当前位置:文档之家› 多目标规划模型的应用研究

多目标规划模型的应用研究

多目标规划模型的应用研究
多目标规划模型的应用研究

目标规划模型

目标规划模型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

§ 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+ d 、- d 正偏差变量+ d 表示决策值) ,,2,1(n i x i =超过目标值的部分;负偏差变量- d 表示 决策值 ) ,,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量+d 、-d 的相互 关系如下: 当决策值 ) ,,2,1(n i x i =超过规定的目标值时, 0 ,0=>- +d d ;当决策值) ,,2,1(n i x i =未超过规定的目标值时, 0 ,0>=- +d d ;当决策值),,2,1(n i x i =正好等于规定的目标值时, 0 ,0==- +d d 。

LINGO在多目标规划和最大最小化模型中的应用

LINGO 在多目标规划和最大最小化模型中的应用 在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。 一、多目标规划的常用解法 多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有: 1.主要目标法 确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。 2.线性加权求和法 对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把) (x f i i i ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。 3.指数加权乘积法 设p i x f i ,,2,1),( =是原来的p 个目标,令 ∏==p i a i i x f Z 1)]([ 其中i a 为指数权重,把Z 作为新的目标函数。 4.理想点法 先分别求出p 个单目标规划的最优解*i f ,令 ∑-=2*))(()(i i f x f x h 然后把它作为新的目标函数。 5.分层序列法 将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。 这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不

足之处。例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。 二、最大最小化模型 在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。 最大最小化模型的目标函数可写成 )}(,),(),(max{min 21X f X f X f p X 或 )}(,),(),(min{max 21X f X f X f p X 式中T n x x x X ),,,(21 是决策变量。模型的约束条件可以包含线性、非线性的等式和不等式约束。这一模型的求解可视具体情况采用适当的方法。 三、用LINGO 求解多目标规划和最大最小化模型 1.解多目标规划 用LINGO 求解多目标规划的基本方法是先确定一个目标函数,求出它的最优解,然后把此最优值作为约束条件,求其他目标函数的最优解。如果将所有目标函数都改成约束条件,则此时的优化问题退化为一个含等式和不等式的方程组。LINGO 能够求解像这样没有目标函数只有约束条件的混合组的可行解。有些组合优化问题和网络优化问题,因为变量多,需要很长运算时间才能算出结果,如果设定一个期望的目标值,把目标函数改成约束条件,则几分钟就能得到一个可行解,多试几个目标值,很快就能找到最优解。对于多目标规划,同样可以把多个目标中的一部分乃至全部改成约束条件,取适当的限制值,然后用LINGO 求解,从中找出理想的最优解,这样处理的最大优势是求解速度快,节省时间。 2.解最大最小化问题

整数规划和多目标规划模型

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题。这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ),,2,1(0..min Λ 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为设计变量对应的上界和下界。M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x Λ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。TolXInteger 为判定整数的误差限,即若某数x 和最邻近整数相差小于该误差限,则认为x 即为该整数。

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

Excel规划求解工具在多目标规划中的应用

Excel规划求解工具在多目标规划中的应用 摘要:多目标决策方法是从20世纪70年代中期发展起来的一种决策分析方法。该方法已广泛应用于人口、环境、教育、能源、交通、经济管理等多个领域。文章采用多目标决策方法中分层序列法的思想,应用excel的规划求解工具,对多目标规划问题进行应用研究,并以实例加以说明。 abstract: multi-objective decision method is a kind of decision analysis method from the mid 1970s. the method has been widely used in population, environment, education,energy, traffic, economic management, and other fields. this paper uses the lexicographic method of multi-objective decision method and makes some researches on the multi-objective problem using the excel solver tool and an example to illustrate. 关键词: excel规划求解;多目标规划;分层序列法 key words: excel solver;multi-objective programming;the lexicographic method 中图分类号:tp31 文献标识码:a 文章编号:1006-4311(2013)21-0204-02 0 引言 excel中的规划求解工具只能对单目标的问题进行求解。当遇到多目标问题时,可以把多目标问题先转化为单目标问题,然后求解。

整数规划和多目标规划模型知识分享

整数规划和多目标规 划模型

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题。这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ),,2,1(0..min 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为

§18运用目标达到法求解多目标规划

§18. 运用目标达到法求解多目标规划 用目标达到法求解多目标规划的计算过程,可以通过调用Matlab软件系统优化工具箱中的fgoalattain函数实现。 在Matlab的优化工具箱中,fgoalattain函数用于解决此类问题。其数学模型形式为: minγ F(x)-weight ·γ≤goal c(x) ≤0 ceq(x)=0 A x≤b Aeq x=beq lb≤x≤ub 其中,x,weight,goal,b,beq,lb和ub为向量;A和Aeq为矩阵;c(x),ceq(x)和F(x)为函数。 调用格式: x=fgoalattain(F,x0,goal,weight) x=fgoalattain(F,x0,goal,weight,A,b) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq) 134

x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options) x=fgoalattain(F,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2) [x,fval]=fgoalattain(…) [x,fval,attainfactor]=fgoalattain(…) [x,fval,attainfactor,exitflag,output]=fgoalattain(…) [x,fval,attainfactor,exitflag,output,lambda]=fgoalattain(…) 说明:F为目标函数;x0为初值;goal为F达到的指定目标;weight为参数指定权重;A、b为线性不等式约束的矩阵与向量;Aeq、beq为等式约束的矩阵与向量;lb、ub为变量x的上、下界向量;nonlcon为定义非线性不等式约束函数c(x)和等式约束函数ceq(x);options中设置优化参数。 x返回最优解;fval返回解x处的目标函数值;attainfactor返回解x处的目标达到因子;exitflag描述计算的退出条件;output返回包含优化信息的输出参数;lambda返回包含拉格朗日乘子的参数。 例1:教材第6章第4节第二小节,即生产计划问题: 某企业拟生产A和B两种产品,其生产投资费用分别为2100元/t和4800元/t。A、B两种产品的利润分别为3600元/t和6500元/t。A、B产品每月的最大生产能力分别为5t和8t;市场对这两种产品总量的需求每月不少于9t。试问该企业应该如何安排生产计划,才能既能满足市场需求,又节约投资,而且使生产利润达到最大最。 135

数学规划模型

课程设计 2015年 7 月 5 日

东北石油大学课程设计任务书 课程《数学模型》课程设计 题目应用数学规划模型求解实际数学问题 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容 简单介绍数学规划模型基本理论及本文所用的规划模型和相关软件LINGO,并通过实例来掌握如何应用数学规划模型求解实际数学问题。并利用本文所介绍的方法来分析林区汽车修理网的布局 课程设计的要求: 1.独立完成建模,并提交一篇建模论文。 2.论文的主要内容包括:摘要,问题的提出,问题的分析,模型假设,模型设计,模型解法与结果,模型结果的分析和检验,包括误差分析、稳定性分析等。模型的优缺点及改进方向。必要的计算机程序。 3.文档格式:参照《东北石油大学课程设计撰写规范》和《数学模型课程设计教学大纲》。 4.课程设计结束时参加答辩。 主要参考资料: [1] 唐焕文,贺明峰,数学模型(第三版),北京:高等教育出版社,2005.3 [2]杨云峰等,数学建模与数学软件,哈尔滨:哈尔滨工程大学出版社,2012.6 [3]陈东彦,李冬梅,王树忠,数学建模,北京:科学出版社,2007 [4] 吴建国等,数学建模案例精编,北京:中国水利水电出版社,2005 [5]胡运权,吴中启,李树青等,运筹学,北京:清华出版社,2003 [6] 焦永兰,管理运筹学,北京:中国铁道出版社,2002 完成期限 2016年6月27日-7月8日 指导教师 专业负责人 2016年7月5日

摘要 人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果。在研究过程中需要处理大量数据,而统计学正是对社会经济数据进行定量分析的重要工具,应用统计方法来整理这些数据,就可以省去不必要的过程。 本文简要介绍了了数学规划模型的概念、特点,以及LINGO软件的发展及用途。本文在求解的过程中主要借助了这个软件。必要的求解过程是利用MATLAB和LINGO来求解的。本文在详细介绍了数学规划模型的几个基本模型的过程中,并且每种模型都举了实例,并且通过LINGO操作,对每种方法所举实例归纳总结了较为简便的求解方法,并且给出了具体答案。最后,本文着重的探讨了典型数学模型应用规划模型方法结合LINGO 求解,在解决林区汽车修理网的布局问题中,很好的体现了规划模型方法在解决典型数学模型问题时应用的广泛性和有效性。 林区的汽车往往需要定期送往不同的修理厂进行大修,不同的汽车分配方案往往需要消耗不同的修理成本. 本文主要利用图论和运筹学理论建立了一套线性规划数学模型,用于求解不同的修理厂规模的条件下最优的汽车分配方案,以及所对应的总费用,并对其进行分析评估。但为寻求最佳的修理厂规模调整方案,本文模拟实际情况中的市场机理,把市场作为资源分配的主要手段,国家(此处为方案制定制者)对市场进行必要的宏观调控。在此方案下得到了相当满意的结果,这也是本文的独到之处。本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 应用规划模型结合实际数学问题可以简化求解步骤,省去繁琐的过程。为实际问题的研究提供了较为简便的方法。 关键词:LINGO;汽车修理网布局;图论;布局规划模型

目标规划模型

§ 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+ d 、- d 正偏差变量+ d 表示决策值) ,,2,1(n i x i ΛΛ=超过目标值的部分;负偏差变量- d 表示 决策值 ) ,,2,1(n i x i ΛΛ=未达到目标值的部分;一般而言,正负偏差变量+ d 、- d 的相互 关系如下: 当决策值 ) ,,2,1(n i x i ΛΛ=超过规定的目标值时, 0 ,0=>- +d d ;当决策值) ,,2,1(n i x i ΛΛ=未超过规定的目标值时, 0 ,0>=- +d d ;当决策值),,2,1(n i x i ΛΛ=正好等于规定的目标值时, 0 ,0==- +d d 。 (2)绝对约束和目标约束 绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定 的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+d 、- d 来实现。

线性规划模型在企业生产计划中的应用

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要:在企业生产过程中,生产资源的分配直接影响到企业的经济效益。因此,企业在制定生产计划时,人力物力和时间等资源的优化配制是首要面对的关键问题,而建立线性规划模型则是目前解决该问题的有效方法之一。本文旨在针对上述有限资源条件的约束下,通过建立相应的线性规划模型来制定生产计划以实现企业资源最优化、利益最大化,同时利用LINGO 11.0软件求解线性规划模型并分析在某些资源变动时对该模型所产生的影响并寻求最优生产方案。 关键词:企业生产计划;线性规划;数学模型;LINGO 11.0

Abstract:In the enterprise production process, the allocation of production resources directly affects the economic efficiency of enterprises. Therefore, enterprises in the development of production plan, formulated to optimize the resources of manpower and time is the key problem of face. And to establish the linear programming model is one of the effective ways to solve the problem. This paper aimed at the limited resource constraints, by establishing linear programming model corresponding to make production plan in order to realize the maximization of enterprise resource optimization, interest, and using LINGO11.0 software to solve the linear programming model and analysis the influence on the model in some resource changes and seek the optimal production plan. Key words:Production plan;Linear programming;Mathematical model; LINGO 11.0 目录

目标规划模型

§5.3 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+ d 、- d 正偏差变量+ d 表示决策值 ) ,,2,1(n i x i =超过目标值的部分;负偏差变量 - d 表示决策值 ) ,,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量 + d 、- d 的相互关系如下: 当决策值 ) ,,2,1(n i x i =超过规定的目标值时, ,0=>- + d d ;当决策值 ),,2,1(n i x i =未超过规定的目标值时,0 ,0>=- + d d ;当决策值 ) ,,2,1(n i x i =正好等于规定的目标值时, ,0==- + d d 。 (2)绝对约束和目标约束 绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束

条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+ d 、- d 来实现。 (3)优先因子(优先级)与权系数 目标规划问题常要求许多目标,在这些诸多目标中,凡决策者要求第一位达到的目标赋予优先因子1P ,要求第二位达到的目标赋予优先因子2P ,……,并规定1+>>k k P P ,即1+k P 级目标的讨论是在k P 级目标得以实现后才进行的(这里 n k ,,2,1 =)。若要考虑两个优先因子相同的目标的区别,则可通过赋予它们 不同的权系数 j w 来完成。 3)目标规划模型的目标函数 目标规划的目标函数是根据各目标约束的正、负偏差变量+ d 、- d 和其优先因子来构造的,一般而言,当每一目标值确定后,我们总要求尽可能地缩小与目标值的偏差,故目标规划的目标函数只能是 ) ,( min - +=d d f z 的形式。我们 可将其分为以下三种情形: (1)当决策值) ,,2,1(n i x i =要求恰好等于规定的目标值时,这时正、负 偏差变量+ d 、- d 都要尽可能小,即对应的目标函数为: ) ( min - + +=d d f z ; (2)当决策值) ,,2,1(n i x i =要求不超过规定的目标值时,这时正偏差变 量+ d 要尽可能小,即对应的目标函数为: ) ( min + =d f z ; (3)当决策值 ) ,,2,1(n i x i =要求超过规定的目标值时,这时负偏差变量 - d 要尽可能小,即对应的目标函数为: ) ( min - =d f z 。 目标规划数学模型的一般形式为: ∑∑=+ +-- =+= K k k lk k lk L l l d w d w P z 1 1 ) ( min

目标规划模型

1线性规划的局限性 在我们解题过程中,大量运用线性规划建模,但是在很多情况下,线性规划具有不可避免的局限性: (1)线性规划要求所解决的问题必须满足全部的约束,而实际问题中并非所有约束都需要严格的满足; (2)线性规划只能处理单目标的优化问题,而对一些次目标只能转化为约束处理,而在实际问题中,目标和约束是可以相互转化的,处理时不一定要严格区分; (3)线性规划在处理问题时,将各个约束(也可看做目标)的地位看成同等重要,而在实际问题中,各目标的重要性即有层次上的差别,也有在同一层次上不同权重的差别; (4)线性规划寻找最优解,而许多实际问题只需要找到满意解就可以了。 2目标规划的基本概念 为了克服线性规划的局限性,目标规划采用如下手段。 1). 设置偏差变量 用偏差变量来表示实际值与目标值之间的差异,令d+为超出目标的差值,称为正偏差变量;d- 为未达到目标的差值,称为负偏差变量。其中d+ 与d- 至少有一个为0。当实际值超过目标值时,有d- =0,d+>0;当实际值未达到目标值时,有d+ =0,d- >0;当实际值与目标值一致时,有d+ =d- =0。 2)统一处理目标与约束 在目标规划中,约束有两类,一类是对资源有严格限制的,同线性规划的处理相同,用严格的等式或不等式约束来处理,成为刚性约束; 另一类约束是可以不严格控制的,连同原线性规划的目标,构成柔性约束。如果希望不等式保持大于等于,则极小化负偏差;如果希望不等式保持小于等于,则极小化正偏差;如果希望保持等式,则同时极小化正、负偏差。 3)目标的优先级与权系数 在目标规划模型中,目标的优先分为两个层次。第一个层次是目标分成不同的优先级,在计算目标规划时,必须先优化高优先级的目标,然后再优化低优先级的目标。通常以P1,P2,……表示不同的因子,并规定了优先等级。第二个层次是目标处于同一优先级,但两个目标的权重不一样,因此两目标同时优化,但用权系数的大小来表示目标重要性的差别。 3目标规划模型的建立 总的来讲,目标规划在建模中,除刚性约束必须严格满足外,对所有目标约束均允许有偏差。其求解过程要从高到低逐层优化,在不增加高层次目标的偏差值的情况下,逐次使低层次的偏差达到极小。 3.1例题:(生产安排问题)某企业生产甲、乙两种产品,需要用到A、B、C三种设备,关于产品的盈利与使用设备的工时及限制如表1-1所示。问:该企业应如何安排生产,使得在计划期内总利润最大?

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决

目标规划模型

§5.3 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+d 、- d 正偏差变量+ d 表示决策值 ) ,,2,1(n i x i ΛΛ=超过目标值的部分;负偏差变量 -d 表示决策值),,2,1(n i x i ΛΛ=未达到目标值的部分;一般而言,正负偏差变量+d 、-d 的相互关系如下: 当决策值 ) ,,2,1(n i x i ΛΛ=超过规定的目标值时, 0 ,0=>- +d d ;当决策值),,2,1(n i x i ΛΛ=未超过规定的目标值时, 0 ,0>=-+d d ;当决策值) ,,2,1(n i x i ΛΛ=正好等于规定的目标值时, 0 ,0==- +d d 。 (2)绝对约束和目标约束 绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目

相关主题
文本预览
相关文档 最新文档