当前位置:文档之家› (完整版)植物生理学习题大全——第3章植物的光合作用

(完整版)植物生理学习题大全——第3章植物的光合作用

(完整版)植物生理学习题大全——第3章植物的光合作用
(完整版)植物生理学习题大全——第3章植物的光合作用

第三章光合作用

一. 名词解释

光合作用(photosynthesis):绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程。

光合色素(photosynthetic pigment):植物体内含有的具有吸收光能并将其光合作用的色素,包括叶绿素、类胡萝卜素、藻胆素等。

吸收光谱(absorption spectrum):反映某种物质吸收光波的光谱。

荧光现象(fluorescence phenomenon):叶绿素溶液在透射光下呈绿色,在反射光下呈红色,这种现象称为荧光现象。

磷光现象(phosphorescence phenomenon):当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。这种发光现象称为磷光现象。

光合作用单位(photosynthetic unit):结合在类囊体膜上,能进行光合作用的最小结构单位。

作用中心色素(reaction center pigment):指具有光化学活性的少数特殊状态的叶绿素a分子。

聚光色素(light harvesting pigment ):指没有光化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。

原初反应(primary reaction):包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。

光反应(light reactio):光合作用中需要光的反应过程,是一系列光化学反应过程,包括水的光解、电子传递及同化力的形成。

暗反应(dark reaction):指光合作用中不需要光的反应过程,是一系列酶促反应过程,包括CO2的固定、还原及碳水化合物的形成。

光系统(photosystem,PS):由不同的中心色素和一些天线色素、电子供体和电子受体组成的蛋白色素复合体,其中PS Ⅰ的中心色素为叶绿素a P700,PS Ⅰ的中心色素为叶绿素a P680。

反应中心(reaction center):由中心色素、原初电子供体及原初电子受体组成的具有电荷分离功能的色素蛋白复合体结构。

量子效率(quantum efficiency):又称量子产额或光合效率。指吸收一个光量子后放出的氧分子数目或固定二氧化碳的分子数目。

量子需要量(quantum requirement):同化1分子的CO2或释放1分子的O2所需要的光量子数目。

激子传递(exciton transfer):激子通常是指非金属晶体中由电子激发的量子,在相同分子内部依靠激子传递来转移能量的方式。

共振传递(resonance transfer):在光合色素系统中,依靠高能电子振动在分子内传递能量的方式。

光化学反应(photo-chemical reaction):叶绿素吸收光能后十分迅速地产生氧化还原的化学变化。

红降(red drop):当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,称为红降。

增益效应(enchancement effect):又称艾默生(Emerson effect),两种不同波长的光协同作用而增加光合效率的现象。

希尔反应(Hill reaction):离体叶绿体在光下加入氢受体所进行的分解水并放出氧气的反应。

光合链(photosynthetic chain):在类囊体膜上的PS II和PS I之间几种排列紧密的电子传递体完成电子传递的总轨道。

光合电子传递抑制剂:可阻断光合电子传递,抑制光合作用的化合物。

PQ循环(plastoquinone cycle):伴随PQ的氧化还原,可使2H+从间质移至类囊体膜内空间,即质子横渡类囊体膜,在搬运2H+的同时也传递2e至Fe-S,PQ 的这种氧化还原往复变化称PQ循环。

水氧化钟(water oxidizing clock):是Kok等根据一系列瞬间闪光处理叶绿体与放出氧气的关系提出的解释水氧化机制的一种模型。每吸收一个光量子推动氧化钟前进一步。

解偶联剂(uncoupler):能消除类囊体膜(或线粒体内膜)内外质子梯度,解除电子传递与磷酸化反应之间偶联的试剂。

光合磷酸化(photosynthetic phosphorylation或photophosphorylation):叶绿体(或载色体)在光下把无机磷和ADP转化为ATP的过程。

同化力(assimilatory power):由于ATP和NADPH用于碳反应中二氧化碳的同化,所以把这两种物质合称为同化力。

CO2同化(CO2 assimilation):利用光反应形成的同化力(ATP和NADPH)将CO2还原成糖类物质的过程。

C3途径(C3 pathway):又称卡尔文循环、光合环、还原磷酸戊糖途径,它是以RuBP为二氧化碳受体,二氧化碳固定后的最初产物为三碳化合物磷酸甘油酸(PGA)的光合途径。

C4途径(C4 pathway):以PEP为二氧化碳受体,二氧化碳固定后的最初产物为四碳化合物草酰乙酸(OAA)的光合途径,即为C4 途径。

CAM途径(CAM pathway):景天科植物在夜晚有机酸含量很高,而糖类含量低;白天则有机酸含量下降,而糖类含量升高。这种有机酸合成日益变化的代谢类型称为景天酸(CAM)代谢途径。

磷酸运转器(phosphate translocator):位于叶绿体内膜上承担从叶绿体输出磷酸丙糖和将细胞质中等量的Pi运入叶绿体的运转器。

光呼吸(photorespiration):又称C2环或乙醇酸氧化途径,植物的绿色细胞在光照下放出二氧化碳和吸收氧气的过程。

光合速率(photosynthetic rate):单位时间、单位叶面积吸收二氧化碳的量(或释放氧气的量、积累干物质的质量)。

表观光合作用(apparent photosynthesis):或净光合作用,真正的光合作用与呼吸作用及光呼吸的差值,即不考虑光合作用消耗的条件下测得的光合作用。

光补偿点(light compensation point):光合过程中吸收的二氧化碳和呼吸过程中放出的二氧化碳等量时的光照强度。

光饱和点(light saturation point):增加光照强度,光合速率不再增加时的光照强度。

光抑制(photoinhibition):当光能超过光合系统所能利用的数量时,光合功能下降的现象。

光合“午休”现象(midday depression):光合作用在中午时下降的现象。

CO2补偿点(CO2compensation point):当光合吸收的二氧化碳量与呼吸释放的二氧化碳量相等时,外界的CO2浓度。

光能利用率(efficiency of solar energy utilization):单位面积上的植物光合作用所累积的有机物中所含的能量,占照射在相同面积地面上的日光能量的百分比。

叶面积系数(leaf area index , LAI):绿叶面积与土地面积之比。

温室效应:(greenhouse effect):本来太阳辐射到地面的热,地球以红外线形式重新辐射到空间。由于人类无限制的向地球大气层中排放CO2,使CO2浓度不断增长。大气层中的CO2能强烈的吸收红外线,太阳辐射的能量在大气层中就“易入难出”,温度上升,像温室一样,产生的效应就是温室效应。

二. 符号缩写

Fe-S:铁硫蛋白Mal:苹果酸

OAA:草酰乙酸BSC:维管束鞘细胞

CF1-Fo:偶联因子复合物NAR:净同化率

PC:质体蓝素CAM : 景天科植物酸代谢

NADP+:氧化态辅酶Ⅰ Fd:铁氧还蛋白

PEPCase:PEP羧化酶RuBPO:RuBP加氧酶

P680:吸收峰波长为680nm的叶绿素a PQ:质体醌

PEP:磷酸烯醇式丙酮酸PGA:磷酸甘油酸

Pn:净光合速率Pheo:去镁叶绿素

PSP:光合磷酸化RPPP:还原戊糖磷酸途径RuBP:l, 5-二磷酸核酮糖RubisC( RuBPC):RuBP羧化酶Rubisco(RuBPCO):RuBP羧化酶/加氧酶LSP:光饱和点

LCP : 光补偿点LHC: 聚光色素复合体

DCMU:二氯苯基二甲基脲, 敌草隆pmf:质子动力

FNR:铁氧还蛋白-NADP+还原酶TP:磷酸丙糖

PSI:光系统Ⅰ PSII:光系统Ⅰ SE-CC:筛分子-伴胞

三. 简答题

1. 生物的碳同化作用包括哪些类型?

细菌光合作用、绿色植物光合作用和化能合成作用,其中以绿色植物的光合作用最为广泛,合成的有机物最多。

2. 光合作用的重要性。

①植物通过光合作用把无机物同化为有机物;

②光合作用把太阳光能转变为化学能,储存在形成的有机物中;

③保护环境,维持大气中二氧化碳和氧气含量的稳定。

3. 叶绿体的结构和成分

结构:叶绿体大多数呈椭圆形;外围由两层膜构成的叶绿体膜,膜上有各种蛋白质,调节物质进出叶绿体;叶绿体内有许多类囊体膜构成的类囊体,多个类囊体垛叠在一起形成基粒;叶绿体膜以内的基础物质为基质,其主要成分为可溶性蛋白和其他代谢活跃物质,呈流动性状态。

成分:蛋白质、酶、细胞色素、质体蓝素、脂质(膜的组成成分)、储藏物质(淀粉),灰分元素、核苷酸、醌(质体醌)。

4. 光合色素具有的光学特性。

①各种色素都具有吸收,传递光能的作用,但只有少数特殊状态的叶绿素a 分子具有转化光能为化学能的特性;

②叶绿素能吸收红光和蓝紫光,类胡萝卜素吸收蓝紫光;

③叶绿素有荧光现象和磷光现象。

5. 叶绿素的合成。

①从谷氨酸开始,反应生成5-氨基酮戊酸(ALA),2分子ALA合成含吡咯环的卟胆原(PBG);

②4分子PBG聚合成原卟啉IX,导入Mg原子形成Mg原卟啉,再经过环化和还原,形成单乙烯基原叶绿素酯a;

③在光照下和NADPH存在下,单乙烯基原叶绿素酯a经过原叶绿素酯氧化还原酶催化形成叶绿素酯a;

④叶绿素酯a与植醇尾巴酯化反应形成叶绿素a。

6. 植物叶片为什么是绿色?秋天树叶为什么呈现黄色和红色?

①叶绿素主要吸收红光和蓝紫光,对绿光吸收很少,所以叶绿素呈绿色;正常叶子的叶绿素和类胡萝卜素的分子比例为3:1,由于绿色的叶绿素比黄色的类胡萝卜素多,占优势,所以正常的树叶呈现绿色。

②秋天树叶变黄是由于低温抑制了叶绿素的生物合成,已形成的叶绿素也被分解破坏,而黄色的类胡萝卜素比较稳定,所以叶片呈现黄色。

③秋天气温下降,植物体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成较多的红色的花色素苷, 叶子就呈红色。

7. 简述影响叶绿素形成的外部条件。

①光照:光照是叶绿素合成的重要因素,无光照会发生黄化现象;

②温度:温度影响酶的活性,进而影响叶绿素的合成;

③矿质元素:氮、镁是组成叶绿素的元素,铁、锰、锌等元素是酶的活化剂;

④水分:缺水会抑制叶绿素的合成,还会加速原有叶绿素的分解;

⑤氧气:缺氧会引起镁原卟啉甲酯的积累,不能合成叶绿素。

8. 胡萝卜素和叶黄素在光合作用中有什么功能?

胡萝卜素和叶黄素在光合作用中与叶绿素分子一起在光合膜中按一定的规律和取向组成聚光色素系统,吸收、传递光能至反应中心色素分子,发生光化学反应,光能在色素间的传递顺序为类胡萝卜素、叶绿素b、叶绿素a、特殊叶绿素a;同时在强光下还有保护叶绿素的功能。

9. 叶绿素和类胡萝卜素的吸收光谱有何不同?

叶绿素吸收光谱的高峰有两个,一个是波长为640-660nm的红光区,另一个是430-450nm的蓝紫光区,对橙光和黄光吸收较少,对绿光吸收最少;而类胡萝卜素的最大吸收峰在400-500nm的蓝紫光区,不吸收红光、橙光等长波长光。

10. 光合作用的全过程大致分为哪三大步骤?

①原初反应,即光能的吸收、传递和转变为电能的过程。

②电子传递和光合磷酸化;即电能转变为活跃的化学能过程。

③碳同化,即活跃化学能转变为稳定的化学能过程。

11. 如何证明光合作用中释放的O2是来自H2O而不是来自CO2?

用氧同位素标记的H2O饲喂植物,照光后如果释放的O2是同位素标记的O2,则说明O2来自H2O。或用希尔反应证明,在离体的叶绿体中加入氢受体,如Fe3+等,在没有CO2参与的条件下照光后有O2的释放。

12. 简要介绍测定光合速率的三种方法及原理。

①改良半叶法:主要是测定单位时间、单位面积叶片干重的增加量。

②红外线二氧化碳分析法:其原理是二氧化碳对特定波长红外线有较强的吸收能力,二氧化碳量的多少与红外线辐射能量降低量之间有一线性关系。

③氧电极法:氧电极由铂和银所构成,外罩以聚乙烯薄膜,当外加极化电压时,溶氧透过薄膜在阴极上还原,同时产生扩散电流。溶氧量越高,电流愈强。

13. 在光合作用电子传递中,PQ有什么重要的生理作用?

①PQ具有脂溶性,在类囊体膜上易于移动,可沟通数个电子传递链,也有助于两个光系统电子传递均衡运转。

②伴随着PQ的氧化还原,将2H+从间质移至类囊体的膜内空间,既可传递电子,又可传递质子,有利于质子动力势形成,进而促进ATP的生成。

14. 光合磷酸化有几个类型?其电子传递有什么特点?

①非环式光合磷酸化,其电子传递是一个开放通路。

②环式光合磷酸化,其电子传递是一个闭合的回路。

③假环式光合磷酸化,其电子传递也是一个开放的通路,但其最终电子受体不是NADP+,而是O2。

15. 简述PS I和PS II结构与功能的差异性。

PS I是吸收长波红光(700nm)的光系统,颗粒较小,直径为11nm,位于类囊体膜的非垛叠部分,其蛋白复合体包括反应中心和聚光色素复合体I,反应中心色素为P700;PS I的功能是将电子从PC传递给铁还原蛋白。

PS II是吸收短波红光(680nm)的光系统,颗粒较大,直径为17.5nm,位于类囊体膜的垛叠部分,其蛋白复合体包括反应中心和聚光色素复合体II,反应中心色素为P680;PS II的功能是利用光能氧化裂解水和还原质体醌。

16. 光合电子传递途径有几个类型?各途径有什么特点?

①非环式电子传递,PS I和PS II共同受光激发,串联起来推动电子传递,从水中夺电子并将电子最终传递给NADP+,产生O2、NADPH和H+,这是开放式通路,故称非环式电子传递。其电子传递路线为:H2O→PS II→PQ→Cyt b6f →PC→PS I→Fd→FNR→NADP+。

②环式电子传递,PS I受光激发而PS II未受光激发时,PS I产生的电子传给Fd,通过Cyt b6f复合体和PC返回PS I,形成了围绕PS I的环式电子传递。其电子传递路线为:PS I→Fd→PQ→Cyt b6f →PC→PS I。

③假环式电子传递,与非环式电子传递途径类似,但其最终电子受体不是NADP+,而是O2,形成超氧阴离子自由基,后被超氧化物歧化酶消除,产生H2O,电子似乎从H2O →H2O,故称假环式电子传递。电子传递路线为:H2O→PS II→PQ→Cyt b6f →PC→PS I→Fd→O2。

17. 简述光合作用中光反应和暗反应的区别与联系?

光反应是必需在光照下才能进行,由光驱动的光化学反应,在叶绿体的类囊体膜上进行,包括原初反应、电子传递和光合磷酸化。

暗反应是在暗处(也可以在光下)进行的、由一系列酶催化的化学反应,在叶绿体基质中进行;包括3类碳同化途径,即C3、C4和CAM途径。

在光反应产生的同化力(ATP和NADPH)将在暗反应中被利用,将CO2还原成糖类;所以光反应为暗反应提供了物质和能量基础。

18. 为什么光合作用本质上是一个氧化还原反应?

光合作用本质上是一个氧化还原反应,光合作用的原初反应的核心是发生在反应中心的光化学反应。光化学反应实质上是由光引起的反应中心色素与原初电子受体和次级电子供体之间的氧化还原反应。其最终结果是最终电子供体水被光解,释放出电子和氧气及质子;最终电子受体NADP+得到电子被还原成NADPH,进而通过卡尔文循环使二氧化碳固定后的产物磷酸甘油酸还原为磷酸丙糖、和淀粉。所以,光合作用中,水被氧化得到氧气,而二氧化碳被还原为糖类。

19. 根据化学渗透学说解释光合磷酸化机制。

植物叶绿体在光照下把无机磷(Pi)与ADP转化为ATP,形成高能磷酸键的过程称为光合磷酸化。

渗透假说认为,质子是不能自由通过类囊体膜的,膜上的电子传递体PQ具有亲脂性,含量多,可传递电子和质子。在光照下,PQ在接收P680传来的一对电子的同时,也可以将膜外基质中的两个质子转移到膜内;此外,水在膜内分解也释放出质子。因此,膜内测质子浓度高而外侧浓度低,膜内测电位较膜外侧高,膜内外产生质子浓度差和电位差,两者合称为质子动力势,即为光合磷酸化动力。当质子沿着浓度梯度返回膜外侧时,在ATP合酶催化下,ADP和Pi脱水形成ATP。

20. 高等植物碳同化途径有几条?哪条途径具备合成淀粉等光合产物的能力?

高等植物碳同化途径有三条:卡尔文循环、C4途径和景天科植物酸代谢途径。只有卡尔文循环具备合成淀粉等光合产物的能力,而C4途径和景天科酸代谢途径只起到固定和转运二氧化碳的作用。

21. C3途径是谁发现的?分哪几个阶段?每个阶段的作用是什么?

C3途径是卡尔文(Calvin)等人发现的。它可分为三个阶段:

①羧化阶段。二氧化碳被固定,生成3-磷酸甘油酸,为最初产物。

②还原阶段。利用同化力(NADPH、ATP)将3-磷酸甘油酸还原成3-磷酸甘油醛,即光合作用中的第一个三碳糖。

③更新阶段。光合碳循环中形成的3-磷酸甘油醛,经过一系列的转变,再重新形成RuBP的过程。

④同化物合成阶段:磷酸丙糖可在叶绿体内合成淀粉,又可运输到细胞质中合成蔗糖。

22. C3循环的具体途径。

①羧化阶段:二氧化碳在1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)催化下与1,5-二磷酸核酮糖(RuBP)反应生成两分子3-磷酸甘油酸(PGA)。

②还原阶段:PGA被ATP磷酸化,在3-磷酸甘油酸激酶催化下,形成1,3-二磷酸甘油酸(DPGA);DPGA在3-磷酸甘油醛脱氢酶的作用下被NADPH和H+还原,形成3-磷酸甘油醛(PGAld)。

③更新阶段:PGAld经过一系列的转变,再重新形成RuBP的过程。

23. 光合作用中卡尔文循环的调节方式有哪几个方面?

①自身催化调节:通过调节RuBP等中间产物的含量,使同化二氧化碳速率处于某一稳态的机制。

②光调节:光照可以提高光合作用中某些酶的活性,起来酶活化剂的作用。

③转运作用的调节:从叶绿体运到细胞质的磷酸丙糖的数量,受细胞质里的Pi数量所控制。Pi充足,进入叶绿体内多,就有利于叶绿体内磷酸丙糖的输出,光合速率就会加快。

24. C4途径的具体过程。

①羧化与还原:叶肉细胞质中的磷酸烯醇式丙酮酸(PEP)在在PEP羧化酶催化下,固定CO2生成草酰乙酸(OAA);OAA经过NADP-苹果酸脱氢酶作用被还原为苹果酸,或在天冬氨酸转氨酶作用,与谷氨酸反应生成天冬氨酸和酮戊二酸。

②转移与脱羧:苹果酸或天冬氨酸在维管束鞘细胞中进行脱羧反应,形成丙酮酸或丙氨酸等C3酸,并释放CO2,释放CO2的再进入C3循环生成有机物。

③更新阶段:丙酮酸或丙氨酸等C3酸返回叶肉细胞,经过磷酸丙酮酸双激酶(PPDK)催化和ATP作用,生成PEP。

26. C4途径的调节。

①光调节:光可激活苹果酸脱氢酶和磷酸丙酮酸双激酶的活性。

②效应剂调节:效应剂调节PEP羧化酶的活性。

③二价金属离子调节:二价金属离子都是C4植物脱羧酶的活化剂。

27. CAM植物同化二氧化碳的特点。

这类植物晚上气孔开放,吸进二氧化碳,在PEP羧化酶作用下与PEP结合形成OAA,进一步还原为苹果酸,累积于液泡中。白天气孔关闭,液泡中的苹果酸便运到细胞质,在NADP-苹果酸酶作用下氧化脱羧,放出二氧化碳,放出的二氧化碳参与卡尔文循环,形成淀粉等。CAM 植物具有两步羧化的

特点。

28. CAM途径的调节。

①短期调节:PEP羧化酶只在晚上起作用,而脱羧酶只在白天起作用。

②长期调节:某些植物在干旱条件下保持CAM类型,但在水分充足时,则转变为C3类型。

27. 光合产物特点。

①不同植物光合作用产物不同,一般产物为糖类,包括单糖(葡萄糖和果糖)、双糖(蔗糖)和多糖(淀粉);蛋白质、脂肪和有机酸也都是光合作用的直接产物。

②淀粉在叶绿体中合成,而蔗糖在细胞质中合成。

③在叶绿体中的淀粉合成与细胞质中的蔗糖合成呈竞争反应,细胞质基质中Pi浓度高时,叶绿体的磷酸丙糖输出到细胞质基质合成蔗糖;细胞质基质中Pi 浓度低时,促进淀粉在叶绿体内的合成。

28. 如何证明C3途径CO2的受体是RuBP,而CO2固定后的最初产物是3-PGA ?

给植物饲喂标记的14CO2,在不同的照光时间下,分别浸在沸酒精中将植物杀死,提取14C化合物,利用放射性同位素示踪和纸层析分析方法追踪14C在各种化合物出现的先后次序。最早标记的化合物即为二氧化碳固定后的最初产物,在C3植物中最早标记的化合物是3-PGA。

用同样的技术结合动力学实验,当CO2浓度突然下降时,RuBP的量急剧增高,而3-PGA的量则相应急剧下降,说明3-PGA是RuBP的羧化产物,也就是说明CO2的受体是RuBP。

29.光呼吸的具体过程。

在光照下,叶绿体中的Rubisco把RuBP氧化为磷酸乙醇酸,在磷酸酶作用下,磷酸乙醇酸脱去磷酸生产乙醇酸。

在过氧化物酶体内,乙醇酸在乙醇酸氧化酶作用下,被氧化为乙醛酸和过氧化氢;过氧化氢在过氧化氢酶作用下分解放出氧气;乙醛酸在转氨酶的作用下,从谷氨酸得到氨基而形成甘氨酸。

在线粒体内,两分子甘氨酸转变为丝氨酸并释放CO2。

丝氨酸再进入过氧化物酶体,经过转氨酶催化,形成羟基丙酮酸。羟基丙酮酸在甘油酸脱氢酶作用下,还原为甘油酸。

最后,甘油酸在叶绿体内经过甘油酸激酶的磷酸化,产生3-磷酸甘油酸(PGA),参与卡尔文循环代谢。

30. 比较C3、C4、CAM植物的异同。

①从叶片结构来看,C4植物叶片维管束鞘薄壁细胞外侧有一层或几层花环型的叶肉细胞。C4植物叶片维管束鞘薄壁细胞比较大,里面叶绿体数目少,个体打,叶绿体没有基粒或基粒发育不良。C4植物叶片叶肉细胞内的叶绿体数目多,个体小,有基粒。C3和CAM植物没有“花环型”结构,维管束鞘薄壁细胞较

小,不含或很少叶绿体。

②从羧化酶种类和所在位置来看,C3植物是由叶肉细胞叶绿体的Rubisco羧化空气中的CO2,而C4和CAM植物则由叶肉细胞细胞质基质中的PEP羧化酶羧化。

③从卡尔文循环固定的CO2来源看,C3植物直接固定空气中的CO2,而C4植物和CAM植物则利用C4酸脱羧出来的CO2。

④从进行卡尔文循环的叶绿体位置来看,C3和CAM植物都是在叶肉细胞进行,而C4植物则在维管束鞘细胞进行。

⑤从同化CO2和进行卡尔文循环来看,C3植物是同时同处进行;C4植物在空间分隔进行,即分别在叶肉细胞和维管束鞘细胞进行;CAM植物是在时间上分隔进行,即分别在夜晚和白天进行。

⑥从形成淀粉位置来看,C4植物通过叶肉细胞的PEP羧化酶固定CO2,生成的C4酸转移到维管束鞘细胞中,放出CO2,参与卡尔文循环,形成糖类,所以C4植物只在维管束鞘薄壁细胞内形成淀粉。而C3和CAM植物只有叶肉细胞含有叶绿体,淀粉只是积累在叶肉细胞中,维管束鞘细胞不产生淀粉。

31. 氧抑制光合作用的原因是什么?

①加强氧与二氧化碳对RuBP的结合竞争,提高光呼吸速率。

②氧能与NADP+竞争接受电子,使NADPH合成量减少,使碳同化需要的还原能力减少。

③氧接受电子后形成的超氧阴离子会破坏光合膜。

④在强光下氧参与光合色素的光氧化,破坏光合色素。

32. 作物为什么会出现“午休”现象?

①中午水分供给不足、气孔关闭。

②二氧化碳供应不足。

③光合产物淀粉等来不及分解运走,累积在叶肉细胞中,阻碍细胞内二氧化碳的运输。

④中午时的高温低湿降低了碳同化酶的活性。

⑤生理钟调控。

33. 追施氮肥为什么会提高光合速率?

①能促进叶片面积增大,叶片数目增多,增加光合面积。

②促进叶绿素含量急剧增加,加速光反应。

③能增加叶片蛋白质含量,而蛋白质是酶的主要成分,使暗反应顺利进行。

④总之,施氮肥可促进光合作用的光反应和暗反应

34. 分析植物光能利用率低的原因。

①辐射到地面的光能只有可见光的一部分能被植物吸收利用。

②照到叶片上的光被反射、透射。吸收的光能大量消耗于蒸腾作用。

③叶片光合能力的限制。

④呼吸的消耗。

⑤二氧化碳、矿质元素、水分等供应不足。

⑥病虫危害。

35. 作物的光合速率高,产量就一定高,这种说法是否正确,为什么?

不正确。因为产量的高低取决于光合性能的五个方面,即光合速率、光合面积、光合时间、光合产物分配和光合产物消耗。

36. 为什么说二氧化碳是一种最好的抗蒸腾剂?

所有的抗蒸腾剂都是通过降低气孔导度来减少蒸腾的,气孔导度降低的同时不可避免地限制了二氧化碳向叶肉内的扩散,降低了光合速率。而增加二氧化碳不仅可以降低气孔导度,减少蒸腾,同时也增加了二氧化碳向叶肉内的扩散速度,不至于因气孔导度的降低使光合作用下降。

37. 把大豆和高粱放在同一密闭照光的室内,一段时间后会出现什么现象?

大豆首先死亡,一段时间后高粱也死亡。因为大豆是C3植物,它的二氧化碳补偿点高于C4植物高粱。随着光合作用的进行,室内的二氧化碳浓度越来越低, 当低于大豆的二氧化碳补偿点时,大豆便没有净光合,只有消耗,不久便死亡。此时的二氧化碳浓度仍高于高粱的二氧化碳补偿点,所以高粱仍然能够进行光合作用。当密闭室内的二氧化碳浓度低于高粱的二氧化碳补偿点时,高粱便因不能进行光合作用而死亡。

38. 试评价光呼吸的生理功能。

①回收碳素:通过C2循环可回收乙醇酸中3/ 4的碳素(2个乙醇酸转化1个PGA, 释放1个CO2)。

②维持C3光合碳循环的运转:在叶片气孔关闭或外界CO2浓度降低时,光呼吸释放的CO2能被C3途径再利用,以维持C3光合碳循环的运转。

③防止强光对光合机构的破坏:在强光下,光反应中形成的同化力会超过暗反应的需要,叶绿体中NADPH/ NADP、AT P/ADP 的比值增高, 由光激发的高能电子会传递给O2,形成超氧阴离子自由基,对光合机构具有伤害作用,而光呼吸可消耗过剩的同化力和高能电子,从而保护光合机构。

④消除乙醇酸:乙醇酸对细胞有毒害作用,它的产生在代谢中是不可避免的。光呼吸是消除乙醇酸的代谢,使细胞免受伤害。

⑤光呼吸代谢中涉及多种氨基酸的转化过程,可能对绿色细胞的氮代谢有利。

⑥有害方面:减少了光合产物的形成和累积,不仅不能贮备能量,还消耗大量能量。

39. C4植物比C3植物的光呼吸低,试述其原因?

C4植物在叶肉细胞中只进行由PEP羧化酶催化的羧化活动,且PEP羧化酶对二氧化碳亲和力高,固定二氧化碳的能力强,在叶肉细胞形成C4二羧酸之后再转运到维管束鞘细胞,脱羧后放出二氧化碳,就起到了“二氧化碳泵”的作用,增加了维管束鞘细胞中的二氧化碳浓度,抑制了鞘细胞中Rubisco的加氧活性,并提高了它的羧化活性,有利于二氧化碳的固定和还原,不利于乙醇酸形成,也不利于光呼吸进行,所以C4植物光呼吸值很低。

而C3植物,在叶肉细胞内固定二氧化碳,叶肉细胞的CO2/ O2的比值较低,此时RuBP加氧酶活性增强,有利于光呼吸的进行,而且C3植物中RuBP羧化酶对二氧化碳亲和力低,光呼吸释放的二氧化碳不易被重新固定。

40. 论述提高植物光能利用率的途径和措施。

①增加光合面积:合理密植;改善株型。

②延长光合时间:提高复种指数;延长生育期;补充人工光照。

③提高光合速率:增加田间二氧化碳浓度;降低光呼吸;减缓逆境对光合的抑制作用;减轻光合午休;延缓早衰。

41. 试说明测定光呼吸的方法和原理。

①光呼吸受氧浓度的影响。当大气中含氧量从21%降至1%~3%时,C3植物的净光合率增高30%~50%,增加的这部分代表在高氧气条件下光呼吸的消耗,因此可以分别测定3%和21%氧气下的光合速率,两者之差便为光呼吸速率。

②测定叶片在光下的吸氧量。在光下测定在无二氧化碳空气中叶片的吸氧量;也可以用18O2标记,测定叶片在光下对18O2的吸收速率。

③测定无二氧化碳空气中二氧化碳的释放量。在光下,通入无二氧化碳的气体到叶室中,然后测定叶片二氧化碳的释放量。也可以14 CO2饲喂,先使叶片在光下同化14CO2一段时间,然后通入无二氧化碳的气体,并测定叶片释放出的14CO2量。可以用光下释放的14CO2量和黑暗中释放的14CO2量的比值表示。

④测定从光转暗后的二氧化碳猝发。将C3植物叶片放入叶室,光照一段时间后停止,则有二氧化碳释放高峰。一般认为停止光照后的二氧化碳猝发为光呼吸的残余。

42. 作物合理密植的生理基础是什么?

合理密植是通过调节种植密度,使作物群体得到合理发展,达到最适的光合面积(合理的叶面积指数),充分利用光照和地力,就可大大提到光能利用率,提高作物产量。

43. 为什么玉米、高粱比小麦、水稻的光合效率高?

玉米、高粱光呼吸低;玉米高粱等C4植物在叶肉细胞中只进行由PEP羧化酶催化的羧化活动,且PEP羧化酶对CO2亲和力高,固定CO2的能力强,能利用低浓度的CO2,在叶肉细胞形成C4二羧酸之后再转运到维管束鞘细胞,脱羧后放出CO2,就起到了“CO2泵”的作用,增加了维管束鞘细胞中的CO2浓度,抑制了鞘细胞中Rubisco的加氧活性,并提高了它的羧化活性,有利于CO2的固定和还原,不利于乙醇酸形成,也不利于光呼吸进行,所以C4植物光呼吸值很低。

其次,玉米高粱等C4植物的CO2补偿点低,有利于充分利用碳源。

44. 提高作物产量的途径和措施有哪些?

①增加光合面积:合理密植;改善株型。

②延长光合时间:提高复种指数;延长生育期;补充人工光照。

③提高光合速率:增加田间二氧化碳浓度;降低光呼吸;减缓逆境对光合的抑制作用;减轻光合午休;延缓早衰。

④降低呼吸消耗:施用光呼吸抑制剂,降低光呼吸速率;改善田间通风透光条件,避免田间温度过高导致呼吸消耗变大。

⑤采用植物生物技术方法:选育株型好,绿色叶面积大、抗逆性强、光合效率高的高产优质品种。

45. 影响光合作用的因素有哪些?

①光照:光是光合作用的能源,是光合作用所必需的因子;光合速率一般随着光照强度的增减而增减。

②CO2含量:CO2是光合作用的原料,对光合速率影响很大。

③温度:光合过程中的碳反应是由酶所催化的化学反应,而温度直接影响酶的活性。

④矿质元素:N、Mg等矿质元素是叶绿素的组成元素;K、P等元素参与糖类代谢与运输;Cu、Fe等元素参与光合电子传递和水裂解过程。

⑤水分:水分是光合作用原料之一;同时水分影响气孔的关闭,进而影响CO2的吸收。

⑥内部因素:植物不同部位的光合速率不同,幼嫩的叶片光合速率低,随着叶片的成长,光合速率不断加强,随着叶片的衰老,光合速率下降;植物的不同

生育期的光合速率不同,一般营养生长期达到最强。

46. 植物光合作用的光反应和碳反应是在细胞的哪些部位进行的?为什么?

光反应是在类囊体膜(光合膜)上进行的,而碳反应是在叶绿体的基质中进行的。因为光反应需要的色素等在类囊体内,而碳反应所需的CO2受体、酶等在叶绿体基质中。

47. 在光合作用过程中,ATP和NADPH+H+是如何形成的?ATP和NADPH+H+又是怎样被利用的?

水裂解后,把H+释放到类囊体腔内,把电子传递到PS II,电子在光合电子传递链中传递时,伴随着类囊体外侧的H+转移到腔内,由此形成了跨膜的H+浓度差,引起了ATP的形成;与此同时把电子传递到PS I去,进一步提高了能位,而使H+还原NADP+为NADPH,此外,还放出O2。卡尔文循环以光反应形成的ATP和NADPH作为能源,固定和还原CO2。

48. 光合作用中O2是如何产生的?

光合作用产生O2主要是与PSII有关,PSII的一个重要的功能就是进行水裂解放氧,P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解,同时放出氧气和质子。整个反应如下:2H2O→O2 + 4H+ + 4e-

49. Rubisco的结构有何特点?它在光合碳同化过程中有何作用?

Rubisco是一个双功能酶,同时催化RuBP的羧化和加氧反应,处于光合作用和光呼吸的交叉点上,羧化或加氧的相对速率取决于氧气和二氧化碳的相对浓度。

Rubisco 参与了C3循环的羧化阶段,它催化RuBP和CO2作用,形成中间产物,该产物再与1分子水反应,生成2分子的PGA,完成CO2的羧化阶段;此时Rubisco起了羧化酶的羧化作用。

当O2浓度过高时,Rubisco把RuBP氧化成磷酸乙醇酸,乙醇酸经过一系列氧化和转氨作用生成PGA并释放CO2,产生的PGA进一步参与卡尔文循环;此时Rubisco起了加氧酶的羧化作用。

50.卡尔文循环和光呼吸的代谢有什么联系?

光合碳循环又称卡尔文循环,此循环的大部分反应均在叶绿体的间质中进行,但从磷酸丙糖转化成蔗糖的一些步骤则是磷酸三糖通过叶绿体被膜转移到细胞质中后,在细胞质中完成的(光合碳循环)。植物的光合碳循环常伴随着光呼吸。有些植物中,在CO2由光合碳循环同化前,先通过四碳途径或景天科酸代谢途径固定在四碳双羧酸中。这些都是和碳同化密切关联着的反应。卡尔文循环在光照下产生较多的乙醇酸增强光呼吸速率。Rubisco可以催化卡尔文循环和光呼吸两个反应,而且其中一个底物RuBP是相同的,在CO2相对浓度高的条件下,反应更侧重于卡尔文循环;在O2相对浓度高条件下,反应更侧重于光呼吸。

51.叶子变黄可能与什么条件有关?

①温度:温度影响酶活动,就影响叶绿素的合成和降解;

②叶片年龄:叶片衰老,叶绿素易降解,类胡萝卜素较稳定,叶片呈黄色;

③光照:光照过弱,不利于叶绿素合成,叶色变黄;

④矿质元素:某些矿质元素是合成叶绿素的组成成分;

⑤水分:植物缺水会抑制叶绿素合成。

52.在实践上,如何让判断植株矮小的可能原因?怎样克服它?

①将植株移到较弱的光照下,若植株有伸长趋势,则是由于光抑制作用使得植株矮小,应该将植株移到适合的光照下成长,增强光合作用。

②将植株移到较强的光照下,若植株有伸长趋势,则是由于光照不足使得植株矮小,应该将植株移到适合的光照下成长,增强光合作用。

③增加一些植物所必需的矿质元素,若植株有明显伸长趋势,则是由于矿质元素的缺失,应该增加植株体内所必需的矿质元素,增强植株的光合作用。

华南农业大学植物生理学期末考试

华南农业大学植物生理学期末考试 一、名词解释(10×2分=20分) 1、光饱和点 2、植物激素 3、衰老 4、乙烯的“三重反应” 5、种子休眠 6、光周期现象 7、春化作用 8、植物细胞全能性 9、光周期现象 10、冻害 二、填空题(60×0.5分=30分) 1、蒸腾作用常用的指标有、、。 2、完整的C3碳循环可分为、、个阶段。 3、植物呼吸过程中的氧化酶,除细胞色素氧化酶外,还有、、和()等酶。 4、细胞内需能反应越强,ATP/ADP比率越,愈有利于呼吸速率和、ATP的合成。 5、目前,大家公认的植物激素有五大类、、、、。 6、植物体内IAA的合成,可由经氧化脱氨,生成,或经脱羧生成,然后再经脱羧或氧化脱氨过程,形成,后者经作用,最终生成IAA。 7、培养基中,IAA/CTK的比例,决定愈伤组织的分化方向,比例高,形成,低则分化出。 8、1926年,日本科学家黑泽在研究时发现了。 9、起下列生理作用的植物激素为: a、促进抽苔开花; b、促进气孔关闭;

c、解除顶端优势; d、促进插条生根; 10、感受光周期刺激的器官是,感受春化刺激的器官是。 11、11、植物光周期现象与其地理起源有密切关系,植物多起源于高纬度地区;在中纬度地区植物多在春季开花,而多在秋季开花的是植物。 12、12、光敏素包括和两个组成部,有和两种类型。 13、13、引起种子休眠的主要原因有、、、。 影响种子萌发的外界条件主要有、、、。 14、14、组织培养的理论依据是,一般培养基成分包括五大类物质,即、、、和。 15、15、生长抑制剂主要作用于,生长延缓剂主要作用于,其中的作用可通过外施GA而恢复。 16、16、种子萌发过程中酶的来源有二:其一是通过,其二是通过。 三、选择题(10×1分=10分) 四、1、从分子结构看,细胞分裂素都是。 A、腺嘌呤的衍生物 B、四吡咯环衍生物 C、萜类物质 D、吲哚类化合物 2、C4途径CO2受体的是。 A、草酰乙酸 B、磷酸烯醇式丙酮酸 C、磷酸甘油酸 D、核酮糖二磷酸 3、短日植物往北移时,开花期将。 A、提前 B、推迟 C、不开花 D、不变 4、干旱条件下,植物体内的含量显著增加。 A、天冬酰胺 B、谷氨酰胺 C、脯氨酸 D、丙氨酸 5、能提高植物抗性的激素是。 A、IAA B、GA C、ABA D、CTK 6、下列生理过程,无光敏素参与的是。 A、需光种子的萌发 B植物的光合作用 C、植物秋天落叶 D长日植物开花 7、大多数肉质果实的生长曲线呈。

植物生理学模拟试题

一、名词解释(分/词×10词=15分) 1.生物膜 2.水通道蛋白 3.必需元素 4.希尔反应 5.糖酵解 6.比集转运速率 7.偏上生长 8.脱分化 9.春化作用 10.逆境 二、符号翻译(分/符号×10符号=5分) 1.ER 2.Ψw 3.GOGAT 4.CAM 5.P/O 6.GA 7.LAR 8.LDP 9.SSI 10.SOD 三、填空题(分/空×40空=20分) 1.植物细胞区别于动物细胞的三大结构特征是、和。 2.由于的存在而引起体系水势降低的数值叫做溶质势。溶质势表示溶液中水分潜在的渗透能力的大小,因此,溶质势又可称为。溶质势也可按范特霍夫公式Ψs=Ψπ=来计算。 3.必需元素在植物体内的生理作用可以概括为三方面:(1) 物质的组成成分,(2) 活动的调节者,(3)起作用。 4.类囊体膜上主要含有四类蛋白复合体,即、、、和。由于光合作用的光反应是在类囊体膜上进行的,所以也称类囊体膜为膜。 5.光合链中的电子传递体按氧化还原电位高低,电子传递链呈侧写的形。在光合链中,电子的最终供体是,电子最终受体是。 6.有氧呼吸是指生活细胞利用,将某些有机物彻底氧化分解,形成和,同时释放能量的过程。呼吸作用中被氧化的有机物称为。 7.物质进出质膜的方式有三种:(1)顺浓度梯度的转运,(2)逆浓度梯度的转运,(3)依赖于膜运动的转运。 8.促进插条生根的植物激素是;促进气孔关闭的是;保持离体叶片绿色的是;促进离层形成及脱落的是;防止器官脱落的是;使木本植物枝条休眠的是;促进无核葡萄果粒增大的是。 9.花粉管朝珠孔方向生长,属于运动;根向下生长,属于运动;含羞草遇外界刺激,小叶合拢,属于运动;合欢小叶的开闭运动属于运动。 10.植物光周期的反应类型主要有3种:植物、植物和植物。 11.花粉的识别物质是,雌蕊的识别感受器是柱头表面的。 四、选择题(1分/题×30题=30分) 1.一个典型的植物成熟细胞包括。 A.细胞膜、细胞质和细胞核 B.细胞质、细胞壁和细胞核 C.细胞壁、原生质体和液泡 D.细胞壁、原生质体和细胞膜

植物生理学考研复习资料第三章 植物的光合作用

第四章植物的光合作用 一、名词解释 1.原初反应 2.磷光现象 3.荧光现象 4.红降现象 5.量子效率 6.量子需要量 7.爱默生效应 8.PQ穿梭 9.光合色素 10.光合作用 11.光合单位 12.作用中心色素 13.聚光色素 14.希尔反应 15.光合磷酸化 16.同化力 17.共振传递18.光抑制 19.光合“午睡”现象 20.光呼吸 21.光补偿点 22.CO2补偿点 23.光饱和点24.光能利用率 25.复种指数 26.光合速率 27.叶面积系数 二、写出下列符号的中文名称 1.ATP 2.BSC 3.CAM 4.CF1—CFo 5.Chl 6.CoI(NAD+) 7.CoⅡ(NADP+) 8.DM 9.EPR 10.Fd 11.Fe—S 12.FNR 13.Mal 14.NAR 15.OAA 16.PC 17.PEP 18.PEPCase 19.PGA 20.PGAld 21.P680 22.Pn 23.PQ 24.Pheo 25.PSI II 26.PCA 27.PSP 28.Q 29.RuBP 30.RubisC(RuBPC) 31.RubisCO(RuBPCO) 32.RuBPO 33.X 34. LHC 三、填空题 1.光合作用是一种氧化还原反应,在反应中被还原,被氧化。 2.叶绿体色素提取液在反射光下观察呈色,在透射光下观察呈色。 3.影响叶绿素生物合成的因素主要有、、和。 4.P700的原初电子供体是,原初电子受体是。P680的原初电子供体是,原初电子受体是。 5.双光增益效应说明。 6.根据需光与否,笼统地把光合作用分为两个反应:和。 7.暗反应是在中进行的,由若干酶所催化的化学反应。 8.光反应是在进行的。 9.在光合电子传递中最终电子供体是,最终电子受体是。 10.进行光合作用的主要场所是。 11.光合作用的能量转换功能是在类囊体膜上进行的,所以类囊体亦称为。 12.早春寒潮过后,水稻秧苗变白,是与有关。 13.光合作用中释放的O2,来自于。 14.离子在光合放氧中起活化作用。 15.水的光解是由于1937年发现的。 16.被称为同化能力的物质是和。 17.类胡萝素除了收集光能外,还有的功能。 18.光子的能量与波长成。 19.叶绿素吸收光谱的最强吸收区有两个:一个在,另一个在。 20.类胡萝卜素吸收光谱的最强吸收区在。 21.一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例为。 22.一般来说,正常叶子的叶黄素和胡萝卜素的分子比例为。 23.与叶绿素b相比较,叶绿素a在红光部分的吸收带偏向方向,在蓝紫部分的吸收带偏向 方向。 24.光合磷酸化有三个类型:、和。 25.卡尔文循环中的CO2的受体是。 26.卡尔文循环的最初产物是。 27.卡尔文循环中,催化羧化反应的酶是。

植物生理学期末复习

植物生理学期末复习文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

植物生理学 一、名词解释 1、水势:每偏摩尔体积水的化学势差。 2、自由水:距离胶粒较远而可以自由流动的水分。 3、束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。 4、蒸腾作用:是指水分以气体状态通过植物体的表面从体内散失到大气 的过程。 5、蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。 6、小孔扩散规律:当水分子从大面积上蒸发时,其蒸发速率与蒸发面积 成正比。但通过气孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长成正比。 7、必需元素:维持正常生命活动不可缺少的元素. 8、单盐毒害:任何植物,假若培养在某一单盐溶液中,不久即呈现不正 常状态,最后死亡。 9、平衡溶液:植物只有在含有适当比例的多种盐的溶液中才能正常生长 发育,这种溶液叫平衡溶液。 10、生理酸性盐:植物对各种矿质元素的吸收表现出明显的选择性。若供给(NH4)2SO4,植物对其阳离子的吸收大于阴离子,在吸收NH4的同时,根细胞会向外释放氢离子,使PH下降。 11、生理碱性盐:供给NANO3时,植物吸收,NO3-而环境中会积累,NA+,同时也会积累OH-或HCO3-,从而使介质PH升高。

12、光合作用:绿色植物吸收太阳光能,同化CO2 和H2O,合成有机化合物质,并释放O2的过程。 13、光合磷酸化:叶绿体利用光能将无机磷酸和ADP 合成ATP的过程。 14、光补偿点:随着光强的增加光合速率相应提高,当达到某一光强时,叶片的光合速率等于呼吸速率,即CO2 吸收量等于CO2释放量,表现光合速率为0。 15、co2补偿点:随着CO2的浓度增加,当光合作用吸收的CO2与呼吸释放的CO2相等时环境中的CO2浓度。 16、光能利用率:指单位土地面积上,农作物通过光合作用所产生的有机物中所含的能量,与这块土地所接受的太阳能的比 17、集流运输速率:是指单位截面积筛分子在单位时间内运输物质的量,常用g/或 g/表示。 18、代谢源与代谢库:是产生和提供同化物的器官或组织;是消耗或积累同化物的器官和组织。 19、呼吸作用:是指一切生活在细胞内的有机物,在一系列酶的参与下,逐步氧化分解为简单物质,并释放能量的过程。 20:、有氧呼吸:是指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出二氧化碳并形成水,同时释放能量的过程。 21、呼吸速率:每消耗1G葡萄糖可合成的生物大分子的克数。 22、呼吸商:植物组织在一定时间内,放出CO2的量与吸收O2的量的比率。

最新植物生理学题库及答案

第一章植物水分生理 一、名词解释(写出下列名词的英文并解释) 自由水free water:不与细胞的组分紧密结合,易自由移动的水分,称为自由水。其特点是参与代谢,能作溶剂,易结冰。所以,当自由水比率增加时,植物细胞原生质处于溶胶状态,植物代谢旺盛,但是抗逆性减弱。 束缚水bound water:与细胞的组分紧密结合,不易自由移动的水分,称为束缚水。其特点是不参与代谢,不能作溶剂,不易结冰。所以,当束缚水比率高时,植物细胞原生质处于凝胶状态,植物代谢活动减弱,但是抗逆性增加。 生理需水:直接用于植物生命活动与保持植物体内水分平衡所需要的水称为生理需水 生态需水:水分作为生态因子,创造作物高产栽培所必需的体外环境所消耗的水 水势Water potential:水势是指在同温同压同一系统中,一偏摩尔体积(V)溶液(含溶质的水)的自由能(μw)与一摩尔体积(V)纯水的自由能(μ0w)的差值(Δμw)。 Ψw=(μw /V w) -(μ0w/V w) =(μw-μ0w)/V w=Δμw/V w 植物细胞的水势是由溶质势、压力势、衬质势来组成的。 溶质势Solute potential、渗透势Osmotic potential :由于溶质的存在而降低的水势,它取决于细胞内溶质颗粒(分子或离子)总和。和溶液所能产生的最大渗透压数值相等,符号相反。 压力势pressure potential:由于细胞膨压的存在而提高的水势。一般为正值;特殊情况下,压力势会等于零或负值。如初始质壁分离时,压力势为零;剧烈蒸腾时,细胞的压力势会呈负值。 衬质势matric potential:细胞内胶体物质(如蛋白质、淀粉、细胞壁物质等)对水分吸附而引起水势降低的值。为负值。未形成液泡的细胞具有明显的衬质势,已形成液泡的细胞的衬质势很小(-0.01MPa左右)可以略而不计。 扩散作用diffusion:任何物质分子都有从某一浓度较高的区域向其邻近的浓度较低的区域迁移的趋势,这种现象称为扩散。 渗透作用osmosis:指溶剂分子(水分子)通过半透膜的扩散作用。 半透膜semipermeable membrane:是指一种具有选择透过性的膜,如动物膀胱、蚕豆种皮、透析袋等。理想的半透膜只允许水分子通过而不允许其它的分子通过。 吸胀作用Imbibition:是亲水胶体吸水膨胀的现象。只与成分有关:蛋白质>淀粉>纤维素> >脂类。豆科植物种子吸胀现象非常显著。未形成液泡的植物细胞,如风干种子、分生细胞主要靠吸胀作用。 代谢性吸水Metabolic absorption of water :利用细胞呼吸释放出的能量,使水分通过质膜而进入细胞的过程——代谢性吸水。 质壁分离Plasmolysis:高浓度溶液中,植物细胞液泡失水,原生质体与细胞壁分离的现象。 质壁分离复原Deplasmolysis:低浓度溶液中,植物细胞液泡吸水,原生质体与细胞壁重新接触的现象。

植物的光合作用教学设计

植物的光合作用教学设计 一、教学目标: 学习目标:学生能够通过对光合作用发现过程的学习,分析并掌握其原料、条件、产物、场所和理解光合作用的过程。 重点:掌握光合作用的原料、条件、产物、场所 难点:理解光合作用的过程 二、教学过程 导入: 师:出示 1、生态系统中,人们把植物称为什么?为什么? 2、从柳苗生长之谜说起 生:结合所学知识思考并回答问题1,阅读资料思考柳苗生长之谜中的问题。 新课推进: 一、探究光在植物生长中的作用 师;出示 (一)思考题 1、实验前为什么要对实验材料进行黑暗处理? 2、实验选用的叶片,一部分被遮光,一部分不遮光,这两部分在实验中各有什么时候作用? 3、你怎样解释在酒精溶液的绿叶脱色而使酒精溶液变绿的实验现象?

4、用碘液染色后的叶片颜色发生怎样的变化,这种实验结果说明什么? (二)模拟实验动画:“探究光在植物生长中的作用” 生:结合查阅教材内容和观看实验过程的动画,独立思考和解决上述问题。 师:出示问题答案并纠正学生的误区。 (三)分析实验现象和结果 师:结合视屏过程引导生分析实验现象和结果。 生:完成P54表格。 二、植物光合作用及其场所 (一)、探究光合作用的场所 师:绿色植物是有机物的生产者,植物的绿色和光合作用有什么关系的?有机物的“加工厂”主要分布在植物体的哪一器官? 生:阅读教材P55德国科学家恩吉尔曼利用水绵探究植物光合作用场所实验过程,思考光合作用的产物和场所。 师:出示恩吉尔曼实验过程图片并讲解并补充讲解光合作用的原料为二氧化碳和水。 生:理解光合作用的场所在叶绿体并完成对P56胡萝卜、仙人掌、银边春藤可以进行光合作用的部位的辨别。 (二)观察叶片和叶绿体的结构 师:出示叶片结构和叶绿体结构图。 生:通过观察图片感受叶片和叶绿体结构。

最新植物生理学期末复习资料

植物生理学 一、名词解释 1、水势:每偏摩尔体积水的化学势差。 2、自由水:距离胶粒较远而可以自由流动的水分。 3、束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。 4、蒸腾作用:是指水分以气体状态通过植物体的表面从体内散失到大气的过程。 5、蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。 6、小孔扩散规律:当水分子从大面积上蒸发时,其蒸发速率与蒸发面积成正比。但通过气孔表面扩 散的速率,不与小孔的面积成正比,而与小孔的周长成正比。 7、必需元素:维持正常生命活动不可缺少的元素. 8、单盐毒害:任何植物,假若培养在某一单盐溶液中,不久即呈现不正常状态,最后死亡。 9、平衡溶液:植物只有在含有适当比例的多种盐的溶液中才能正常生长发育,这种溶液叫平衡溶 液。 10、生理酸性盐:植物对各种矿质元素的吸收表现出明显的选择性。若供给( NH4 ) 2SO4,植物对其阳离子的吸收大于阴离子,在吸收NH4的同时,根细胞会向外释放氢离子,使PH 下降。 11、生理碱性盐:供给NANO3时,植物吸收,NO3-而环境中会积累,NA+,同时也会积累OH- 或HCO3-,从而使介质PH升高。 12、光合作用:绿色植物吸收太阳光能,同化CO2和H2O,合成有机化合物质,并释放O2的过程。 13、光合磷酸化:叶绿体利用光能将无机磷酸和ADP合成ATP的过程。 14、光补偿点:随着光强的增加光合速率相应提高,当达到某一光强时,叶片的光合速率等 于呼吸速率,即CO2吸收量等于CO2释放量,表现光合速率为0。 15、co2补偿点:随着CO2的浓度增加,当光合作用吸收的CO2与呼吸释放的CO2相等时环境中的CO2浓度。 16、光能利用率:指单位土地面积上,农作物通过光合作用所产生的有机物中所含的能量 ,与这块土地所接受的太阳能的比 17、集流运输速率:是指单位截面积筛分子在单位时间内运输物质的量,常用g/(m2.h)或g/(mm2.s)表示。 18、代谢源与代谢库:是产生和提供同化物的器官或组织;是消耗或积累同化物的器官和组织。 19、呼吸作用:是指一切生活在细胞内的有机物,在一系列酶的参与下,逐步氧化分解为简 单物质,并释放能量的过程。 20:、有氧呼吸:是指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出二氧化碳并形成水,同时释放能量的过程。 21、呼吸速率:每消耗1G葡萄糖可合成的生物大分子的克数。 22、呼吸商:植物组织在一定时间内,放出CO2的量与吸收O2的量的比率。 23、EMP途径:细胞质基质中的已糖经过一系列酶促反应步骤分解成丙酮酸的过程。 24、抗氰呼吸:在氰化物质存在下,某些植物呼吸不受抑制,所以把这种呼吸称为。 25、氧化磷酸化:在生物氧化中,电子经过线粒体电子传递链传递到氧,伴随ATP合酶催化,使ADP和磷酸合成ATP的过程。 26、呼吸跃变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,然后又降低的现象。

植物生理学1、2章试题

第一章植物的水分代谢 二、填空 1、在干旱条件下,植物为了维持体内的水分平衡,一方面要求根系发达,使之具有强大的吸水能力,另一方面要尽量减少蒸腾,避免失水过多导致萎蔫。 2、水分沿着导管或管胞上升的下端动力是根压,上端动力蒸腾拉力。 由于水分子内聚力大于水柱张力的存在,保证水柱的连续性而使水分不断上升。这一学说在植物生理学上被称为内聚力学说。 3、依据 K+泵学说,从能量的角度考察,气孔张开是一个主动过程;其 H+ /K+泵的开启需要光合磷酸化提供能量来源。 4、一般认为,植物细胞吸水时起到半透膜作用的是: 细胞质膜、细胞质(中质)和液泡膜三个部分。 5、水分经小孔扩散的速度大小与小孔(周长)成正比,而不与小孔的(面积)成正比;这种现象在植物生理学上被称为(小孔扩散边缘效应)。 6、当细胞巴时, =4 巴时,把它置于以下不同溶液中,细胞是吸水或是失水。(1)纯水中(吸水);(2) =-6 巴溶液中(不吸水也不失水);(3)=-8 巴溶液中(排水),(4) =-10 巴溶液中(排水); (5)=-4 巴溶液中(吸水)。 7、伤流和吐水现象可以证明根质的存在。 8、水分在植物细胞内以自由水和束缚水状态存在;自由水、束缚水比值大时,代谢旺盛。反之,代谢降低。 9、在相同温度和压力条件下,一个系统中一偏摩尔容积的水与一偏摩尔容积纯水之间的自由能差数,叫做水势。 10、已形成液泡的细胞水势是由(渗透势)和(压力势)组成,在细胞初始质壁分离时(相对体积=1.0),压力势为零,细胞水势导于-。当细胞吸水达到饱和时(相对体积=1.5),渗透势导于,水势为零,这时细胞不吸水。 11、细胞中自由水越多,原生质粘性越小,代谢越旺盛,抗逆性越弱。 12、未形成液泡的细胞靠(吸胀作用)吸水,当液泡形成以后,主要靠(渗透性)吸水。 三、问答题 1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何? 水分进入植物主要是从根毛——皮层——中柱——根的导管或管胞——茎的导管或管胞——叶的导管或管胞——叶肉细胞——叶细胞间隙——气孔下腔——气孔,然后到大气中去。 在导管、管胞中水分运输的动力是蒸腾拉力和根压,其中蒸腾拉力占主导地位。在活细胞间的水分运输主要靠渗透。 2、植物受涝后,叶片为何会萎蔫或变黄? 植物受涝后,叶子反而表现出缺水现象,如萎蔫或变黄,是由于土壤中充满着水,短时期内可使细胞呼吸减弱,根压的产生受到影响,因而阻碍吸水;长时间受涝,就会导致根部形成无氧呼吸,产生和累积较多的乙醇,致使根系中毒受害,吸水更少,叶片萎蔫变质,甚至引起植株死亡。 3、低温抑制根系吸水的主要原因是什么?

第三章 植物的光合作用 习题答案

第三章植物的光合作用 一、名词解释 1.光合色素:指植物体内含有的具有吸收光能并将其用于光合作用的色素,包括叶绿素、类胡萝卜素、藻胆素等。 2.原初反应:包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。 3.红降现象:当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。 4.爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照 射时的总和还要高。 5.光合链:即光合作用中的电子传递。它包括质体醌、细胞色素、质体蓝素、铁氧还蛋白等许多电子传递体,当然还包括光系统I和光系统 II的作用中心。其作用是水的光氧化所产生的电子依次传递,最后传 递给NADP+。光合链也称Z链。 6.光合作用单位:结合在类囊体膜上,能进行光合作用的最小结构单位。 7.作用中心色素:指具有光化学活性的少数特殊状态的叶绿素a分子。 8.聚光色素:指没有光化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。聚光色素又叫天线色素。 9.希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。 10.光合磷酸化:叶绿体(或载色体)在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。

11.光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO 2 的过程。光呼吸的主 要代谢途径就是乙醇酸的氧化,乙醇酸来源于RuBP的氧化。光呼吸之所以需要光就是因为RuBP的再生需要光。 12.光补偿点:同一叶子在同一时间内,光合过程中吸收的CO 2 和呼吸过程中放 出的CO 2 等量时的光照强度。 13.CO 2补偿点:当光合吸收的CO 2 量与呼吸释放的CO 2 量相等时,外界的CO 2 浓 度。 14.光饱和点:增加光照强度,光合速率不再增加时的光照强度。 15.光能利用率:单位面积上的植物光合作用所累积的有机物所含的能量,占照射在相同面积地面上的日光能量的百分比。 二、填空题 1.叶绿素、类胡萝卜素、藻胆素、细菌叶绿素 2. -氨基酮戊二酸原叶绿素酸酯叶绿素酸酯 3.光反应暗反应基粒类囊体膜(光合膜)叶绿体间质 4.PC Fd Z Pheo 5.H 2 O NADP+ 6.希尔(Hill) 7.氯锰 8.红光区紫光区蓝光区 9.3:1 2:1 10.非循环式光合磷酸化循环式光合磷酸化假循环式光合磷酸化非循环式光合磷酸化

植物生理学试题及答案10及答案

1、乙烯的三重反应2、光周期3、细胞全能性 4、生物自由基5、光化学烟雾 1、植物吸水有三种方式:____,____和____,其中____是主要方式,细胞是否吸水决定于____。 2、植物发生光周期反应的部位是____,而感受光周期的部位是____。 3、叶绿体色素按其功能分为____色素和____色素。 4、光合磷酸化有两种类型:_____和______。 5、水分在细胞中的存在状态有两种:____和____。 6、绿色植物的光合作用大致可分为三大过程:⑴_____,它的任务是____;⑵________,它的任务是_________;⑶________,它的任务是_________。 7、土壤水分稍多时,植物的根/冠比______,水分不足时根/冠比_____。植物较大整枝修剪后将暂时抑制______生长而促进______生长。 8、呼吸作用中的氧化酶_________酶对温度不敏_________酶对温度却很敏感,对氧的亲和力强,而______酶和______酶对氧的亲和力较弱。 9、作物感病后,代谢过程发生的生理生化变化,概括起来 ⑴_________,⑵__________, ⑶_________。 1、影响气孔扩散速度的内因是()。 A、气孔面积B、气孔周长C、气孔间距D、气孔密度 2、五大类植物激素中最早发现的是(),促雌花是(),防衰保绿的是(),催熟的(),催休眠的是()。 A、ABAB、IAAC、细胞分裂素D、GAE、乙烯 3、植物筛管中运输的主要物质是() A、葡萄糖B、果糖C、麦芽糖D、蔗糖 4、促进需光种子萌发的光是(),抑制生长的光(),影响形态建成的光是()。 A、兰紫光B、红光C、远红光D、绿光 5、抗寒性较强的植物,其膜组分中较多()。 A、蛋白质B、ABAC、不饱和脂肪酸D、饱和脂肪酸 四、是非题:(对用“+”,错用“-”,答错倒扣1分,但不欠分,10分)。 ()1、乙烯利促进黄瓜多开雌花是通过IAA和ABA的协同作用实现的。 ()2、光合作用和光呼吸需光,暗反应和暗呼吸不需光,所以光合作用白天光反应晚上暗反应,呼吸作用则白天进行光呼吸晚间进行暗呼吸的节律变化。 ()3、种子萌发时,体积和重量都增加了,但干物质减少,因此种子萌发过程不能称为生长。 ()4、细胞分裂素防止衰老是在转录水平上起作用的。 ()5、在栽培作物中,若植物矮小,叶小而黄,分枝多,这是缺氮的象征。 五、问答题(每题10分,30分) 1、试述植物光敏素的特点及其在成花过程中的作用。 2、水稻是短日植物,把原产在东北的水稻品种引种到福建南部可以开花结实吗?如果把原产在福建南部水稻品种引种到东北,是否有稻谷收获,为什么? 3、植物越冬前,生理生化上作了哪些适应准备?但有的植物为什么会受冻致死? 参考答案 一、名词解释

植物生理学题库

植物生理学题库 1、1917年,钱崇澍在美国的《植物学公报》(Batanical Gazette)发表了“钡、锶、铈对水绵属的特殊作用”一文,这是中国人应用近代科学方法研究植物生理学的第一篇文献。 2、“南罗北汤”是两位著名的中国植物生理学家。他们是上海的罗宗洛和北京汤佩松。 3、植物生理学是研究植物、特别是高等植物生命活动规律和机理的科学,属于实验生物学范畴,因此,其主要研究方法是实验法。 4、1882萨克斯(Sachs)编者的“植物生理学”讲义问世。随后费弗尔(Pfeffer)发表一部三卷本“植物生理学”使植物生理学成为一门具完整体系的独立学科。 5、被认为是现代植物生理学的二位主要创始人。A 、J、 B、van Helmont和J、Woodward B、J、Sachs和W、Pfeffer C、S、Hales和N、T、de Saussure D、O、R、Hoagland和D、Arnon B 6、被认为是中国最早的三位植物生理学家。A 钱崇澍、张珽和李继侗 B、罗宗洛、汤佩松和殷宏章 C、吴相钰、曹宗巽和阎龙飞 D、汤玉玮、崔澄和娄成后 A 7、《论气》这部学术著作成书于1637年。在其“水尘”一章中提出了“人一息不食气则不生,鱼一息不食水则死”的著名

论断,并生动地描述了得出这一结论的事实根据。因此,我国学者认为世界上最早进行呼吸实验的是我们中国人,也就是《论气》一书的作者。A 、宋应星 B、沈括 C、贾思勰 D、李时珍A 8、1648年,将一棵5lb( 2、27kg)重的柳树栽种在一桶称量过的土壤中,每天除了给柳树浇灌雨水外,不再供应其他物质。5年后,这小树长成一棵重达169lb(7 6、66kg)的大树,土壤的重量只减少了2oz(5 6、7g)。由此,他合乎逻辑地、但是错误地得出结论:柳树是由水构成的。A 、J、B、van Helmont B、W、Pfeffer C、J、Sachs D、N、A、Maximov A 9、矿质营养学说是由德国的1840年建立的。A 、J、von Liebig B、J、B、van Helmont C、W、Knop D、J、Sachs A10、1771年,英国牧师兼化学家用蜡烛、老鼠、薄荷及钟罩进行试验,结果发现植物能释放氧气,并能气经过动物呼吸后的污浊空气更新。A 、J、Ingenhouse B、J、Priestly C、J、Sachs D、N、T、de Saussure B 第一章植物的水分代谢 1、在干旱条件下,植物为了维持体内的水分平衡,一方面要求根系发达,使之具有强大的吸水能力;另一方面要尽量减少蒸腾,避免失水过多导致萎蔫。

光合作用的过程

光合作用的过程 ?光合作用过程: 1、光合作用的概念: 绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。 2、光合作用图解: 3、光合作用的总反应式及各元素去向 ?光反应与暗反应的比较:

? ?易错点拨: 1、光合作用总反应式两边的水不可轻易约去,因为反应物中的水在光反应阶段消耗,而产 物中的水则在暗反应阶段产生。

2、催化光反应与暗反应的酶的分布场所不同,前者分布在类囊体薄膜上,后者分布在叶绿 体基质中。 知识拓展: 1、氮能够提高光合作用的效率的原因是:氮是许多种酶的组成成分光合作用的场所:光合 作用第一个阶段中的化学反应,必须有光才能进行。在类囊体的薄膜上进行;光合作用的第二个阶段中的化学反应,有没有光都可以进行。在叶绿体基质中进行。 2、玉米是C4植物,其维管束鞘细胞中含有没有基粒的叶绿体,能够进行光合作用的暗反 应。C4植物主要是那些生活在干旱热带地区的植物。 ①四碳植物能利用强日光下产生的ATP推动PEP与CO2的结合,提高强光、高温下的光合 速率,在干旱时可以部分地收缩气孔孔径,减少蒸腾失水,而光合速率降低的程度就相对较小,从而提高了水分在四碳植物中的利用率。 ②二氧化碳固定效率比C3高很多,有利于植物在干旱环境生长。C3植物行光合作用所得的 淀粉会贮存在叶肉细胞中;而C4植物的淀粉将会贮存于维管束鞘细胞内,维管束鞘细胞不含叶绿体。 3、光合细菌:利用光能和二氧化碳维持自养生活的有色细菌。光合细菌(简称PSB)是地球 上出现最早、自然界中普遍存在、具有原始光能合成体系的原核生物,是在厌氧条件下进行不放氧光合作用的细菌的总称,是一类没有形成芽孢能力的革兰氏阴性菌,是一类以光作为

《植物生理学》期末总结-植物生理学实验总结

《植物生理学》期末总结:植物生理学实验总结 一、名词解释 1.水势(water potential): 体系中每偏摩尔体积水的自由能与每偏摩尔体积纯水的自由能之差值,用ψw表示。 2.信号转导(signal transduction): 指细胞耦联各种刺激信号(包括各种内外刺激信号)与其引起特定生理效应之间的一系列分子反应机制。 3.呼吸跃变(respiratory climacteric): 果实成熟过程中,呼吸速率随着果龄而降低,但在后期会突然增高,呈现“呼吸高峰”,以后再下降的现象。 4.呼吸跃变(respiration climacteric): 果实成熟过程中,呼吸速率随着果龄而降低,但在后期会突然增高,呈现“呼吸高峰”,以后再下降的现象。 5.渗透作用(osmosis):

是一种特殊的扩散,指溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。 6.集体效应(group effect): 在一定面积内,花粉数量越多,花粉萌发和花粉管的生长越好的现象。 7.光补偿点(light pensation point): 随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于O2释放量,表观光合速率为零,这时的光强称为光补偿点。 8.矿质营养(mineral nutrition): 植物对矿质的吸收、转运和同化以及矿质在生命活动中的作用。 9.乙烯的“三重反应”(triple response): 乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应。 10.春化作用(vernalization): 低温诱导促使植物开花的作用叫春化作用。

植物生理学试题及答案3

植物生理学试题及答案3 一.名词解释(每题3分,共30分) 1. C02补偿点 2. 植物细胞全能性3、氧化磷酸化 4、源-库单位 5. 乙烯的三重反应6、P680; 7、PEP;8、RQ 9、逆境蛋白 10、冻害与冷害 二、填空题(每空0.5分,共10分) 1.RUBP羧化酶具有______ 和______ 的特性。 2.赤霉素和脱落酸生物合成的前体都是甲瓦龙酸,它在长日照下形成______ ,而在短日照下形成______ 。 3.细胞分裂素主要是在______ 中合成。 4.土壤中可溶性盐类过多而使根系呼吸困难,造成植物体内缺水,这种现象称为______ 。5.植物感受光周期的部位是______,感受春化作用的部位是______ 。 6.促进器官衰老、脱落的植物激素是_____ 和______ 。 7.光合作用中,电子的最终供体是______ ,电子最终受体是______ 。 8.根系两种吸水动力分别是______ 和______ 。 9.光敏素最基本的光反应特性是照射______ 光有效,______ 光即可消除这种效果。 10、组成呼吸链的传递体可分为______ 传递体和______ 传递体。 11、植物光周期现象与其地理起源有密切关系,长日照植物多起源于高纬度地区;在中纬度地区______ 植物多在春夏开花,而多在秋季开花的是______ 植物。 三、单项选择题(每题1分,共15分) 1、果胶分子中的基本结构单位是()。 A、葡萄糖; B、果糖 C、蔗糖; D、半乳糖醛酸; 2、C4途径中CO2受体是()。 A、草酰乙酸; B、磷酸烯醇式丙酮酸; C、天冬氨酸; D、二磷酸核酮糖; 3、光呼吸是一个氧化过程,被氧化的底物一般认为是( )。 A. 丙酮酸 B. 葡萄糖 C. 乙醇酸 D.甘氨酸 4、下列波长范围中,对植物生长发育没有影响的光是()。 A、100~300nm; B、500~1000nm; C、300~500nm; D、1000~2000nm; 5、干旱条件下,植物体内的某些氨基酸含量发生变化,其中含量 显著增加的氨基酸是()。 A、脯氨酸; B、天冬氨酸; C、精氨酸; D、丙氨酸 6、促进叶片气孔关闭的植物激素是()。 A、IAA; B、GA; C、CTK; D、ABA; 7、植物组织培养中,愈伤组织分化根或芽取决于培养基中下列哪 两种激素的比例()。 A、CTK/ABA B、IAA/GA C、CTK/IAA D、IAA/ABA 8、叶绿体色素中,属于作用中心色素的是( )。

植物生理学 期末复习 名词解释总结

植物生理学名词解释总结 1.ACC合酶:催化SAM裂解为5’-甲硫基-腺苷和ACC的酶,为乙烯合成的 限速酶 2.矮壮素(CCC):抑制GAs合成,进而抑制细胞伸长的人工合成生长延缓剂 3.必须元素:在植物生活史中,起着不可替代的直接生理作用的不可缺少的元 素 4.春化作用:低温诱导促使植物开花的作用 5.长日植物:在24h昼夜周期中,日照长度长于一定时间才能成花的植物。如 延长光照或在暗期短期照光可促进或提早开花,相反如延长黑暗则推迟或不能开花 6.单性结实:有些植物的胚珠不经受精,子房仍能够继续发育成没有种子的果 实 7.单盐毒害:植物生长在只含有一种金属元素的溶液中而发生受害的现象 8.代谢源与代谢库:制造并输出同化物的部位或器官(成熟叶);消耗或贮藏 同化物的部位或器官(根、果实) 9.分化:从一种同质性的细胞类型转变成形态结构和功能与原来不同的异细胞 类型的过程 10.光周期现象:昼夜的相对长度对植物生长发育的影响 11.光呼吸:植物和绿色细胞在光照下吸收氧气和放出二氧化碳的现象 12.光形态建成:光控制植物生长、发育和分化的过程 13.光周期诱导:植物只需在某一生育周期内得到足够日数的适合光周期,以后 即便放置在不适宜的光周期条件下仍可开花 14.光和速率:光合强度,单位时间单位叶面积所吸收的CO2或释放的O2量, 或单位时间单位也面积所积累的干物质量 15.光饱和点:在光照强度较低时,光和速率随光照强度增加;光强度进一步提 高时,光和速率的增加逐渐减小,当超过一定光强时,光和速率不再增加,此时的光照强度为光饱和点 16.HSP:在高于植物正常生长温度刺激下诱导合成的新蛋白

植物生理学考试题

植物生理学考试题 (20分) 蒸腾单盐毒物植物激素代谢库分化顶优势春化集体效应后熟冻害2,填空(30分,(每空0.5分) 1。诱导大麦糊粉层α-淀粉酶形成的植物激素是 延缓叶片衰老的植物激素;促进瓜类植物多雌花的植物激素是,促进瓜类植物多雄花的植物激素是,促进植物茎伸长的植物激素是,促进植物生根的植物激素是;促进水果成熟的植物激素有:打破土豆和洋葱休眠的植物激素有:促进橡胶分泌乳汁的植物激素有:促进菠萝开花的植物激素有 2.亚硝酸盐还原成氨的过程是由位于叶肉细胞中的酶催化的 3。种子在发芽之初呼吸,然后呼吸4.种子休眠是由……引起的。活性氧种类包括、、和6.干旱可分为_ _ _ _ _ _干旱、干旱和_ _ _ _ _ _干旱。7.植物生命活动必需的微量元素 包括、、、、 8。少施氮肥的旱地能促进花的分化;氮肥和土壤中充足的水分可以促进花的分化。 9。为了使果树种子完成生理后熟,种子可以在贮藏期间用该方法进行处理。 10。(NH4)2SO4是一种生理盐;硝酸钾是一种生理盐。NH4NO3是一种生理盐 11。中国北方果树小叶病是由元素缺乏引起的12.当细胞的初始质壁

分离时,细胞的水势等于,而压力势等于 13。常用的蒸腾指标有、和14.在光合作用中,淀粉在培养基中形成,蔗糖在培养基中形成 15。植物中水和矿质元素的运输主要是在:光合产物的运输主要是在CO2补偿点 16。C4植物高于C3植物;群体植物的光饱和点高于个体植物CO2受体 17。C3途径是,C3途径中CO2固定的初始产物是 18。植物细胞吸收矿物元素的方式有、和19.呼吸效应包括两种主要类型 20。植物根系吸收水分的主要方式有前者受以下因素驱动:后者受以下因素驱动21.细胞信号转导系统中主要的第二信使 是,,,三、选择题(10分) 1。在强光下,降低二氧化碳浓度下列哪种作物的光合速率下降较快? (1)棉花(2)玉米(3)高粱(4)小麦 A(1)和(3)B(1)和(4)C(2)和(3)D(2)和(4) 2。光合水光解所必需的两种矿物元素是()A.Ca2+和C1-B2 . Mn2+和Ca2+C2 . Mn2+和C1-D2 . Mg2+和C1-5..将植物细胞放入纯水中,当水吸收达到平衡时 a .ψm =ψP b .ψs =ψp c .ψw =ψm d .ψs =-ψp 9。在啤酒生产中用来代替大麦芽以完成糖化过程的植物激素是()a.iaab.ga c.ctkd.aba

植物生理学习题大全——第3章植物的光合作用

第三章光合作用 一、名词解释 光合作用(photosynthesis):绿色植物吸收阳光得能量,同化二氧化碳与水,制造有机物质并释放氧气得过程。 光合色素(photosynthetic pigment):植物体内含有得具有吸收光能并将其光合作用得色素,包括叶绿素、类胡萝卜素、藻胆素等、 吸收光谱(absorption spectrum):反映某种物质吸收光波得光谱。 荧光现象(fluorescencephenomenon):叶绿素溶液在透射光下呈绿色,在反射光下呈红色,这种现象称为荧光现象。 磷光现象(phosphorescence phenomenon):当去掉光源后,叶绿素溶液还能继续辐射出极微弱得红光,它就是由三线态回到基态时所产生得光。这种发光现象称为磷光现象。 光合作用单位(photosyntheticunit):结合在类囊体膜上,能进行光合作用得最小结构单位。 作用中心色素(reactioncenter pigment):指具有光化学活性得少数特殊状态得叶绿素a分子。 聚光色素(light harvesting pigment):指没有光化学活性,只能吸收光能并将其传递给作用中心色素得色素分子、 原初反应(primary reaction):包括光能得吸收、传递以及光能向电能得转变,即由光所引起得氧化还原过程。 光反应(light reactio):光合作用中需要光得反应过程,就是一系列光化学反应过程,包括水得光解、电子传递及同化力得形成。 暗反应(dark reaction):指光合作用中不需要光得反应过程,就是一系列酶促反应过程,包括CO2得固定、还原及碳水化合物得形成。 光系统(photosystem,PS):由不同得中心色素与一些天线色素、电子供体与电子受体组成得蛋白色素复合体,其中PS Ⅰ得中心色素为叶绿素a P700,PS Ⅱ得中心色素为叶绿素aP680。 反应中心(reactioncenter):由中心色素、原初电子供体及原初电子受体组成得具有电荷分离功能得色素蛋白复合体结构。 量子效率(quantum efficiency):又称量子产额或光合效率。指吸收一个光量子后放出得氧分子数目或固定二氧化碳得分子数目。

植物生理学期末考试大题

1 简述水在植物生命活动中的作用 1,水是原生质的主要成分,原生质含水量为50-60%,2水分是某些代谢过程中的参加者3水分是植物对物质吸收和运输的溶质4能保持植物的固有形态5与植物的生长和运输有关6水可以调节植物的体温,还有特定生态作用,调节植物的环境条件如:大气湿度等 2 什么是渗透调节?功能如何? 指植物生长在渗透胁迫条件下,其细胞在渗透上有活性和无毒害的作用的主动净增长过程。有活性溶质增长的结果是细胞浓度增大渗透势降低,使其在低渗透势生境中能够吸收水分,此过程为渗透调节。生理功能包括:维持细胞膨压变化不大,有利于其他生理活性的进行:维持气孔张开,保证光合作用进行。 3 k+泵 K+广泛存在于细胞膜上;光照条件下磷酸化形成ATP活化ATP酶k+泵水解ATP来驱动h+穿膜转移;保卫细胞ph升高,产生电化学势梯度;k+进入保卫细胞保卫细胞水势降低;保卫细胞吸水膨胀,气孔张开,在黑暗中则相反 4细胞信号传导?膜上的信号转换是如何实现的? 细胞信号传导是指偶联各种胞外刺激信号与其相应的生理反应之间的一系列的分子反应机理,膜上信号转换通过G蛋白内膜内侧,依赖自身的活化与非活化循环实现跨膜信号转换。C4途径与CAM途径有何异同 相同都有pep羧化酶co2初步固定和糖的形成分开进行 异同c4植物把co2的固定和糖的形成从空间隔开,而CAM将其一时间隔开 C4植物有花环结构,CAM没有c4植物气孔白天开放,夜间关闭,CAM相反 5光周期 定义:植物对白天和黑夜的相对长度的反应作用:指导引种控制开花维持作物营养生长缩短育种年限距离;大豆为短日照植物南方品种移至北方时,由于短日时间推迟,开花推迟。北方品种移至南方时短日时间来的早,开花提前。 6关于光呼吸 不完全消除不会有利,因为光呼吸为尤重要的生命机理作用:消除乙酸毒害维持c3途径的运转防强光对光合机构的危害氮代谢的补充 7气孔昼开夜闭的机理 气孔由两个保卫细胞构成,吸水开放,失水关闭保卫细胞有叶绿体,可光合作用淀粉磷酸化酶具有双从作用,低ph催淀粉合成,高ph淀粉分解具体机理;白天光照保卫细胞光合作用,消耗co2,ph升高,淀粉磷酸化酶分解为可溶性葡萄糖,保卫细胞水势降低,从相邻细胞吸水,开放。晚上相反。 8绿色植物是如何把光能转化为活跃化学能的? 光能的呼吸与传递引起原初反应推动电子传递使NADP变为NADPH 通过光合磷酸化形成ATP 植物体内活性氧积累过多会造成哪伤害植物如何消除这些危害 伤害:伤害核酸伤害蛋白质细胞质过氧化膜脂过氧化物mda作为交联剂破坏核酸蛋白质等大生物分子 消除:酶促防御系统:SOD CAT POD GR 非酶促活性氧消除剂;ASA VITE GSH 9地上和地下关系 相互依存,相互促进根系生长须地上部提供光合产物,生长素,维生素地下唯地上提供水分矿质分裂素2相互依存相互矛盾相互制约只有维持两者的恰当比例才能高产3调整根冠比如氮地下吸收运至地上,缺乏时地上部分比地下部分更缺氮,地上部分收到抑制根冠比增加,氮肥充足,相反。

相关主题
文本预览
相关文档 最新文档