当前位置:文档之家› 必修1 第三章函数的应用经典例题讲解

必修1 第三章函数的应用经典例题讲解

必修1 第三章函数的应用经典例题讲解
必修1 第三章函数的应用经典例题讲解

第三章 函数的应用

1:函数的零点

【典例精析】

例题1 求下列函数的零点。

(1)y=32x 2-+x ;(2)y =(2

x -2)(2

x -3x +2)。

思路导航:判断函数零点与相应的方程根的关系,就是求与函数相对应的方程的根。 答案:(1)①当x≥0时,y=x 2

+2x -3,x 2

+2x -3=0得x=+1或x=-3(舍) ②当x <0时,y=x 2

-2x -3,x 2-2x -3=0得x=-1或x=3(舍) ∴函数y=x 2

+2|x|-3的零点是-1,1。

(2)由(2x -2)(2

x -3x +2)=0,得(x +2)(x -2)(x -1)(x -2)=0, ∴x 1=-2,x 2=2,x 3=1,x 4=2。

∴函数y =(x 2

-2)(x 2

-3x +2)的零点为-2,2,1,2。

点评:函数的零点是一个实数,不是函数的图象与x 轴的交点,而是交点的横坐标。

例题2 方程|x 2-2x|=a 2+1 (a∈R +

)的解的个数是______________。

思路导航:根据a 为正数,得到a 2

+1>1,然后作出y=|x 2

-2x|的图象如图所示,根据图象得到y=a 2

+1的图象与y=|x 2

-2x|的图象总有两个交点,得到方程有两解。

∵a∈R +

∴a 2

+1>1。而y=|x 2

-2x|的图象如图,

∴y=|x 2

-2x|的图象与y=a 2

+1的图象总有两个交点。 ∴方程有两解。 答案:2个

点评:考查学生灵活运用函数的图象与性质解决实际问题,会根据图象的交点的个数判断方程解的个数。做题时注意利用数形结合的思想方法。

例题3 若函数f (x )=ax +b 有一个零点为2,则g (x )=bx 2

-ax 的零点是( )

A. 0,2

B. 0,12

C. 0,-12

D. 2,-1

2

思路导航:由f (2)=2a +b =0,得b =-2a ,∴g (x )=-2ax 2-ax =-ax (2x +1)。令g (x )=0,得x 1=0,x 2=-1

2

,故选C 。

答案:C

【总结提升】

1. 函数y =f (x )的零点就是方程f (x )=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题。

2. 函数与方程二者密不可分,二者可以相互转化,如函数解析式y =f (x )可以看作方程y -f (x )=0,函数有意义则方程有解,方程有解,则函数有意义,函数与方程体现了

动与静、变量与常量的辩证统一。

函数零点的求法:(1)解方程f (x )=0,所得实数根就是f (x )的零点;(2)画出函数y =f (x )的图象,图象与x 轴交点的横坐标即为函数f (x )的零点。 3. 函数零点与方程的根的关系

根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根。 4. 函数y=f (x )的零点是函数图象与x 轴交点的横坐标,如果一个函数能通过变换化为两个函数之差的形式,则函数的零点就是这两个图象交点的横坐标,可以通过画出这两个函数的图象,观察图象的交点情况,对函数的零点作出判断,这种方法就是数形结合法。

2:二分法

【考点精讲】

1. 函数零点的存在性判断——二分法

如果函数y =f (x )在区间[a ,b]上的图象是连续不断的曲线,并且有f (a )·f(b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在x 0∈(a ,b ),使f (x 0)=0,这个x 0也就是方程f (x )=0的根。

2. 逆定理:如果函数y=f (x )在[a ,b]上的图象是连续不断的曲线,且x 0是函数在这个区间上的一个零点,却不一定有f (a )·f(b )<0。如f (x )=x 2

,在区间[-1,1]上有零点x=0,但f (-1)·f(1)>0。 3. 用二分法求函数零点的步骤:

已知函数y =f (x )定义在区间D 上,求它在D 上的一个变号零点x 0的近似值x ,使它与零点的误差不超过正数ε,即使得|x -x 0|≤ε。

(1)在D 内取一个闭区间[a ,b ] D ,使f (a )与f (b )异号,即f (a )·f (b )<0。

令a 0=a ,b 0=b 。

(2)取区间[a 0,b 0]的中点,则此中点对应的横坐标为x 0=a 0+21(b 0-a 0)=2

1

(a 0+b 0)。

计算f (x 0)和f (a 0)。

判断:①如果f (x 0)=0,则x 0就是f (x )的零点,计算终止;

②如果f (a 0)·f (x 0)<0,则零点位于区间[a 0,x 0]内,令a 1=a 0,b 1=x 0; ③如果f (a 0)·f (x 0)>0,则零点位于区间[x 0,b 0]内,令a 1=x 0,b 1=b 0。 (3)取区间[a 1,b 1]的中点,则此中点对应的横坐标为

x 1=a 1+21(b 1-a 1)=21

(a 1+b 1)。

计算f (x 1)和f (a 1)。 判断:①如果f (x 1)=0,则x 1就是f (x )的零点,计算终止;

②如果f (a 1)·f (x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1。 ③如果f (a 1)·f (x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1。 ……

实施上述步骤,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<2ε时,区间[a n ,

b n ]的中点x n =2

1

(a n +b n )就是函数y =f (x )的近似零点,计算终止。这时函数y =f (x )的

近似零点与真正零点的误差不超过ε。

【典例精析】

例题1 对于函数f (x )=x 2

+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )

A. 一定有零点

B. 一定没有零点

C. 可能有两个零点

D. 至多有一个零点

思路导航:若函数f (x )的图象及给定的区间(a ,b ),如图(1)、图(2)所示,可知A 错;若如图(3)所示,可知B 错、D 错。故C 对。

答案:C

点评:结合二次函数的图象来判断给定区间根的情况。

例题2 用二分法研究函数f (x )=x 3

+3x -1的零点时,经第一次计算得f (0)<0,

f (0.5)>0,可得其中一个零点x 0∈______,第二次应计算________,这时可判断0x ∈________。

思路导航:由题意知x 0∈(0,0.5),第二次计算应取x 1=0.25,这时f (0.25)=0.253

+3×0.25-1<0,故x 0∈(0.25,0.5)。

答案:(0,0.5) f (0.25) (0.25,0.5)

例题3 是否存在这样的实数a ,使函数f (x )=x 2

+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个零点,且只有一个零点。若存在,求出范围,若不存在,说明理由。 思路导航:运用二分法可以求出a 的范围,但是要注意检验。

答案:∵Δ=(3a -2)2-4(4-1)=9a 2

-16a +8=9? ????a -892+89>0,∴若实数a 满

足条件,则只需使f (-1)·f (3)≤0即可。

f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)

=4(1-a )(5a +1)≤0。所以a ≤-1

5

或a ≥1。

检验:(1)当f (-1)=0时,a =1。所以f (x )=x 2

+x 。 令f (x )=0,即x 2

+x =0,得x =0或x =-1。

方程在[-1,3]上有两根,不合题意,故a ≠1。

(2)当f (3)=0时,a =-15,此时f (x )=x 2

-135x -65

令f (x )=0,即x 2

-135x -65=0,解之得x =-25

或x =3。

方程在[-1,3]上有两根,不合题意,故a ≠-1

5

综上所述,a <-1

5或a >1。

【总结提升】

本部分内容是高中数学的重难点,也是高考考查的重点,对于本部分内容的备考需注意以下两个方面:

一是准确理解函数零点的概念及其存在性定理,能通过特殊值的函数值判断函数零点所在的区间;二是熟记常见函数的图象,牢记图象的基本特征,灵活运用函数图象解决相关问题。高中阶段,研究函数零点的主要方法有:零点定理法、数形结合法。

使用二分法求方程的近似解要注意:

(i )要使第一步中的区间[a ,b]长度尽量小;

(ii )区间[a ,b]的长度与一分为二的次数满足关系式||)2

1

(n

b a -。

3:函数零点的应用

【考点精讲】

二次函数零点分布:设)0(,)(2

>++=a c bx ax x f 以下研究a>0 的情况,a<0分析方法同理

(a )二次方程)0(02

≠=++a c bx ax 的两个根21,x x 满足21x r x <

)0(,)(2≠++=a c bx ax x f 两个零点为21,x x 满足21x r x <<0)(

(b )方程)0(,02

>=++a c bx ax 的两个根21,x x 满足r x x >>12?二次函数

)0(,)(2≠++=a c bx ax x f 两个零点21,x x 满足r x x >>12

???????>>->-=??0

)(2042r f r

a b

ac b

(c )方程)0(,02

>=++a c bx ax 的两个根21,x x 满足q x x p <<<21时,

?????

??

??>><<>-=??0

)(0)(2-042q f p f q a b p ac b

(d )二次方程)0(02

>=++a c bx ax 的两个根满足q x p x <<<21?函数

c bx ax x f ++=2)(的零点满足q x p x <<<21?

??>

(e )二次方程)0(02

>=++a c bx ax 的两个根有且只有一个根在(p ,q )内?函数

)0()(2>++=a c bx ax x f 的两个零点有且只有一个在区间(p ,q )内0)()(

检验f (p )=0,f (q )=0并检验另一根在(p ,q )内。

【典例精析】

例题1 已知关于x 的二次方程x 2

+2mx +2m +1=0。

(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围;

(2)若方程两根均在区间(0,1)内,求m 的范围。

思路导航:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制。 答案:(1)由条件,抛物线f (x )=x 2

+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图(1)所示,得

????

???>+=<+=>=-<+=0

56)2(,024)1(02)1(012)0(m f m f f m f ,

,?????

?????

->

-<∈-<.

65,2

1m ,,

2

1m R m m 即-56<m <-1

2

(2)抛物线与x 轴交点均落在区间(0,1)内,如图(2)所示,

列不等式组????

???<-<≥?>>1

0,0,0)1(,0)0(m f f ?

?????

m >-1

2

m >-12,

m ≥1+2或m ≤1-2,

-1<m <0.

即-1

2<m ≤1-2。

例题2 对实数a 和b ,定义运算“○×”:a ○

×b =????

?

a ,a -

b ≤1,b ,a -b >1.

设函数f (x )=(x

2

-2)○×(x -1),x ∈R 。若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的

取值范围是( )

A. (-1,1]∪(2,+∞)

B. (-2,-1]∪(1,2]

C. (-∞,-2)∪(1,2]

D. [-2,-1] 思路导航:当(x 2

-2)-(x -1)≤1时,

-1≤x ≤2,所以f (x )=?

??

??

x 2

-2,-1≤x ≤2,

x -1,x <-1或x >2,

f (x )的图象如图所示。

y =f (x )-c 的图象与x 轴恰有两个公共点,即方程f (x )=c 恰有两个解,由图象可知当c∈(-2,-1]∪(1,2]时满足条件。

答案:B

点评:转化为两个函数交点个数问题,利用数形结合法求解。

例题3 已知关于x 的函数y=(m+6)x 2

+2(m-1)x+m+1恒有零点. (1)求m 的范围;

高中数学必修一《集合与函数的概念》经典例题

高中数学必修一第一章《集合与函数概念》综合测 试题试题整理:周俞江 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正 确答案的代号填在题后的括号内(本大题共12个小题, 每小题5分,共60分). 1.已知全集}5,4,3,2{},3,2,1{==B A ,则=B A I ( ) A. }{5,4,3,2,1 B.{}3,2,1 C.{}3,2 D.{}7,6,3 2. 若{{}|0,|12A x x B x x =<<=≤<,则A Y B=( ) A . {}|0x x ≤ B .{}|2x x ≥ C .{0x ≤≤ D .{}|02x x << 3 .在下列四组函数中,f (x )与g (x )表示同一函数的是( ) A.x x y y ==,1 B .1,112-=+?-=x y x x y C.55 ,x y x y == D .2)(|,|x y x y == 4.函数x x x y +=的图象是( ) 5.0≤f 不是映射的是A .1:3f x y x ?? →= B .1 :2 f x y x ??→= C .1:4f x y x ??→= D .1:6f x y x ??→= 6.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1 B .0 C .0或1 D .1或2 7.函数1)2(++=x k y 在实数集上是增函数,则k 的范围是( ) A .2-≥k B .2-≤k C .2->k D .2-

9.有下面四个命题: ①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称; ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1 B .2 C .3 D .4 10.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 11.若函数))(12()(a x x x x f -+= 为奇函数,则=a ( ) A.21 B.32 C.43 D.1 12.已知函数x x x x f 22 11)11(+-=+-,则函数)(x f 的解析式可以是( ) A.x x 21+ B.x x 212+- C.x x 212+ D.x x 21+- 13.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 14.已知函数[](]?????∈--∈-=5,2,32,13)(,2x x x x f x 则方程1)(=x f 的解是( ) A.2或2 B.2或3 C.2或4 D.±2或4 15.函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在),(b a 上是 A .增函数 B .减函数

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

高一数学必修一函数经典题型复习

1集合 题型1:集合的概念,集合的表示 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( ) A .}33|{=+x x B .},,|),{(2 2 R y x x y y x ∈-= C .}0|{2 ≤x x D .},01|{2 R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( ) A .()()A C B C B .()()A B A C C .()()A B B C D .()A B C 4.下面有四个命题: (1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212 =+的解可表示为{ }1,1; 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 题型2:集合的运算 例1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为( D ) A .1 B .1- C .1或1- D .1或1-或0 例2. 已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围。 解:当121m m +>-,即2m <时,,B φ=满足B A ?,即2m <; 当121m m +=-,即2m =时,{}3,B =满足B A ?,即2m =; 当121m m +<-,即2m >时,由B A ?,得12 215m m +≥-??-≤? 即23m <≤; ∴3≤m 变式: 1.设2 2 2 {40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈, 如果A B B =,求实数a 的取值范围。 A B C

幂函数的概念及其性质测试题(含答案)

幂函数的概念及其性质 一、单选题(共12道,每道8分) 1.下列命题正确的是( ) A.幂函数在第一象限都是增函数 B.幂函数的图象都经过点(0,0)和(1,1) C.若幂函数是奇函数,则是定义域上的增函数 D.幂函数的图象不可能出现在第四象限 答案:D 解题思路: 试题难度:三颗星知识点:幂函数的图象 2.下列函数中既是偶函数,又在(-∞,0)上是增函数的是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:幂函数的单调性、奇偶性及其应用 3.若幂函数上是减函数,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:幂函数的单调性 4.当时,幂函数为减函数,在实数m的值是( ) A.2 B.﹣1 C.﹣1或2 D. 答案:A 解题思路:

试题难度:三颗星知识点:幂函数的单调性5.函数的图象大致是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:幂函数的图象

6.若是幂函数,且满足,则的值是( ) A. B. C.2 D.4 答案:B 解题思路: 试题难度:三颗星知识点:幂函数的解析式及运算 7.已知幂函数在区间上是单调递增函数,且函数的图象关于y轴对称,则的值是( ) A.16 B.8 C.﹣16 D.﹣8 答案:A 解题思路:

试题难度:三颗星知识点:幂函数的图象与性质 8.若,则不等式的解集是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:幂函数的单调性 9.已知,,下列不等式:①;②;③;

必修一函数的单调性专题讲解(经典)

第一章 函数的基本性质之单调性 一、基本知识 1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当 21x x <时,都有 ))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 重点 2.证明方法和步骤: (1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等); (4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。 3.常见函数的单调性 时, 在R 上是增函数;k<0时, 在R 上是减函数 (2),在(—∞,0),(0,+∞)上是增函数, (k<0时),在(—∞,0),(0,+∞)上是减函数, (3)二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0

必修一函数经典例题

例4.已知log 4log 4m n <,比较m ,n 的大小。 解:∵log 4log 4m n <, ∴ 4411 log log m n < , 当1m >,1n >时,得4411 0log log m n << , ∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得4411 0log log m n <<, ∴44log log n m <, ∴01n m <<<. 当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<. 综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠). 解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令2 3t x =-,则03t <≤, ∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥, 当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6 .判断函数2()log )f x x =的奇偶性。 x 恒成立,故()f x 的定义域为(,)-∞+∞, 2()log )f x x -= 2 log =- 2 log =- 2log ()x f x =-=-, 所以,()f x 为奇函数。 例7.求函数213 2log (32)y x x =-+的单调区间。 解:令2 2 3 132()2 4u x x x =-+=-- 在3[,)2+∞上递增,在3 (,]2 -∞上递减, 又∵2 320x x -+>, ∴2x >或1x <, 故2 32u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵13 2log y u =为减函数, 所以,函数213 2log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。 例8.若函数2 2log ()y x ax a =--- 在区间(,1-∞上是增函数,a 的取值范围。 解:令2 ()u g x x ax a ==--,

幂函数练习题与答案

幂函数练习题及答案 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =3 2 C .y x =-2 D .y x =-14 2.函数2-=x y 在区间]2,2 1 [ 上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α 时函数αx y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.函数 2422-+=x x y 的单调递减区间是 ( ) A .]6,(--∞ B .),6[+∞- C .]1,(--∞ D .),1[+∞- 9. 如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( )

必修一函数的单调性经典易错习题

函数的单调性 一、选择题 1.下列函数中,在区间(0,2)上为增函数的是…………………………………( ) A.y =3-x B.y =x 2+1 C.y =-x 2 D.y =x 2-2x -3 2.若函数y =(a +1)x +b ,x ∈R 在其定义域上是增函数,则…………………( ) A.a >-1 B.a <-1 C.b >0 D.b <0 3.若函数y =kx +b 是R 上的减函数,那么…………………………………( ) A.k<0 B.k>0 C.k ≠0 D. 4.函数f(x)=??? 2x +6x +7 x ∈[1,2] x ∈[-1,1],则f(x)的最大值、最小值为……( ) A.10,6 B.10,8 C.8,6 D. 5.下列四个函数在()-0∞,上为增函数的有( ) (1)y x = (2)x y x = (3)2 x y x =- (4)x y x x =+ A.(1)和(2) B.(2)和(3) C.(3)和(4) D.(1)和(4) 6.设()f x 是(),-∞+∞上的减函数,则( ) .()(2)A f a f a > 2.()()B f a f a < 2.()()C f a a f a +< 2.(1)()D f a f a +< 7.设函数()()21f x a x b =-+在R 上是严格单调减函数,则( ) 1.2A a ≥ 1.2B a ≤ 1.2C a > 1 .2D a < 8.下列函数中,在区间(0,2)上为增函数的是( ) .3A y x =- 2.1B y x =+ 2.C y x =- 2.23D y x x =-+ 9.已知函数22 4,0()4,0 x x x f x x x x ?+≥?=?-,则实数a 的取值范围是( ) ()().,12,A -∞-+∞ ().1,2B - ().2,1C - ()().,21,D -∞-+∞ 10.已知()f x 为R 上的减函数,则满足()11f f x ?? > ??? 的实数x 的取值范围是( ) ().,1A -∞ ().1,B +∞ ()().,00,1C -∞ ()().,01,D -∞+∞ 11.函数 的增区间是( )。 A . B . C . D .

指数函数对数函数幂函数练习题大全(答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

幂函数经典例题(答案)

幂函数经典例题(答案)

幕函数的概念 例1、下列结论中,正确的是() A ?幕函数的图象都通过点(0,0), (1,1) B.幕函数的图象可以出现在第四象限 C ?当幕指数么取1,3,;时,幕函数y=*是增函数 D.当幕指数么=一1时,幕函数),=亡在定义域上是减函数 解析 当無指数α=-l 时,幕函数y=χ~l 的图象不通过原点,故选项A 不 正确;因为所有的農函数在区间(0, +8)上都有定义,且y=χa (α∈R), j>0, 所以專函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-l 时,y =Ll 在区间(一8, 0)和(0, +8)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幕函数金)=(Z+i χτ[(7+3L2r 2 )(f ∈Z)是偶函数且在(0, +8)上 为增函数,求实数/的值? ' 分析 关于舉函数y=x a (

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

高一数学必修一知识点总结及经典例题分析

高一数学必修1 1.知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性, 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或 N+整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4) Venn图: 4、集合的分类: (1) 有限集含有有限个元素的集合 (2) 无限集含有无限个元素的集合 (3) 空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.?包含关系—子集 注意:B包含A有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A不属于B或B不属于A 2.相等?关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} ?元素相同则两集合相等?即:①即任何一个集合是它本身的子集。 ②真子集:如果A属于B,且A不属于B那就说集合A是集合B的真子集。 ③如果 A属于B, B属于C ,那么 A属于C ④如果A属于B 同时 B属于A ,那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 1.规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 2.特点有n个元素的集合,含有2n个子集,2n-1个真子集

幂函数中档题(含答案)

3.3 幂函数中档题 一.选择题(共4小题) 1.若幂函数f(x)的图象经过点(3,),则函数g(x)=+f(x)在[,3]上的值域为() A.[2,]B.[2,]C.(0,]D.[0,+∞) 2.已知指数函数f(x)=a x﹣16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g (x)的图象上,则幂函数g(x)的图象是() A.B.C. D. 3.函数f(x)=(m2﹣m﹣1)x是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足>0,若a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值 () A.恒大于0 B.恒小于0 C.等于0 D.无法判断 4.已知,若0<a<b<1,则下列各式中正确的是() A.B. C.D. 二.填空题(共1小题)

5.已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2); ③>;④<.其中正确结论的序号是. 三.解答题(共13小题) 6.已知幂函数f(x)=(m﹣1)2x在(0,+∞)上单调递增,函数g(x)=2x﹣ k. (Ⅰ)求m的值; (Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,数k的取值围. 7.已知函数f(x)=(a﹣1)x a(a∈R),g(x)=|lgx|. (Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间; (Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2), 求a++的取值围. 8.已知函数f(x)=(a﹣1)x a(a∈R),g(x)=|lgx|. (Ⅰ)若f(x)是幂函数,求a的值; (Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2), 求的取值围. 9..已知幂函数的图象关于y轴对称,且在区间(0,+∞)上 是减函数, (1)求函数f(x)的解析式; (2)若a>k,比较(lna)0.7与(lna)0.6的大小. 10.已知幂函数g(x)=(m2﹣2)x m(m∈R)在(0,+∞)为减函数,已知f(x)是对数函数且f(﹣m+1)+f(﹣m﹣1)=. (1)求g(x),f(x)的解析式; (2)若实数a满足f(2a﹣1)<f(5﹣a),数a的取值围. 11.函数f(x)=是偶函数. (1)试确定a的值,及此时的函数解析式; (2)证明函数f(x)在区间(﹣∞,0)上是减函数; (3)当x∈[﹣2,0]时,求函数f(x)=的值域. 12.如图,点A、B、C都在幂函数的图象上,它们的横坐标分别是a、a+1、a+2又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a)

幂函数练习题及答案

幂函数练习题及答案 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ?( ) A.y x =43?B.y x =32 ?C .y x =-2 ?D .y x =- 14 2.函数2 -=x y 在区间]2,2 1 [ 上的最大值是? ?( ) A. 4 1 B.1- C.4?D .4- 3.下列所给出的函数中,是幂函数的是 ? ( ) A.3 x y -=?B.3 -=x y ?C.3 2x y =?D .13 -=x y 4.函数34x y =的图象是?? ( ) A . B. C . D . 5.下列命题中正确的是??? ( ) A.当0=α 时函数αx y =的图象是一条直线 B.幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D.幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1x y =图象满足 ( ) A.关于原点对称 ?B.关于x 轴对称 C .关于 y 轴对称 D.关于直线 x y =对称

7. 函数 R x x x y ∈=|,|,满足? ( ) A.是奇函数又是减函数 B.是偶函数又是增函数 C .是奇函数又是增函数 ? D .是偶函数又是减函数 8.函数 2422-+=x x y 的单调递减区间是??( ) A.]6,(--∞ ? B.),6[+∞- ?C .]1,(--∞ ?D .),1[+∞- 9. 如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A.102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<< D.142310αααα<<<<< 10. 对于幂函数5 4)(x x f =,若210x x <<,则 )2( 21x x f +,2) ()(21x f x f +大小关系是( ) A.)2( 21x x f +>2) ()(21x f x f + B . )2( 21x x f +<2 ) ()(21x f x f + C. )2( 21x x f +=2 ) ()(21x f x f + D. 无法确定 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数y x =-3 2 的定义域是 . 12.的解析式是? . 13.9 42 --=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 . 14.幂函数),*,,,()1(互质n m N k n m x y m n k ∈=-图象在一、二象限,不过原点,则n m k ,,的 奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) . 1α 3α 4α 2α

高一数学必修一函数经典题型复习

高一数学必修一函数经典 题型复习 Prepared on 22 November 2020

函 数奇偶性 例题1:.已知 函数 是奇函数,则常数=a (已知函数奇 偶性求未知数的值) 练习: (1) 若函数1()21 x f x a = +-是奇函数,则实数a = (2)若函数191)(++=x a x f 为奇函数,则a =_____________. 例题2:.已知函数b a bx ax x f +++=3)(2是偶函数,定义域为[]a a 2,1-, 则=)0(f ( ) (已知定义域求未知数的值) A. B. C. 1 D. -1 3.已知2)(35++-=bx ax x x f ,且17)5(=-f ,则)5(f 的值为( ) 例题 (自己先判断函数奇偶性) A .-13 B .13 C .-19 D .19 练习. 已知53()5(,,)f x ax bx cx a b c =+++是常数,且(5)9f =,则(5)f -的值为 . 例题4. 设()f x 在R 上是奇函数,当x >0时,()(1)f x x x =-, 试问:当x <0时,()f x 的表达式是什么(已知函数部分解析式求另外部分的解析式) 练习: (1)设函数()f x 是R 上的偶函数,且当()0,x ∈+∞时,( )(1,f x x = ()0x ∈-∞则当,时,()f x 等于( ) (2)已知)(x f 为R 上的奇函数,且0>x 时2()241f x x x =-++,则(1)f -=____ __ 例题5:若定义在R 上的函数)(x f 满足:对任意R x x ∈21,,有 1)()()(2121++=+x f x f x x f , 下列说法一定正确的是() A 、)(x f 是奇函数 B 、)(x f 是偶函数 C )(x f +1是奇函数 D 、)(x f +1是偶函数 141)(++=x a x f 3132

必修一函数知识点整理和例题讲解(含答案)

高中数学必修一知识点和题型练习 一 集合与函数 1 集合的含义及表示* ???? ?? ????? ∈??? ????? ??? 确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R 2,,A B B A A B A B A A A A B A B A B οο φ≠ ??=????? ?????≠??1定义:A=B 2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n - 3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ??=∈∈? ?=∈∈??=∈?? 并集:或 交集:且 补集:且 在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ?= A A A ?=, A A φ?= A φφ?= (2)A B B A B ?=?若则 A B A A B ?=?若则 练习题 1. 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于( ) A .{x |3≤x <4} B .{x |3

幂函数经典例题(答案)

幂函数的概念 例1、下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限 C .当幂指数α取1,3,1 2时,幂函数y =x α是增函数 D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数 解析 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α (α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案 C 例2、已知幂函数f (x )=(t 3-t +1)x 1 5(7+3t -2t 2) (t ∈Z )是偶函数且在(0,+∞)上为增函数,求实数t 的值. 分析 关于幂函数y =x α (α∈R ,α≠0)的奇偶性问题,设p q (|p |、|q |互质), 当q 为偶数时,p 必为奇数,y =x p q 是非奇非偶函数;当q 是奇数时,y =x p q 的奇偶性与p 的值相对应. 解 ∵f (x )是幂函数,∴t 3-t +1=1, ∴t =-1,1或0. 当t =0时,f (x )=x 7 5是奇函数; 当t =-1时,f (x )=x 2 5是偶函数; 当t =1时,f (x )=x 85是偶函数,且25和8 5都大于0, 在(0,+∞)上为增函数. 故t =1且f (x )=x 85或t =-1且f (x )=x 2 5. 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t ∈Z 给予足够的重视.

必修一函数的单调性专题讲解(经典)

(2)第一章函数的基本性质之单调性 一、基本知识 1 .定义:对于函数y f (x),对于定义域内的自变量的任意两个值x「X2,当捲x2时,都有f(x i) f (X2)(或f (x i) f(X2)),那么就说函数y f (x)在这个区间上是增(或减)函数。 重点2 .证明方法和步骤: (1) 取值: 设X i,X2是给定区间上任意两个值,且X i X2 ; (2) 作差: f(xj f(X2); (3) 变形: (如因式分解、配方等); (4) 宀口 定 号: 即f (x i) f(x2) 0或f (x i) f(x2) 0 ; (5) 根据定义下结论。 3?常见函数的单调性 ⑴ 心) 也+乩k o|时,回在R上是增函数;k

5.函数的单调性的应用: 判断函数y f(x)的单调性;比较大小;解不等式;求最值(值域) 例题分析 T 2 例1 :证明函数f(x)=区_1在(0, + 上是减函数。 例2 :证明F@) = / + 3|在定义域上是增函数。 例3 :证明函数f(x)=x 3的单调性。 例4 :讨论函数y =一; 1 — x2在[—1,1]上的单调性. 3 例5 :讨论函数f(x) =W 的单调性.

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过 解方程组求得函数解析式。例5 设,)1 (2)()(x x f x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1 1 )()(-= +x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f 七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。 例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求 )(x f 1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3 2(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。 (2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域 1求函数值域的方法 ①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数

相关主题
文本预览
相关文档 最新文档