当前位置:文档之家› 函数经典小题

函数经典小题

函数经典小题
函数经典小题

集合函数经典小题

1.若函数)2,3()(log )(3

21---=在ax x x f 上单调递减,则实数a 的取值范围是 ( )

A .[9,12]

B .[4,12]

C .[4,27]

D .[9,27] 2函数x a x f )1()(2-=是减函数,则实数a 的取值范围是 .

3函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为

( ) A .[0,1] B .[1,2] C .[2,4]

D .[4,16] 4.若132log >a

,则a 的取值范围是 ( )

A .231<

B .23110<<<

C .132<

D .13

20><

,k ∈Z },则( ) A M=N B M N C M N D M ∩N=?

6若不等式|x-4|+|3-x|

7 若函数()log (a f x x =+是奇函数,则a =

8 设f(x)为奇函数, 且在(-∞, 0)内是减函数, f (-2)= 0, 则x f(x)<0的解集为

( )

A . (-1, 0)∪(2, +∞)

B . (-∞, -2)∪(0, 2 )

C . (-∞, -2)∪(2, +∞)

D . (-2, 0)∪(0, 2 )

9 已知函数f(x)对任意x,y ∈R 都有f(x+y)=f(x)+f(y), 且f(2)=4,则f(-1)=

( )

A . -2

B . 1

C . 0.5

D . 2

10设)(x f 是奇函数,)(x g 是偶函数,并且x x x g x f -=-2)()(,那么)(x f 的解析式 11 U={(x,y)|x,y ∈R},集合M={(x,y)| 2

3--x y =1},N={(x,y)|y ≠x+1},那么M N 的补集等于()

A :?

B :{(2,3)}

C :(2,3)

D :{(x,y)|y=x+1}

12.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b ,A +C =2B ,

则sin C = .

13:已知向量(cos sin )(cos sin )||a ααb ββa b =-= ,,=,,. (1)求cos()αβ-的值;(2)若500sin sin 2213

ππαββα<<

-<<=-,,且,求的值 答案:

1 : A 2: )2,0()0,2( - 3.D 4.D 5:B 6 a ≤1 7 2

a =. 8 .C 9.A [解析]:因为函数f(x)对任意x,y ∈R 都有f(x+y)=f(x)+f(y),所以)0()0()00(f f f +=+ 即0)0(=f 又2)1(4)2()11()1()1(=∴==+=+f f f f f 2)1(0

)0()11()1()1(-=-∴==+-=+-∴f f f f f

10)(x f 为奇函数 )()(x f x f -=-∴ )(x g 为偶函数 )()(x g x g -=-∴ x x x g x f x x x g x f +=---∴-=-22)()( )()(

从而 x x x g x f x x x g x f --=++=--2

2)()(,)()( ???-=-=??

??--=+-=-222)()()()()()(x x g x x f x x x g x f x x x g x f 11: B 12:1 13解:(1) 因为(cos sin )(cos sin )a ααb ββ= ,,=,,

所以(cos cos sin sin )a b αβαβ-=-- ,, 又因为||5

a b -= ,

= 4322cos()cos()55

αβαβ--=-=,; (2) 00022ππαβαβπ<<-<<<-<,,,又因为3cos()5αβ-=,所以 4sin()5

αβ-=, 5sin 13β=-,所以12cos 13β=,所以33sin sin[()]65

ααββ=-+==

必修1 第三章函数的应用经典例题讲解

第三章 函数的应用 1:函数的零点 【典例精析】 例题1 求下列函数的零点。 (1)y=32x 2-+x ;(2)y =(2 x -2)(2 x -3x +2)。 思路导航:判断函数零点与相应的方程根的关系,就是求与函数相对应的方程的根。 答案:(1)①当x≥0时,y=x 2 +2x -3,x 2 +2x -3=0得x=+1或x=-3(舍) ②当x <0时,y=x 2 -2x -3,x 2-2x -3=0得x=-1或x=3(舍) ∴函数y=x 2 +2|x|-3的零点是-1,1。 (2)由(2x -2)(2 x -3x +2)=0,得(x +2)(x -2)(x -1)(x -2)=0, ∴x 1=-2,x 2=2,x 3=1,x 4=2。 ∴函数y =(x 2 -2)(x 2 -3x +2)的零点为-2,2,1,2。 点评:函数的零点是一个实数,不是函数的图象与x 轴的交点,而是交点的横坐标。 例题2 方程|x 2-2x|=a 2+1 (a∈R + )的解的个数是______________。 思路导航:根据a 为正数,得到a 2 +1>1,然后作出y=|x 2 -2x|的图象如图所示,根据图象得到y=a 2 +1的图象与y=|x 2 -2x|的图象总有两个交点,得到方程有两解。 ∵a∈R + ∴a 2 +1>1。而y=|x 2 -2x|的图象如图, ∴y=|x 2 -2x|的图象与y=a 2 +1的图象总有两个交点。 ∴方程有两解。 答案:2个 点评:考查学生灵活运用函数的图象与性质解决实际问题,会根据图象的交点的个数判断方程解的个数。做题时注意利用数形结合的思想方法。 例题3 若函数f (x )=ax +b 有一个零点为2,则g (x )=bx 2 -ax 的零点是( ) A. 0,2 B. 0,12 C. 0,-12 D. 2,-1 2 思路导航:由f (2)=2a +b =0,得b =-2a ,∴g (x )=-2ax 2-ax =-ax (2x +1)。令g (x )=0,得x 1=0,x 2=-1 2 ,故选C 。 答案:C 【总结提升】 1. 函数y =f (x )的零点就是方程f (x )=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题。 2. 函数与方程二者密不可分,二者可以相互转化,如函数解析式y =f (x )可以看作方程y -f (x )=0,函数有意义则方程有解,方程有解,则函数有意义,函数与方程体现了

初中数学函数与图形经典难题1

函数与图形经典好题 一、选择题 1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,则k 为( ) A 、16 B 、-16 C 、±16 D 、±13 2、若 11m n -=3, 2322m mn n m mn n +---的值是( ) A 、1.5 B 、35 C 、-2 D 、-75 3、判断下列真命题有( ) ①任意两个全等三角形可拼成平行四边形②两条对角线垂直且相等的四边形是正方形③四边形ABCD ,AB=BC=CD ,∠A=90°,那么它是正方形④在同一平面内,两条线段不相交就会平行⑤有一条对角线平分一个内角的平行四边形是菱形 A 、②③ B 、①②④ C 、①⑤ D 、②③④ 4、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC ,E,PF ⊥BD 于F,则PE+PF=( ) A 、5 B 、6013 C 、245 D 、55 12 5、在直角坐标系中,已知两点A (-8,3)、B (-4,5)以及动点C (0,n )、D(m,0),则当四边形ABCD 的周长最小时,比值为 m n ( ) A 、-23 B 、-32 C 、-34 D 、34 二、填空题 6、当x= 时, ||3x x -与3x x -互为倒数。9、已知x 2 -3x+1=0,求(x-1 x ) 2 = 7、一个人要翻过两座山到另外一个村庄,途中的道路不是上山就是下山,已知他上山的速度为v ,下山的速度为v ′,单程的路程为s .则这个人往返这个村庄的平均速度为 8、将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点 A ',则点A '的坐标是 9、菱形ABCD 的一条对角线长为6,边AB 的长是方程(X-3)(X-4)=0的解,则菱形ABCD 的周长为 10、△ABC 中,∠A=90°,AB=AC ,BD 是△ABC 的中线,△CDB 内以CD 为边的等腰直角三角形周长是 11. 如图,边长为6的菱形ABCD 中,∠DAB=60°,AE=AB ,F 是AC?上一动点,EF+BF 的最小值为 12、如图,边长为3的正方形ABCD 顺时针旋转30°,得上图,交DE 于D ’,阴影部分面积是

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47) a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数2()log )f x x =的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

必修一函数经典例题

例4.已知log 4log 4m n <,比较m ,n 的大小。 解:∵log 4log 4m n <, ∴ 4411 log log m n < , 当1m >,1n >时,得4411 0log log m n << , ∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得4411 0log log m n <<, ∴44log log n m <, ∴01n m <<<. 当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<. 综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠). 解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令2 3t x =-,则03t <≤, ∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥, 当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6 .判断函数2()log )f x x =的奇偶性。 x 恒成立,故()f x 的定义域为(,)-∞+∞, 2()log )f x x -= 2 log =- 2 log =- 2log ()x f x =-=-, 所以,()f x 为奇函数。 例7.求函数213 2log (32)y x x =-+的单调区间。 解:令2 2 3 132()2 4u x x x =-+=-- 在3[,)2+∞上递增,在3 (,]2 -∞上递减, 又∵2 320x x -+>, ∴2x >或1x <, 故2 32u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵13 2log y u =为减函数, 所以,函数213 2log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。 例8.若函数2 2log ()y x ax a =--- 在区间(,1-∞上是增函数,a 的取值范围。 解:令2 ()u g x x ax a ==--,

人教版初中数学函数基础知识经典测试题及答案解析

人教版初中数学函数基础知识经典测试题及答案解析 一、选择题 1.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系: 物体质量x/千克0 1 2 3 4 5 … 弹簧长度y/厘米10 10.5 11 11.5 12 12.5 … 下列说法不正确的是() A.x与y都是变量,其中x是自变量,y是因变量 B.弹簧不挂重物时的长度为0厘米 C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米 D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米 【答案】B 【解析】 试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法. 解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意; B、弹簧不挂重物时的长度为10cm,错误,符合题意; C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意; D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意. 故选B. 点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大. 2.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是() A.他们都骑了20 km B.两人在各自出发后半小时内的速度相同 C.甲和乙两人同时到达目的地 D.相遇后,甲的速度大于乙的速度 【答案】C 【解析】

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

最新初中数学三角函数经典考题知识讲解

P A B C ? 20P A B C ? 20 (第14题图) 一.选择题 1、如图,已知:ο ο90 45< cosA C.sinA>tanA D.sinA

1、如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30o,∠ABD =45o,BC =50m. 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈). 2、如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长. 第17题图 B C l D A 第19题图

函数的最值经典例题

函数的最值 根据条件确定函数的参数是否存在 例 已知函数1 log )(223++++=cx x b ax x x f ,是否存在实数a 、b 、c ,使)(x f 同时满足下列三个条件:(1)定义域为R 的奇函数;(2)在[)+∞,1上是增函数;(3)最大值是1.若存在,求出a 、b 、c ;若不存在,说明理由. 分析:本题是解决存在性的问题,首先假设三个参数a 、b 、c 存在,然后用三个已给条件逐一确定a 、b 、c 的值. 解:)(x f 是奇函数.1,0log 0)0(3=∴=?=?b b f 又)()(x f x f -=- ,即1 1log 11log 223223++++-=+-+-cx x ax x cx x ax x , ∴222222222222)1()1(1111x c x x a x ax x cx x cx x ax x -+=-+?++++=-+-+. ∴c a c a =?=2 2或c a -=,但c a =时,0)(=x f ,不合题意;故c a -=.这时1 1l o g )(223+++-=cx x cx x x f 在[)+∞,1上是增函数,且最大值是1. 设1 1)(22+++-=cx x cx x x u 在[)+∞,1上是增函数,且最大值是3. 2 22222222)1()1)(1(2)1()1(2)1()1)(2()1)(2()(++-+=++-=+++-+-++-='cx x x x c cx x x c cx x cx x c x cx x c x x u ,当1>x 时0)(012>'?>-x u x ,故0>c ;又当1-'x u ;当)1,1(-∈x 时,0)(<'x u ; 故0>c ,又当1-'x u ,当)1,1(-∈x 时,0)(<'x u . 所以)(x u 在),1()1,(+∞--∞ 是增函数,在(-1,1)上是减函数. 又1>x 时,1,1)(,1122-=∴<++<+-x x u cx x cx x 时)(x u 最大值为3. ∴.1,1,31 111-===+-++a c c c 经验证:1,1,1==-=c b a 时,)(x f 符合题设条件,所以存在满足条件的a 、b 、c ,即.1,1,1==-=c b a 说明:此题是综合性较强的存在性问题,对于拓宽思路,开阔视野很有指导意义.

初中数学反比例函数知识点及经典例题

反比例函数 一、基础知识 k k 1. 定义:一般地,形如y二一(k为常数,k=o)的函数称为反比例函数。y = — x x 还可以写成y =kx二 2. 反比例函数解析式的特征: ⑴等号左边是函数y,等号右边是一个分式。分子是不为零的常数k (也叫做 比例系数k),分母中含有自变量x,且指数为1. ⑵比例系数k = 0 ⑶自变量x的取值为一切非零实数。 ⑷函数y的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ①列表(应以0为中心,沿0的两边分别取三对或以上互为相反的数) ②描点(有小到大的顺序) ③连线(从左到右光滑的曲线) k ⑵反比例函数的图像是双曲线,(k为常数,k = 0)中自变量x=0, x 函数值y=0,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐 靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是y二x或y=「x )。 k k ⑷反比例函数y二- (k=0)中比例系数k的几何意义是:过双曲线y = - x x (k = 0 )上任意引x轴y轴的垂线,所得矩形面积为k。 4 5.反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的 坐标即可求出k) 6?“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数

k 但是反比例函数y=一中的两个变量必成反比例关系。 x 7.反比例函数的应用

、例题 2 【例1】如果函数y =kx 2k 的图像是双曲线,且在第二,四象限内,那么的值 是多 少? k 【解析】有函数图像为双曲线则此函数为反比例函数 y 二上,(k = 0)即y 二kx x (k=0)又在第二,四象限内,贝U k : 0可以求出的值 【答案】由反比例函数的定义,得: (-2 “ 1 』2k +k —2 = —1 解得』k=—1 或k=2 .kvO [ kcO k = -1 .k = -1时函数y = kx 2k 心为y = x 1 【例2】在反比例函数y 的图像上有三点捲,%,X 2, y 2 , X 3,月3 x 若x 1 x 2 0 ? X 3则下列各式正确的是( ) A. y 3 ■ y1 y 2 B . y 3 y 2 y 1 C .屮 y 2 y 3 D .屮 * y 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。 x 1 x 2 0 X 3, ? y y 1 y 所以选 A 1 解法二:用图像法,在直角坐标系中作出 y =「-的图像 x 描出三个点,满足X 1 X 2 0 X 3观察图像直接得到y 3.y 1.y 2选A 解法三:用特殊值法 【例3】如果一次函数y 二mx ? n m = 0与反比例函数y 二?口的图像相交于点 x (丄,2 ),那么该直线与双曲线的另一个交点为( ) 2 【解析】 「*1 丁直线y =mx + n 与双曲线y = — x 相交于,2,'\2^ n _ 2 解得』 2 x I 2 丿〔3n -m =1 小一 1 f 解法一:由题意得 1 y 2 : X 2 1 y 3: X 3 x-! x 2 0 x 3,令% = 2,X 2 =1,x 3 - -1 1 % = -尹2 二-1,y 3 =1, y 3 y 1 y ?

历年初三数学中考函数经典试题集锦及答案

中考数学函数经典试题集锦 1、已知:m n 、是方程2 650x x -+=的两个实数根,且m n <,抛物线2 y x bx c =-++的图像经过点A(,0m )、B(0n ,). (1) 求这个抛物线的解析式; (2) 设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△ BCD 的面积;(注:抛物线2 y ax bx c =++(0)a ≠的顶点坐 标为2 4(,)24b ac b a a --) (3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. [解析] (1)解方程2 650,x x -+=得125,1x x == 由m n <,有1,5m n == 所以点A 、B 的坐标分别为A (1,0),B (0,5). 将A (1,0),B (0,5)的坐标分别代入2 y x bx c =-++. 得105b c c -++=?? =?解这个方程组,得4 5b c =-??=? 所以,抛物线的解析式为2 45y x x =--+ (2)由2 45y x x =--+,令0y =,得2 450x x --+= 解这个方程,得125,1x x =-= 所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9). 过D 作x 轴的垂线交x 轴于M. 则1279(52)22DMC S ?= ??-= 12(95)142MDBO S =??+=梯形,125 5522 BOC S ?=??= 所以,2725141522 BCD DMC BOC MDBO S S S S ???=+-=+-=梯形. (3)设P 点的坐标为(,0a ) 因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+.

高一数学函数经典题目及答案

精选 1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

精选 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

(完整版)初中数学反比例函数知识点及经典例题

反比例函数 一、基础知识 1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y = 还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )中自变量0≠x , 函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。 ⑷反比例函数x k y = (0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 4 5. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数, 但是反比例函数x k y =中的两个变量必成反比例关系。 7. 反比例函数的应用

二、例题 【例1】如果函数2 22 -+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值 是多少? 【解析】有函数图像为双曲线则此函数为反比例函数x k y = ,(0≠k )即kx y =1-(0≠k )又在第二,四象限内,则0>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。 解法一:由题意得111x y - =,221x y -=,3 31x y -= 3210x x x >>>Θ,213y y y >>∴所以选A 解法二:用图像法,在直角坐标系中作出x y 1 -=的图像 描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法 213321321321,1,1,2 1 1,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令Θ 【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点 (22 1 ,),那么该直线与双曲线的另一个交点为( ) 【解析】 ???==?? ???=-=+∴??? ??-=+=12132 212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线Θ

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题-高考压轴 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥ . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

初中数学经典函数图像性质总结

初中数学一次函数性质、图像性质知识点总结: 一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察一次函数与二元一次方程组,一元一次不等式的关系。突破方法:①正确理解掌握一次函数的概念,图像和性质。②运用数学结合的思想解与一次函数图像有关的问题。 ③掌握用待定系数法球一次函数解析式。④做一些综合题的训练,提高分析问题的能力。 一、函数性质: 1.y=kx+b(k,b为常数,k≠0)称y是x的一次函数。当x=0时,b为函数在y 轴上的点,坐标为(0,b)。当b=0(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 2.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k、b不相同时,两一次函数图像相交。当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 二、图像性质 1.作法与图形:通过如下3个步骤: (1)列表.

(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点). 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 4.k,b与函数图像所在象限: ○1y=kx时(即b等于0,y与x成正比例): 当k>0时,直线必通过第一、三象限,y随x的增大而增大; 当k<0时,直线必通过第二、四象限,y随x的增大而减小。 ○2y=kx+b时: 当k>0,b>0, 这时此函数的图象经过第一、二、三象限; 当k>0,b<0, 这时此函数的图象经过第一、三、四象限; 当k<0,b>0, 这时此函数的图象经过第一、二、四象限; 当k<0,b<0, 这时此函数的图象经过第二、三、四象限; 三、特殊位置关系: 当平面直角坐标系中两直线平行时,其函数解析式中K值相等

相关主题
文本预览
相关文档 最新文档