为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址: CS(Code Segment):代码段寄存器; DS(Data Segment):数据段寄存器; SS(Stack Segment):堆栈段寄存器;

一个简单的C程序反汇编解析.

一个简单的 C++程序反汇编解析 本系列主要从汇编角度研究 c++语言机制和汇编的对应关系。第一篇自然应该从最简单的开始。 c++的源代码如下: class my_class { public : my_class( { m_member = 1; } void method(int n { m_member = n; } ~my_class( { m_member = 0; } private :

int m_member; }; int _tmain(int argc, _tchar* argv[] { my_class a_class; a_class.method(10; return 0; } 可以直接 debug 的时候看到 assembly 代码,不过这样获得的代码注释比较少。比较理想的方法是利用 vc 编译器的一个选项 /fas来生成对应的汇编代码。 /fas还会在汇编代码中加入注释注明和 c++代码的对应关系,十分有助于分析。 build 代码便可以在输出目录下发现对应的 .asm 文件。本文将逐句分析汇编代码和 c++的对应关系。 首先是 winmain : _text segment _wmain proc push ebp ; 保存旧的 ebp mov ebp, esp ; ebp保存当前栈的位置 push -1 ; 建立 seh(structured exception handler链 ; -1表示表头 , 没有 prev

push __ehhandler$_wmain ; seh异常处理程序的地址 mov eax, dword ptr fs:0 ; fs:0指向 teb 的内容,头 4个字节是当前 seh 链的地址 push eax ; 保存起来 sub esp, d8h ; 分配 d8h 字节的空间 push ebx push esi push edi lea edi, dword ptr [ebp-e4h] ; e4h = d8h + 4 * 3,跳过中间 ebx, esi, edi mov ecx, 36h ; 36h*4h=d8h,也就是用 36h 个 cccccccch 填满刚才分配的 d8h 字节空间 mov eax, cccccccch rep stosd mov eax, dword ptr ___security_cookie xor eax, ebp push eax ; ebp ^ __security_cookie压栈保存 lea eax, dword ptr [ebp-0ch] ; ebp-0ch 是新的 seh 链的结构地址(刚压入栈中的栈地址 mov dword ptr fs:0, eax ; 设置到 teb 中作为当前 active 的 seh 链表末尾 到此为止栈的内容是这样的: 低地址 security cookie after xor

IAR -arm 入门教程

IAR 使用说明 关于文档(初版): 1.主要是为了给IAR的绝对新手作参考用 2.emot制件,由Zigbee & IAR 学习小组保持修订权 3.希望用IAR朋友能将它修订完善 4.任何人可无偿转载、传播本文档,无须申请许可,但请保留文档来源及标志 5.如无重大升级,请沿用主版本号 版本 版本号制作时间制定人/修改人说明 1.00 2008/7/27 emot 初版(仅供新手参考) 1.01 2010/8/19 Emot 增加 下载程序(第四章) 在线调试程序(第五章) 序: 其实IAR和keil区别也没有多大,不过很多人就是怕(当初我也怕)。怕什么呢,怕学会了,真的就是害怕学习的心理让新手觉得IAR是个不好用的或者说“还不会用的”一个工具吧。我也是一个刚毕业的小子,如果说得不妥,还请大家来点砖头,好让小组筑高起来。(Zigbee & IAR 学习小组地址是https://www.doczj.com/doc/754205956.html,/673) 初版我将会说明以下3个问题,IAR的安装、第一个IAR工程的建立和工作编译。这是我写的第一个使用说明,不足的以后补充吧。 一、IAR软件安装图解 1.打开IAR软件安装包进入安装界面 打开软件开发包

软件安装界面 2.按照提示步骤执行,一直到授权页面,输入序列号,IAR中有两层序列号,所以要输入两 组序列号。 输入第一组序列号

3.选择安装路径(最好默认,不默认也不影响使用) 路径选择页面

修改路径4.选择全部安装(Full) 选择全部安装5.按提示知道安装完成。

安装完成页面 二、新建第一个IAR工程 用IAR首先要新建的是工作区,而不是工程。在工作区里再建立工程,一个工作区里似乎也不能建多个工程(我试过,但没成功,不知道IAR里提出workspace的概念是为什么?)要不打IAR的help来看,说清楚也是头痛的事,先知道有要在工作空间里建工程就对了。新建IAR工作空间,首先是菜单File里选择Open再选择Workspace,为方便说明再遇到菜 单我就直接说成File-Open-Workspace这样了。看了下面图上的红圈就知道是怎么回事了。 接着就会看到一片空白。这时就是新的“办公区”了。

反汇编基础知识

计算机寄存器分类简介: 32位CPU所含有的寄存器有: 4个数据寄存器(EAX、EBX、ECX和EDX) 2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP) 6个段寄存器(ES、CS、SS、DS、FS和GS) 1个指令指针寄存器(EIP) 1个标志寄存器(EFlags) 1、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。 对低16位数据的存取,不会影响高16位的数据。 这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。 程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 寄存器EAX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。可用于乘、除、输入/输出等操作,使用频率很高; 寄存器EBX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器ECX称为计数寄存器(Count Register)。

在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数; 寄存器EDX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址, 在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果, 而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。 2、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。 其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。 寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量, 用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。 3、指针寄存器 其低16位对应先前CPU中的BP和SP,对低16位数据的存取,不影响高16位的数据。 32位CPU有2个32位通用寄存器EBP和ESP。 它们主要用于访问堆栈内的存储单元,并且规定: EBP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据;

6、汇编学习从入门到精通(荐书)

汇编学习从入门到精通Step By Step 2007年12月15日星期六00:34 信息来源:https://www.doczj.com/doc/754205956.html,/hkbyest/archive/2007/07/22/1702065.aspx Cracker,一个充满诱惑的词。别误会,我这里说的是软件破解,想做骇客的一边去,这年头没人说骇客,都是“黑客”了,嘎嘎~ 公元1999年的炎热夏季,我捧起我哥留在家的清华黄皮本《IBM-PC汇编语言程序设计》,苦读。一个星期后我那脆弱的小心灵如玻璃般碎裂了,为了弥补伤痛我哭爹求妈弄了8k大洋配了台当时算是主流的PC,要知道那是64M内存!8.4G硬盘啊!还有传说中的Celeon 300A CPU。不过很可惜的是在当时那32k小猫当道的时代,没有宽带网络,没有软件,没有资料,没有论坛,理所当然我对伟大的计算机科学体系的第一步探索就此夭折,此时陪伴我的是那些盗版光盘中的游戏,把CRACK_XXX文件从光盘复制到硬盘成了时常的工作,偶尔看到光盘中的nfo 文件,心里也闪过一丝对破解的憧憬。 上了大学后有网可用了,慢慢地接触到了一些黑客入侵的知识,想当黑客是每一个充满好奇的小青年的神圣愿望,整天看这看那,偷偷改了下别人的网页就欢喜得好像第一次偷到鸡的黄鼠狼。 大一开设的汇编教材就是那不知版了多少次的《IBM-PC汇编语言程序设计》,凭着之前的那星期苦读,考试混了个80分。可惜当时头脑发热,大学60分万岁思想无疑更为主流,现在想想真是可惜了宝贵的学习时间。 不知不觉快毕业了,这时手头上的《黑客防线》,《黑客X档案》积了一大摞,整天注来注去的也厌烦了,校园网上的肉鸡一打一打更不知道拿来干什么。这时兴趣自然转向了crack,看着杂志上天书般的汇编代码,望望手头还算崭新的汇编课本,叹了口气,重新学那已经忘光了的汇编语言吧。咬牙再咬牙,看完寻址方式那章后我还是认输,不认不行啊,头快裂了,第三次努力终告失败。虽然此时也可以爆破一些简单的软件,虽然也知道搞破解不需要很多的汇编知识,但我还是固执地希望能学好这门基础中的基础课程。 毕业了,进入社会了,找工作,上班,换工作成了主流旋律,每天精疲力尽的哪有时间呢?在最初的中国移动到考公务员再到深圳再到家里希望的金融机构,一系列的曲折失败等待耗光了我的热情,我失业了,赋闲在家无所事事,唯一陪伴我的是那些杂志,课本,以及过时的第二台电脑。我不想工作,我对找工作有一种恐惧,我靠酒精麻醉自己,颓废一段日子后也觉得生活太过无聊了,努力看书考了个CCNA想出去,结果还是被现实的就业环境所打败。三年时间,一无所获。 再之后来到女朋友处陪伴她度过刚毕业踏入社会工作的适应时期,这段时间随便找了个电脑技术工作,每月赚那么个几百块做生活费。不过这半年让我收获比较大的就是时间充裕,接触到了不少新东西,我下定决心要把汇编学好,这时我在网上看到了别人推荐的王爽《汇编语言》,没抱什么希望在当当网购了人生中的第一次物,19块6毛,我记得很清楚,呵呵。 废话终于完了,感谢各位能看到这里,下面进入正题吧。

汇编语言标志位(CF)及一些常用指令

汇编语言标志位(CF)及一些常用指令 英文翻译: carry 进位 flag标志 NV: no overflow OV: overflow UP: up DN:down DI: disable interrupt EI: enable interrupt PL: plus NG: negative NZ: no zero ZR: zero NA: no assistant carry AC: assistant carry PO: parity odd PE: parity even 奇偶校验 NC: no carry CY: carry 汇编标志位: 标志名标志 1 标志 0 OF (溢出标志) OV NV DF (方向标志) UP DN IF (中断标志) DI EI SF (符号标志位) PL NG ZF (零标志) NZ ZR AF (辅助进位标志位) NA AC PF (奇偶标志) PO PE CF (进位标志) NC CY OF 溢出(是/否) OV OVerflow NV Not oVerflow DF 方向(减量/增量) DN DowN UP UP IF 中断(允许/关闭) EI Enable Interrupt DI Disable Interrupt SF 符号(负/正) NG NeGative PL PLus ZF 零(是/否) ZR ZeRo NZ Not Zero AF 辅助进位(是/否) AC Auxiliary Carry NA Not Auxiliary PF 奇偶(是/否) PE Parity Even PO Parity Odd CF 进位(是/否) CY CarrY NC Not Carry 英文解释: NV: no overflow OV: overflow UP: up DN:down DI: disable interrupt EI: enable interrupt PL: plus NG: negative NZ: no zero ZR: zero NA: no assistant carry AC: assistant carry PO: parity odd PE: parity even NC: no carry CY: carry

arm反汇编.

在bin文件中,就是一条条的机器指令,每条指令4个字节。 在ADS中打开一个.s文件,选择project->disassemble 可以看到汇编的机器码 汇编代码如下(ADS中的一个例程\ARM\ADSv1_2\Examples\asm\armex.s): AREA ARMex, CODE, READONL Y ; name this block of code ENTRY ; mark first instruction ; to execute start MOV r0, #10 ; Set up parameters MOV r1, #3 ADD r0, r0, r1 ; r0 = r0 + r1 stop MOV r0, #0x18 ; angel_SWIreason_ReportException LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit SWI 0x123456 ; ARM semihosting SWI END ; Mark end of file 执行project->disassemble后: ** Section #1 'ARMex' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ENTRYSECT] Size : 28 bytes (alignment 4) start $a ARMex 0x00000000: e3a0000a .... MOV r0,#0xa 0x00000004: e3a01003 .... MOV r1,#3 0x00000008: e0800001 .... ADD r0,r0,r1 stop 0x0000000c: e3a00018 .... MOV r0,#0x18 0x00000010: e59f1000 .... LDR r1,0x18 0x00000014: ef123456 V4.. SWI 0x123456 $d 0x00000018: 00020026 &... DCD 131110 使用UltraEdit看bin文件如下: 可以看到,与上面的一样。 其中MOV的机器码如下(ARM体系结构pdf:p156):

Windows X86-64位汇编语言入门

Windows X86-64位汇编语言入门 Windows X64汇编入门(1) 最近断断续续接触了些64位汇编的知识,这里小结一下,一是阶段学习的回顾,二是希望对64位汇编新手有所帮助。我也是刚接触这方面知识,文中肯定有错误之处,大家多指正。 文章的标题包含了本文的四方面主要内容: (1)Windows:本文是在windows环境下的汇编程序设计,调试环境为Windows Vista 64位版,调用的均为windows API。 (2)X64:本文讨论的是x64汇编,这里的x64表示AMD64和Intel的EM64T,而不包括IA64。至于三者间的区别,可自行搜索。 (3)汇编:顾名思义,本文讨论的编程语言是汇编,其它高级语言的64位编程均不属于讨论范畴。 (4)入门:既是入门,便不会很全。其一,文中有很多知识仅仅点到为止,更深入的学习留待日后努力。其二,便于类似我这样刚接触x64汇编的新手入门。 本文所有代码的调试环境:Windows Vista x64,Intel Core 2 Duo。 1. 建立开发环境 1.1 编译器的选择 对应于不同的x64汇编工具,开发环境也有所不同。最普遍的要算微软的MASM,在x64环境中,相应的编译器已经更名为ml64.exe,随Visual Studio 2005一起发布。因此,如果你是微软的忠实fans,直接安装VS2005既可。运行时,只需打开相应的64位命令行窗口(图1),便可以用ml64进行编译了。

第二个推荐的编译器是GoASM,共包含三个文件:GoASM编译器、GoLINK链接器和GoRC 资源编译器,且自带了Include目录。它的最大好外是小,不用为了学习64位汇编安装几个G 的VS。因此,本文的代码就在GoASM下编译。 第三个Yasm,因为不熟,所以不再赘述,感兴趣的朋友自行测试吧。 不同的编译器,语法会有一定差别,这在下面再说。 1.2 IDE的选择 搜遍了Internet也没有找到支持asm64的IDE,甚至连个Editor都没有。因此,最简单的方法是自行修改EditPlus的masm语法文件,这也是我采用的方法,至少可以得到语法高亮。当然,如果你懒得动手,那就用notepad吧。 没有IDE,每次编译时都要手动输入不少参数和选项,做个批处理就行了。 1.3 硬件与操作系统 硬件要求就是64位的CPU。操作系统也必须是64位的,如果在64位的CPU上安装了

OllyICE反汇编教程及汇编命令详解

OllyICE反汇编教程及汇编命令详解[转] 2009-02-11 08:09 OllyICE反汇编教程及汇编命令详解 内容目录 计算机寄存器分类简介 计算机寄存器常用指令 一、常用指令 二、算术运算指令 三、逻辑运算指令 四、串指令 五、程序跳转指令 ------------------------------------------ 计算机寄存器分类简介: 32位CPU所含有的寄存器有: 4个数据寄存器(EAX、EBX、ECX和EDX) 2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP) 6个段寄存器(ES、CS、SS、DS、FS和GS) 1个指令指针寄存器(EIP) 1个标志寄存器(EFlags) 1、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。 对低16位数据的存取,不会影响高16位的数据。 这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。 程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 寄存器EAX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。可用于乘、除、输入/输出等操作,使用频率很高; 寄存器EBX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器ECX称为计数寄存器(Count Register)。 在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数; 寄存器EDX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。 在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果, 而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。 2、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。 其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。 寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,

汇编语言入门

汇编语言入门教程 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS 的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。 内存是电脑运作中的关键部分,也是电脑在工作中储存信息的地方。内存组织有许多可存放

如何实现单片机程序代码的反汇编

如何实现单片机程序代码的反汇编 要正确获取程序的目标代码,首先要明确程序代码的存放地点。51单片机的程序存储器最大空间为64KB,在一个实际的应用系统中,程序存储器的分布情况可能有以下几种: (1)只使用了片内程序空间。而没有使用片外的程序空间。 其硬件特征为:/EA引脚接VCC;/PSEN引脚为空脚。 这种情况比较简单,全部应用程序都在单片机内部的程序存储器中,我们只要使用编程器将程序代码读出来,保存为一个目标代码文件就可以了。要注意的是,有一些新型的单片机具有加密功能,如果进行了加密,其中的程序代码就是不能读出。 (2)没有使用片内程序空间,片外程序空间由单个存储芯片构成。 其硬件特征为:/EA引脚接GND;/PSEN引脚接到一个存储芯片上。 这种情况下,全部应用程序都在单片机外部的程序存储器中,原则上我们只要使用编程器将程序代码读出来,保存为一个目标代码文件就可以了。但要注意的是,这样得到的并不一定是真正的目标代码,因为,为了防止程序代码被读取、反汇编,很多设计人员都采取跳接线的方法,将某些地址线跳接或将某些数据线跳接或将地址线、数据线都进行跳接,从而保护自己的程序不被反汇编(参见图1~图4)。这样一来,我们从存储器中读取的就不是真正的程序目标代码,必须进行某种变换,将其转换为真正的程序目标代码,才能进行反汇编。 要进行目标代码的变换,首先必须根据硬件画出实际的地址和数据的接线图,然后借助于工具软件进行变换。在“51汇编集成开发环境”(其下载网址为www1.skycn.com/SOFt/15074/html)中,提供了一个变换工具,从软件界面的[辅助工具]—[目标代码转换]-[bin代码还原]就可以启动这个工具。 单击[浏览]可以选择要转换的代码文件,注意:这里的代码文件只能是二进制代码文件,

相关主题
文本预览
相关文档 最新文档