当前位置:文档之家› 目标规划模型

目标规划模型

目标规划模型
目标规划模型

目标规划模型

Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

§ 目标规划模型

1. 目标规划模型概述

1)引例

目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。

例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。

(1)尽量避免生产能力闲置;

(2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。

显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念

(1)正、负偏差变量+

d 、-

d 正偏差变量+

d 表示决策值)

,,2,1(n i x i =超过目标值的部分;负偏差变量-

d 表示

决策值

)

,,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量+d 、-d 的相互

关系如下:

当决策值

)

,,2,1(n i x i =超过规定的目标值时,

0 ,0=>-

+d d ;当决策值)

,,2,1(n i x i =未超过规定的目标值时,

0 ,0>=-

+d d ;当决策值),,2,1(n i x i =正好等于规定的目标值时,

0 ,0==-

+d d 。

(2)绝对约束和目标约束

绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+

d 、-

d 来实现。

(3)优先因子(优先级)与权系数

目标规划问题常要求许多目标,在这些诸多目标中,凡决策者要求第一位达到的目标赋予优先因子1P ,要求第二位达到的目标赋予优先因子2P ,……,并规定1

+>>k k P P ,

1

+k P 级目标的讨论是在

k

P 级目标得以实现后才进行的(这里n k ,,2,1 =)。若要考

虑两个优先因子相同的目标的区别,则可通过赋予它们不同的权系数j

w 来完成。

3)目标规划模型的目标函数

目标规划的目标函数是根据各目标约束的正、负偏差变量+d 、-d 和其优先因子来构

造的,一般而言,当每一目标值确定后,我们总要求尽可能地缩小与目标值的偏差,故

目标规划的目标函数只能是

) ,( min -

+=d d f z 的形式。我们可将其分为以下三种情形:

(1)当决策值

)

,,2,1(n i x i =要求恰好等于规定的目标值时,这时正、负偏差变

量+d 、-

d 都要尽可能小,即对应的目标函数为: )( m in -++=d d f z ;

(2)当决策值

)

,,2,1(n i x i =要求不超过规定的目标值时,这时正偏差变量+

d 要

尽可能小,即对应的目标函数为:

)( min +

=d f z ; (3)当决策值

)

,,2,1(n i x i =要求超过规定的目标值时,这时负偏差变量-

d 要尽

可能小,即对应的目标函数为:

)( min -

=d f z 。 目标规划数学模型的一般形式为:

有了以上的讨论,在例1中,设21 ,x x 分别表示产品A 、B 的生产数量,-1d 表示生产能力闲置的时间,+1d 表示加班时间,-

2d 表示产品A 没能达到销售目标的数目,-

3d 表

示产品B 没能达到销售目标的数目。因要求尽量避免生产能力闲置及尽量减少加班时

间,故有目标约束条件为:5001121=-+++-d d x x (-1d 、+

1d 要尽可能小),又要求尽

可能多地卖出产品,故有目标约束条件为:

400

,3003221=+=+--

d x d x (-

2d 、-

3d 要尽

可能小),多卖出A 产品的要求可体现在目标函数的权系数中,于是可得到例1的目标规划模型为: 满足的约束条件为:

2.应用实例

例1. 职工的调资方案问题 1)问题的提出

某单位领导在考虑本单位职工的升级调资方案时,要求相关部门遵守以下的规定: (1) 年工资总额不超过60000元; (2) 每级的人数不超过定编规定的人数;

(3) П、Ш级的升级面尽可能达到现有人数的20%;

(4) Ш级不足编制的人数可录用新职工,又I 级的职工中有10%的人要退休。 相关资料汇总于下表中,试为单位领导拟定一个满足要求的调资方案。

2)模型分析与变量假设

显然这是一个多目标规划的决策问题,适于用目标规划模型求解,故需要确定该问题与之对应的决策变量、目标值、优先等级及权系数等。设1x 、2x 、

3

x 分别表示提升到

I 、П级和录用到Ш级的新职工人数,由题设要求可确定各目标的优先因子为:

1P ——年工资总额不超过60000元; 2P ——每级的人数不超过定编规定的人数;

3

P ——П、Ш级的升级面尽可能达到现有人数的20%;

下面再确定目标约束,因要求年工资总额不超过60000元,所以有:

2000(10-10×10%+1x )+1500(12-1x +2x )+1000(15-2x +3x )+

6000011=-+

-d d 且正偏差变量+

1d 要尽可能小,又第二目标要求每级的人数不超过定编规定的人数,所

以,

对I 级有:12)1.01(10221=-++-+-d d x ,且正偏差变量+2d 要尽可能小;

对П级有:

15

123321=-++-+-d d x x ,且正偏差变量

+

3d 要尽可能小;

对Ш级有:

15

154432=-++-+-d d x x ,且正偏差变量+

4d 要尽可能小;

对第三目标——П、Ш级的升级面尽可能达到现有人数的20%,我们有:

%,2012551?=-++-d d x 且负偏差变量-5d 要尽可能小;

%,2015662?=-++-d d x 且负偏差变量

-

6d 要尽可能小;

3)模型的建立

由此,我们可得到该问题的目标规划模型为: 满足约束条件

求解后可得到该问题的一个多重解,并将这些解汇总于下表中,以供领导根据具体情况进行决策:

例2.物资的调运安排问题 1)问题的提出

有一供需不平衡(供应量<需求量)的物资调运问题如下表所示:请为其制订物资调运方案,使之满足以下的目标要求:

1P ——尽量保证满足重点客户3B 的需求指标; 2P ——要求总运费不超过预算指标41066 元;

3

P ——至少满足客户

3

21 , ,B B B 需求指标的80%;

4P ——由3A 至1B 的运输量按合同规定不少于1万吨;

5

P ——

1A 3B

2)模型分析与变量假设

这仍然是一个多目标决策规划问题,虽然未给出给出仓库到客户之间的单位运价,但这并不影响我们的分析与建模。 设从仓库

)

3,2,1(=i A i 调拨到客户

)

3,2,1(=j B j 的货运量为

ij

x ,因该问题的供应量小于需

求量,故从仓库

)

3,2,1(=i A i 调拨到客户

j

B 的货运量

)

3,2,1(321=++j x x x j j j 不可能超过

所要求的需求量,因此,)3,2,1( 0 ,0=≥=-

+

i d d i i ,于是有:

又目标1P 为:尽量保证满足重点客户

3

B 的需求指标,故有:

10

44332313=-++++

-d d x x x ,

且+

-44

,d d 都要尽可能小; 对目标2P :因要求总运费不超过预算指标4

1066?元,故有:

∑∑==+-?=-+313

1

4

551066i j ij ij

d d x c

+

5d 应尽可能小;

对目标3

P :因要求至少满足客户

3

21 , ,B B B 需求指标的80%,故有:

%8010%806%808883323137732221266312111?=-+++?=-+++?=-++++-+-+-d d x x x d d x x x d d x x x ,

)

8,7,6(=-i d i 应尽可能小;

对目标4P ——因要求由3

A 至1

B 的运输量按合同规定不少于1万吨,故有:

1

9931=-++-d d x ,

-

9d 应尽可能小;

对目标

5

P ——因1A 至

3

B 的道路危险,而要求运量要减少到最低点,故有:

1013=-+

d x ,

且+

10

d 应尽可能小;

另外,从仓库i

A 调拨到客户

3

21 , ,B B B 的货运量

)

3,2,1(321=++i x x x i i i 不可能超过该

仓库的供应量,所以有: 3)模型的建立与求解

至此,我们得到该“物资调运安排问题”的目标规划模型为: 满足约束条件 这里

,,≥+-k k ij d d x 。

目标规划模型

目标规划模型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

§ 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+ d 、- d 正偏差变量+ d 表示决策值) ,,2,1(n i x i =超过目标值的部分;负偏差变量- d 表示 决策值 ) ,,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量+d 、-d 的相互 关系如下: 当决策值 ) ,,2,1(n i x i =超过规定的目标值时, 0 ,0=>- +d d ;当决策值) ,,2,1(n i x i =未超过规定的目标值时, 0 ,0>=- +d d ;当决策值),,2,1(n i x i =正好等于规定的目标值时, 0 ,0==- +d d 。

线性规划应用案例

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的

LINGO在多目标规划和最大最小化模型中的应用

LINGO 在多目标规划和最大最小化模型中的应用 在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。 一、多目标规划的常用解法 多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有: 1.主要目标法 确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。 2.线性加权求和法 对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把) (x f i i i ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。 3.指数加权乘积法 设p i x f i ,,2,1),( =是原来的p 个目标,令 ∏==p i a i i x f Z 1)]([ 其中i a 为指数权重,把Z 作为新的目标函数。 4.理想点法 先分别求出p 个单目标规划的最优解*i f ,令 ∑-=2*))(()(i i f x f x h 然后把它作为新的目标函数。 5.分层序列法 将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。 这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不

足之处。例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。 二、最大最小化模型 在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。 最大最小化模型的目标函数可写成 )}(,),(),(max{min 21X f X f X f p X 或 )}(,),(),(min{max 21X f X f X f p X 式中T n x x x X ),,,(21 是决策变量。模型的约束条件可以包含线性、非线性的等式和不等式约束。这一模型的求解可视具体情况采用适当的方法。 三、用LINGO 求解多目标规划和最大最小化模型 1.解多目标规划 用LINGO 求解多目标规划的基本方法是先确定一个目标函数,求出它的最优解,然后把此最优值作为约束条件,求其他目标函数的最优解。如果将所有目标函数都改成约束条件,则此时的优化问题退化为一个含等式和不等式的方程组。LINGO 能够求解像这样没有目标函数只有约束条件的混合组的可行解。有些组合优化问题和网络优化问题,因为变量多,需要很长运算时间才能算出结果,如果设定一个期望的目标值,把目标函数改成约束条件,则几分钟就能得到一个可行解,多试几个目标值,很快就能找到最优解。对于多目标规划,同样可以把多个目标中的一部分乃至全部改成约束条件,取适当的限制值,然后用LINGO 求解,从中找出理想的最优解,这样处理的最大优势是求解速度快,节省时间。 2.解最大最小化问题

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

整数规划和多目标规划模型

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题。这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ),,2,1(0..min Λ 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为设计变量对应的上界和下界。M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x Λ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。TolXInteger 为判定整数的误差限,即若某数x 和最邻近整数相差小于该误差限,则认为x 即为该整数。

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的呢?

整数规划和多目标规划模型知识分享

整数规划和多目标规 划模型

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题。这里我们给出开罗大学的Sherif 和Tawfik 在MATLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ),,2,1(0..min 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为

数学规划模型

课程设计 2015年 7 月 5 日

东北石油大学课程设计任务书 课程《数学模型》课程设计 题目应用数学规划模型求解实际数学问题 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容 简单介绍数学规划模型基本理论及本文所用的规划模型和相关软件LINGO,并通过实例来掌握如何应用数学规划模型求解实际数学问题。并利用本文所介绍的方法来分析林区汽车修理网的布局 课程设计的要求: 1.独立完成建模,并提交一篇建模论文。 2.论文的主要内容包括:摘要,问题的提出,问题的分析,模型假设,模型设计,模型解法与结果,模型结果的分析和检验,包括误差分析、稳定性分析等。模型的优缺点及改进方向。必要的计算机程序。 3.文档格式:参照《东北石油大学课程设计撰写规范》和《数学模型课程设计教学大纲》。 4.课程设计结束时参加答辩。 主要参考资料: [1] 唐焕文,贺明峰,数学模型(第三版),北京:高等教育出版社,2005.3 [2]杨云峰等,数学建模与数学软件,哈尔滨:哈尔滨工程大学出版社,2012.6 [3]陈东彦,李冬梅,王树忠,数学建模,北京:科学出版社,2007 [4] 吴建国等,数学建模案例精编,北京:中国水利水电出版社,2005 [5]胡运权,吴中启,李树青等,运筹学,北京:清华出版社,2003 [6] 焦永兰,管理运筹学,北京:中国铁道出版社,2002 完成期限 2016年6月27日-7月8日 指导教师 专业负责人 2016年7月5日

摘要 人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果。在研究过程中需要处理大量数据,而统计学正是对社会经济数据进行定量分析的重要工具,应用统计方法来整理这些数据,就可以省去不必要的过程。 本文简要介绍了了数学规划模型的概念、特点,以及LINGO软件的发展及用途。本文在求解的过程中主要借助了这个软件。必要的求解过程是利用MATLAB和LINGO来求解的。本文在详细介绍了数学规划模型的几个基本模型的过程中,并且每种模型都举了实例,并且通过LINGO操作,对每种方法所举实例归纳总结了较为简便的求解方法,并且给出了具体答案。最后,本文着重的探讨了典型数学模型应用规划模型方法结合LINGO 求解,在解决林区汽车修理网的布局问题中,很好的体现了规划模型方法在解决典型数学模型问题时应用的广泛性和有效性。 林区的汽车往往需要定期送往不同的修理厂进行大修,不同的汽车分配方案往往需要消耗不同的修理成本. 本文主要利用图论和运筹学理论建立了一套线性规划数学模型,用于求解不同的修理厂规模的条件下最优的汽车分配方案,以及所对应的总费用,并对其进行分析评估。但为寻求最佳的修理厂规模调整方案,本文模拟实际情况中的市场机理,把市场作为资源分配的主要手段,国家(此处为方案制定制者)对市场进行必要的宏观调控。在此方案下得到了相当满意的结果,这也是本文的独到之处。本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 应用规划模型结合实际数学问题可以简化求解步骤,省去繁琐的过程。为实际问题的研究提供了较为简便的方法。 关键词:LINGO;汽车修理网布局;图论;布局规划模型

目标规划模型

§ 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+ d 、- d 正偏差变量+ d 表示决策值) ,,2,1(n i x i ΛΛ=超过目标值的部分;负偏差变量- d 表示 决策值 ) ,,2,1(n i x i ΛΛ=未达到目标值的部分;一般而言,正负偏差变量+ d 、- d 的相互 关系如下: 当决策值 ) ,,2,1(n i x i ΛΛ=超过规定的目标值时, 0 ,0=>- +d d ;当决策值) ,,2,1(n i x i ΛΛ=未超过规定的目标值时, 0 ,0>=- +d d ;当决策值),,2,1(n i x i ΛΛ=正好等于规定的目标值时, 0 ,0==- +d d 。 (2)绝对约束和目标约束 绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定 的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+d 、- d 来实现。

数学建模多目标规划函数fgoalattain

MATLAB 中文论坛讲义 多目标规划优化问题 Matlab 中常用于求解多目标达到问题的函数为fgoalattain.假设多目标函数问题的数学模型为: ub x lb beq x Aeq b x A x ceq x c goal weight x F t s y x ≤≤=≤=≤≤-**0 )(0 )(*)(..min ,γγ weight 为权值系数向量,用于控制对应的目标函数与用户定义的目标函数值的接近程度; goal 为用户设计的与目标函数相应的目标函数值向量; γ为一个松弛因子标量; F(x)为多目标规划中的目标函数向量。 综上,fgoalattain 的优化过程就是使得F 逼近goal; 工程应用中fgoalattain 函数调用格式如下: [x,fval]=fgoalattain (fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) x0表示初值; fun 表示要优化的目标函数; goal 表示函数fun 要逼近的目标值,是一个向量,它的维数大小等于目标函数fun 返回向量F 的维数大小; weight 表示给定的权值向量,用于控制目标逼近过程的步长; 例1. 程序(利用fgoalattain 函数求解) 23222 12 3222132min )3()2()1(min x x x x x x ++-+-+- 0,,6 ..321321≥=++x x x x x x t s ①建立M 文件. function f=myfun(x) f(1)= x(1)-1)^2+(x(2)-2)^2+(x(3)-3)^2; f(2)= x(1)^2+2*x(2)^2+3*x(3)^2; ②在命令窗口中输入. goal=[1,1]; weight=[1,1];

线性规划模型在企业生产计划中的应用

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要:在企业生产过程中,生产资源的分配直接影响到企业的经济效益。因此,企业在制定生产计划时,人力物力和时间等资源的优化配制是首要面对的关键问题,而建立线性规划模型则是目前解决该问题的有效方法之一。本文旨在针对上述有限资源条件的约束下,通过建立相应的线性规划模型来制定生产计划以实现企业资源最优化、利益最大化,同时利用LINGO 11.0软件求解线性规划模型并分析在某些资源变动时对该模型所产生的影响并寻求最优生产方案。 关键词:企业生产计划;线性规划;数学模型;LINGO 11.0

Abstract:In the enterprise production process, the allocation of production resources directly affects the economic efficiency of enterprises. Therefore, enterprises in the development of production plan, formulated to optimize the resources of manpower and time is the key problem of face. And to establish the linear programming model is one of the effective ways to solve the problem. This paper aimed at the limited resource constraints, by establishing linear programming model corresponding to make production plan in order to realize the maximization of enterprise resource optimization, interest, and using LINGO11.0 software to solve the linear programming model and analysis the influence on the model in some resource changes and seek the optimal production plan. Key words:Production plan;Linear programming;Mathematical model; LINGO 11.0 目录

线性规划案例分析(1)

1. 在一个金属板加工车间内,要从尺寸为48分米?96分米的大块矩形金属板上切割下 小块的金属板。此车间接到订单要求生产8块大小为36分米?50分米的矩形金属板,13块大小为24分米?36分米的矩形金属板,以及15块大小为18分米?30分米的矩形金属板。这些金属板都需要从现有的大金属板上切割下来。为了生产出满足订单要求的金属板,最少可以使用多少块大金属板? 列出该问题的线性规划模型。 Zmin = 2. 某县级市正在研究引进公交系统以减轻市内自驾车引起的烟尘污染。这项研究的目标是 寻求满足运输所需要的最少公交车数。在收集了必要的信息之后,市政工程师注意到,每天所需的最少公交车数随一天中的时间不同而变化,而且所需的最少公交车数在若干连续的4小时间隔内可以近似看成一个常数。图1描述了工程师的发现,为了完成公交车所需的日常维护,每辆公交车一天只能连续运行8小时,问该市至少需要多少量公交车?列出该问题的线性规划模型。 0:004:008:0012:0016:0020:0024:004 8 124810712 4 图1 3. 某银行正在制订一项总额可达6000万元的贷款策略,表1提供了各类贷款的相关数据。 表1 贷款类型 利率 坏账比率 个人 0.140 0.10 汽车 0.130 0.07 住房 0.120 0.03 农业 0.125 0.05 商业 0.100 0.02 其中,坏账不可收回且不产生利息收入。 为了与其它金融机构竞争,要求银行把至少40%的资金分配给农业和商业贷款。为扶持当地的住房产业,住房贷款至少要等于个人、汽车和住房贷款总额的50%。银行还有一项明确的政策,不允许坏账的总比例超过全部贷款的4%。试寻求一种最佳贷款策略,使得银行的净收益达到最大。建立此问题的线性规划模型。 4.某种产品在未来4个季度的需求量分别是300,400,450,250件,每件的价格在第1季度以20元开始,其随后的每个季度增加2元。供应商在任一季度最多可以提供产品400件。尽管我们可以利用前面季度的低价优势,但它会导致每季度每件3.5元的储存成本,另外,从一个季度到下一季度的最大件数不能超过100件,试为该产品建立一个最优的采购计划以满足需求且使总成本最低。建立该问题的线性规划模型。

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数

目标规划模型

§5.3 目标规划模型 1. 目标规划模型概述 1)引例 目标规划模型是有别于线性规划模型的一类多目标决策问题模型,通过下面的例子,我们可看出这两者的区别。 例1 某工厂的日生产能力为每天500小时,该厂生产A 、B 两种产品,每生产一件A 产品或B 产品均需一小时,由于市场需求有限,每天只有300件A 产品或400件B 产品可卖出去,每出售一件A 产品可获利10元,每出售一件B 产品可获利5元,厂长按重要性大小的顺序列出了下列目标,并要求按这样的目标进行相应的生产。 (1)尽量避免生产能力闲置; (2)尽可能多地卖出产品,但对于能否多卖出A 产品更感兴趣; (3)尽量减少加班时间。 显然,这样的多目标决策问题,是单目标决策的线性规划模型所难胜任的,对这类问题,须采用新的方法和手段来建立对应的模型。 2)相关的几个概念 (1)正、负偏差变量+ d 、- d 正偏差变量+ d 表示决策值 ) ,,2,1(n i x i =超过目标值的部分;负偏差变量 - d 表示决策值 ) ,,2,1(n i x i =未达到目标值的部分;一般而言,正负偏差变量 + d 、- d 的相互关系如下: 当决策值 ) ,,2,1(n i x i =超过规定的目标值时, ,0=>- + d d ;当决策值 ),,2,1(n i x i =未超过规定的目标值时,0 ,0>=- + d d ;当决策值 ) ,,2,1(n i x i =正好等于规定的目标值时, ,0==- + d d 。 (2)绝对约束和目标约束 绝对约束是必须严格满足的等式约束或不等式约束,前述线性规划中的约束

条件一般都是绝对约束;而目标约束是目标规划所特有的,在约束条件中允许目标值发生一定的正偏差或负偏差的一类约束,它通过在约束条件中引入正、负偏差变量+ d 、- d 来实现。 (3)优先因子(优先级)与权系数 目标规划问题常要求许多目标,在这些诸多目标中,凡决策者要求第一位达到的目标赋予优先因子1P ,要求第二位达到的目标赋予优先因子2P ,……,并规定1+>>k k P P ,即1+k P 级目标的讨论是在k P 级目标得以实现后才进行的(这里 n k ,,2,1 =)。若要考虑两个优先因子相同的目标的区别,则可通过赋予它们 不同的权系数 j w 来完成。 3)目标规划模型的目标函数 目标规划的目标函数是根据各目标约束的正、负偏差变量+ d 、- d 和其优先因子来构造的,一般而言,当每一目标值确定后,我们总要求尽可能地缩小与目标值的偏差,故目标规划的目标函数只能是 ) ,( min - +=d d f z 的形式。我们 可将其分为以下三种情形: (1)当决策值) ,,2,1(n i x i =要求恰好等于规定的目标值时,这时正、负 偏差变量+ d 、- d 都要尽可能小,即对应的目标函数为: ) ( min - + +=d d f z ; (2)当决策值) ,,2,1(n i x i =要求不超过规定的目标值时,这时正偏差变 量+ d 要尽可能小,即对应的目标函数为: ) ( min + =d f z ; (3)当决策值 ) ,,2,1(n i x i =要求超过规定的目标值时,这时负偏差变量 - d 要尽可能小,即对应的目标函数为: ) ( min - =d f z 。 目标规划数学模型的一般形式为: ∑∑=+ +-- =+= K k k lk k lk L l l d w d w P z 1 1 ) ( min

线性规划实例

线性规划实例 例1 任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低? 解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型: 编写M 文件lp1.m 如下: f = [13 9 10 11 12 8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [800; 900]; Aeq=[1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; beq=[400 600 500]; vlb = zeros(6,1); %产生一个6行、1列的零矩阵 vub=[]; [x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub) 结果: x = 0.0000 600.0000 6543218121110913min x x x x x x z +++++= ???????????=≥≤++≤++=+=+=+6,,2,1,09003.12.15.08001.14.0500600400x ..6543216352 41 i x x x x x x x x x x x x t s i

0.0000 400.0000 0.0000 500.0000 fval =1.3800e+004 即在甲机床上加工600个工件2,在乙机床上加工400个工件1、500个工件3,可在满足条件的情况下使总加工费最小为13800。 例2 某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名? 解 设需要一级和二级检验员的人数分别为x1、x2人,则应付检验员的工资为: 因检验员错检而造成的损失为: 目标函数为: 约束条件为: 作业: 212124323848x x x x +=??+??21211282)%5158%2258(x x x x +=????+???2121213640)128()2432(m in x x x x x x z +=+++=???????≥≥≤??≤??≥??+??0 ,0180015818002581800158258212121x x x x x x 213640m in x x z +=???????≥≥≤≤≥+0 ,015 945 35 ..2121 21x x x x x x t s

线性规划 优秀案例

本科学生大作业报告课程名称:运筹学石油精炼模型 小组成员学号 小组成员学号 小组成员学号 小组成员学号 班级10工程管理 指导教师王翠霞教授 开课学期2011 至2012 学年第二学期 完成时间2012 年 6 月 3 日

石油精炼问题模型 案例背景介绍 石油是不可再生资源,它是保障各国经济发展、政治稳定的战略物资,被称为“黑色黄金”、“经济血液”。随着我国经济的发展,石油需求量也急剧增加,石油精炼随之成为一个热点问题。石油的精炼过程需要使用原油经过分离、转化、提纯和混合四道工序,最终生产出丁烷、汽油、柴油以及民用燃料油产品。本文基于石油精炼厂既要“使成本最低”,又要“满足产量和质量上的要求”这两个问题,通过建立石油精炼线性规划模型,成功地解决了上述两个问题,并对石油精炼厂提出一些建议。 首先,为了解决“使成本最低”这个问题,我们系统分析了影响炼油成本的各个因素,将整个流程简化并概括为第一、第二和第三类工艺过程,从而深入浅出地确立了模型的目标函数和必要的相关变量,将问题进行了简化,进一步揭示了原油用量和工艺成本之间的密切联系,为数学模型的建立奠定了基础。 然后,针对要“满足产量和质量上的要求”这个问题,我们对产量和质量上有关约束条件认真的梳理,再结合目标函数,逐步得出模型条件,最后确定了满足条件的数学模型。接着,用Excel软件对此数学模型进行求解。 结合石油精炼厂的实际生产利润情况,本文还通过引入产品价格建立了精炼厂净利润最大化的数学模型,将模型进行了很好的延伸与推广。 一、案例的提出 石油精炼厂将使用两种原油生产丁烷,汽油,柴油,以及民用燃料油。为生产出这些产品,需要四道工序:分离,转化,提纯和混合。其主要流程以及所用原料比例如下图所示:

目标规划模型

1线性规划的局限性 在我们解题过程中,大量运用线性规划建模,但是在很多情况下,线性规划具有不可避免的局限性: (1)线性规划要求所解决的问题必须满足全部的约束,而实际问题中并非所有约束都需要严格的满足; (2)线性规划只能处理单目标的优化问题,而对一些次目标只能转化为约束处理,而在实际问题中,目标和约束是可以相互转化的,处理时不一定要严格区分; (3)线性规划在处理问题时,将各个约束(也可看做目标)的地位看成同等重要,而在实际问题中,各目标的重要性即有层次上的差别,也有在同一层次上不同权重的差别; (4)线性规划寻找最优解,而许多实际问题只需要找到满意解就可以了。 2目标规划的基本概念 为了克服线性规划的局限性,目标规划采用如下手段。 1). 设置偏差变量 用偏差变量来表示实际值与目标值之间的差异,令d+为超出目标的差值,称为正偏差变量;d- 为未达到目标的差值,称为负偏差变量。其中d+ 与d- 至少有一个为0。当实际值超过目标值时,有d- =0,d+>0;当实际值未达到目标值时,有d+ =0,d- >0;当实际值与目标值一致时,有d+ =d- =0。 2)统一处理目标与约束 在目标规划中,约束有两类,一类是对资源有严格限制的,同线性规划的处理相同,用严格的等式或不等式约束来处理,成为刚性约束; 另一类约束是可以不严格控制的,连同原线性规划的目标,构成柔性约束。如果希望不等式保持大于等于,则极小化负偏差;如果希望不等式保持小于等于,则极小化正偏差;如果希望保持等式,则同时极小化正、负偏差。 3)目标的优先级与权系数 在目标规划模型中,目标的优先分为两个层次。第一个层次是目标分成不同的优先级,在计算目标规划时,必须先优化高优先级的目标,然后再优化低优先级的目标。通常以P1,P2,……表示不同的因子,并规定了优先等级。第二个层次是目标处于同一优先级,但两个目标的权重不一样,因此两目标同时优化,但用权系数的大小来表示目标重要性的差别。 3目标规划模型的建立 总的来讲,目标规划在建模中,除刚性约束必须严格满足外,对所有目标约束均允许有偏差。其求解过程要从高到低逐层优化,在不增加高层次目标的偏差值的情况下,逐次使低层次的偏差达到极小。 3.1例题:(生产安排问题)某企业生产甲、乙两种产品,需要用到A、B、C三种设备,关于产品的盈利与使用设备的工时及限制如表1-1所示。问:该企业应如何安排生产,使得在计划期内总利润最大?

(完整版)线性规划案例

1.人力资源分配问题 设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少? 解:设x i 表示第i班次时开始上班的司机和乘务人员数, 这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 约束条件:s.t. x1 + x6 ≥60 x1 + x2 ≥70 x2 + x3 ≥60 x3 + x4 ≥50 x4 + x5 ≥20 x5 + x6 ≥30 x1,x2,x3,x4,x5,x6 ≥0 运用lingo求解: Objective value: 150.0000 ariable Value Reduced Cost X1 60.00000 0.000000 X2 10.00000 0.000000 X3 50.00000 0.000000 X4 0.000000 0.000000 X5 30.00000 0.000000 X6 0.000000 0.000000 例2.一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?

解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7 约束条件:s.t. x1 + x2 + x3 + x4 + x5 ≥28 x2 + x3 + x4 + x5 + x6 ≥15 x3 + x4 + x5 + x6 + x7 ≥24 x4 + x5 + x6 + x7 + x1 ≥25 x5 + x6 + x7 + x1 + x2 ≥19 x6 + x7 + x1 + x2 + x3 ≥31 x7 + x1 + x2 + x3 + x4 ≥28 x1,x2,x3,x4,x5,x6,x7 ≥0 lingo求解 Objective value: 36.00000 Variable Value Reduced Cost X1 12.00000 0.000000 X2 0.000000 0.3333333 X3 11.00000 0.000000 X4 5.000000 0.000000 X5 0.000000 0.000000 X6 8.000000 0.000000 X7 0.000000 0.000000 例3. 某储蓄所每天的营业时间为上午9:00到下午17:00,根据经验,每天不同时间段所需要 储蓄所可以雇佣全时和半时两类服务员。全时服务员每天报酬为100元,从上午9:00到下午17:00工作,但中午12:00到下午14:00之间必须安排1小时的午餐时间;储蓄所每天可以雇佣不超过3名的半时服务员,每个半时服务员必须连续工作4小时,报酬为40元。问: 1) 储蓄所应该如何雇佣全时和半时两类服务员? 2) 如果不能雇佣半时服务员,每天至少增加多少经费? 3) 如果雇佣半时服务员的数量没有限制,每天可以减少多少经费? 解:设x1, x2分别表示12~13,13~14进行午餐的全时服务人员, y1,y2,y3,y4,y5分别表示9~10,10~11,11~12,12~13,13~14开始工作的半时服务人员,则问题1的模型如下所示: min=100*x1+100*x2+40*y1+40*y2+40*y3+40*y4+40*y5; x1+x2+y1>4; x1+x2+y1+y2>3; x1+x2+y1+y2+y3>4; x2+y1+y2+y3+y4>6; x1+y2+y3+y4+y5>5; x1+x2+y3+y4+y5>6; x1+x2+y4+y5>8; x1+x2+y5>8; y1+y2+y3+y4+y5<3;

相关主题
文本预览
相关文档 最新文档