当前位置:文档之家› 中考数学锐角三角函数(大题培优)含答案

中考数学锐角三角函数(大题培优)含答案

中考数学锐角三角函数(大题培优)含答案
中考数学锐角三角函数(大题培优)含答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数

值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

【答案】6.4米 【解析】

解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3

6392

==米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米

首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高

2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为

1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,

2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)?

【答案】

【解析】

过A作AF CD

于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可.3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且

MD=CM,DE⊥AB于点E,连结AD、CD.

(1)求证:△MED∽△BCA;

(2)求证:△AMD≌△CMD;

(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=17

5

S1时,求cos∠ABC的

值.

【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .

【解析】

【分析】

(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;

(2)由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ; (3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以

2

114

ACB S MD S

AB ??== ???,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBD

S ME S EB =,从而可知

52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=7

2,最后根据锐角三角函数的定义即可求出答案. 【详解】

(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;

(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,

∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,

∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,

MD MD AMD CMD AM CM =??

∠=∠??=?

, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,

由(1)可知:△MED ∽△BCA , ∴

2

114

ACB S MD S

AB ??== ???, ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =

1

2

S △ACB =2S 1,

∴S △EBD =S 2﹣S △MCB ﹣S 1=2

5

S 1, ∵

1EBD

S

ME

S

EB

=

, ∴1125

S ME

EB S =

5

2

ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,

1

2MD ME AB BC ==, ∴BC=10x ,

∴cos ∠ABC=105

147

BC x AB x ==. 【点睛】

本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.

4.如图,抛物线C 1:y=(x+m )2(m 为常数,m >0),平移抛物线y=﹣x 2,使其顶点D 在抛物线C 1位于y 轴右侧的图象上,得到抛物线C 2.抛物线C 2交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C ,设点D 的横坐标为a .

(1)如图1,若m=.

①当OC=2时,求抛物线C 2的解析式;

②是否存在a ,使得线段BC 上有一点P ,满足点B 与点C 到直线OP 的距离之和最大且AP=BP ?若存在,求出a 的值;若不存在,请说明理由; (2)如图2,当OB=2

﹣m (0<m <

)时,请直接写出到△ABD 的三边所在直线的距

离相等的所有点的坐标(用含m的式子表示).

【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

【解析】

试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;

②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;

(2)解题要点有3个:

i)判定△ABD为等边三角形;

ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;

iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.

试题解析:(1)当m=时,抛物线C1:y=(x+)2.

∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,

∴D(a,(a+)2).

∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).

①∵OC=2,∴C(0,2).

∵点C在抛物线C2上,

∴﹣(0﹣a)2+(a+)2=2,

解得:a=,代入(I)式,

得抛物线C2的解析式为:y=﹣x2+x+2.

②在(I)式中,

令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);

令x=0,得:y=a+,∴C(0,a+).

设直线BC的解析式为y=kx+b,则有:

,解得,

∴直线BC的解析式为:y=﹣x+(a+).

假设存在满足条件的a值.

∵AP=BP,

∴点P在AB的垂直平分线上,即点P在C2的对称轴上;

∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,

∴OP⊥BC.

如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,

则OP⊥BC,OE=a.

∵点P在直线BC上,

∴P(a,a+),PE=a+.

∵tan∠EOP=tan∠BCO=,

∴,

解得:a=.

∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"

(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,

∴D(a,(a+m)2).

∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.

令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,

∴2a+m=2﹣m,

∴a=﹣m.

∴D(﹣m,3).

AB=OB+OA=2﹣m+m=2.

如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.

∵tan∠ABD=,

∴∠ABD=60°.

又∵AD=BD,∴△ABD为等边三角形.

作∠ABD的平分线,交DE于点P1,则P1E=BE?tan30°=×=1,

∴P1(﹣m,1);

在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.

在Rt△BEP2中,P2E=BE?tan60°=?=3,

∴P2(﹣m,﹣3);

易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.

∴P3(﹣﹣m,3)、P4(3﹣m,3).

综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,

其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).

【考点】二次函数综合题.

5.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且

将三角板绕点逆时针旋转至的位置,连结

(1)求证:

(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.

【答案】(1)证明见解析(2)存在,或

【解析】

(1)证明:∵四边形为正方形,∴

∵三角板是等腰直角三角形,∴

又三角板绕点逆时针旋转至的位置时,∴···························· 3分

(2)存在.································· 4分

∴过点与平行的直线有且只有一条,并与垂直,

又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分

∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和

此时,点分别在点和点,满足

·························· 7分

当切点在第二象限时,点在第一象限,

在直角三角形中,

∴∴

∴点的横坐标为:

点的纵坐标为:

∴点的坐标为··························· 9分

当切点在第一象限时,点在第四象限,

同理可求:点的坐标为

综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分

(1)根据旋转的性质找到相等的线段,根据SAS定理证明;

(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E点的坐标,由此得解.

6.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且=,连接DE,DF,EF. FH平分EFB

CF AE

∠交BD于点H.

⊥;

(1)求证:DE DF

=:

(2)求证:DH DF

⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并(3)过点H作HM EF

证明.

【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】

(1)根据正方形性质, CF AE =得到DE DF ⊥.

(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=?,BD 平分ABC ∠, 得45DBF ∠=?.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于

45DHF DBF BFH BFH ∠=∠+∠=?+∠,45DFH DFE EFH EFH ∠=∠+∠=?+∠, 所以DH DF =.

(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得

222BD AB AD AB =

+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得

HM HN =.因为4590HBN HNB ∠=?∠=?,

,所以22sin 45HN

BH HN HM ===?

.

由22cos 45DF

EF DF DH =

==?

,得22EF AB HM =-.

【详解】

(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=?. ∴90EAD FCD ∠=∠=?. ∵CF AE =。 ∴AED CFD △△≌. ∴ADE CDF ∠=∠.

∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=?. ∴DE DF ⊥.

(2)证明:∵AED CFD △△≌, ∴DE DF =. ∵90EDF ∠=?, ∴45DEF DFE ∠=∠=?.

∵90ABC ∠=?,BD 平分ABC ∠, ∴45DBF ∠=?. ∵FH 平分EFB ∠, ∴EFH BFH ∠=∠.

∵45DHF DBF BFH BFH ∠=∠+∠=?+∠,

45DFH DFE EFH EFH ∠=∠+∠=?+∠, ∴DHF DFH ∠=∠. ∴DH DF =.

(3)22EF AB HM =-.

证明:过点H 作HN BC ⊥于点N ,如图,

∵正方形ABCD 中,AB AD =,90BAD ∠=?, ∴222BD AB AD AB =

+=.

∵FH 平分,EFB HM EF HN BC ∠⊥⊥,,

∴HM HN =.

∵4590HBN HNB ∠=?∠=?,

, ∴22sin 45HN

BH HN HM =

==?

.

∴22DH BD BH AB HM =-=.

∵22cos 45DF

EF DF DH =

==?

∴22EF AB HM =-. 【点睛】

本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.

7.如图,已知二次函数2

12

y x bx c =

++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P . (1)求这个二次函数解析式;

(2)设D 为x 轴上一点,满足∠DPC =∠BAC ,求点D 的坐标;

(3)作直线AP ,在抛物线的对称轴上是否存在一点M ,在直线AP 上是否存在点N ,使AM +MN 的值最小?若存在,求出M 、N 的坐标:若不存在,请说明理由.

【答案】(1)点C坐标为(3,0),点P(1,-2);(2)点P(7,0);(3)点N(-

7 5,

14

5

).

【解析】【分析】

(1)将点A、

B坐标代入二次函数表达式,即可求解;

(2)利用S△ABC= 1

2

×AC×BH=

1

2

×BC×y A,求出sinα=

22

2105

BH

AB

==,则tanα=

1

2

,在

△PMD中,tanα= MD

PM

=

1

2

22

x

=

+

,即可求解;

(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.

【详解】

(1)将点A、B坐标代入二次函数表达式得:

9

633

2

1

2

b

b c

?

=-+

??

?

?=--+

??

,解得:

1

3

2

b

c

=-

?

?

?

=-

??

故:抛物线的表达式为:y=1

2

x2-x-

3

2

令y=0,则x=-1或3,令x=0,则y=-3

2

故点C坐标为(3,0),点P(1,-2);

(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,

由题意得:AB=210,AC=62,BC=4,PC=22,

S△ABC=1

2

×AC×BH=

1

2

×BC×y A,

解得:BH=22,

sinα=BH

AB

=

22

210

=

5

,则tanα=

1

2

由题意得:GC=2=PG,故∠PCB=45°,

延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,

在△PMD中,tanα=MD

PM

=

22

x+

=

1

2

解得:x=22,则CD=2x=4,

故点P(7,0);

(3)作点A关于对称轴的对称点A′(5,6),

过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,

直线AP表达式中的k值为:8

4-

=-2,则直线A′N表达式中的k值为

1

2

设直线A′N的表达式为:y=1

2

x+b,

将点A′坐标代入上式并求解得:b=7

2

故直线A′N的表达式为:y=1

2

x+

7

2

…①,

当x=1时,y=4,

故点M(1,4),

同理直线AP的表达式为:y=-2x…②,

联立①②两个方程并求解得:x=-7

5

故点N(-7

5

14

5

).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.

8.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =

3

5

,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;

(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =3

20

ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.

【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =

24(04)

220

(410)3

3t t t t t ??

?-+

(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,2220

1233t t -+= 【详解】

解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =

35

, 10cos OB

BC B

∴=

= 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴,

∴点D 的坐标为(10,8).

(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,

∴S =

1

2PQ ?OQ =4t , ∵4>0,

∴当t =4时,S 取得最大值,最大值为16;

②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:

4k b 010k b 8+=??

+=?,解得:4k 3

16

b 3?=????=-??

, ∴直线AD 的解析式为416

33

y x =-. 当x =t 时,416

33

y t =

-, 4164

8(10)3

33PQ t t ??∴=--=- ???

21220

233

S PQ OP t t ∴=

?=-+ 22202502

(5),033333S t t t =-+=--+-<∴当t =5时,S 取得最大值,最大值为

503

. 综上所述:S 关于t 的函数关系式为S =24(04)

220(410)3

3t t t t t ??

?-+

(3)S 菱形ABCD =AB ?OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<

t ≤10时,2220

33

t

t -

+=12, 解得:t 1=5(舍去),t 2=

. 综上所述:在直线l 移动过程中,存在t 值,使S =

3

20

ABCD S 菱形,t 的值为3或.

【点睛】

考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.

9.如图,公路AB为东西走向,在点A北偏东36.5?方向上,距离5千米处是村庄M,在点A北偏东53.5?方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:

(1)M,N两村庄之间的距离;

(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)

【答案】(1) M,N29千米;(2) 村庄M、N到P站的最短距离和是5

【解析】

【分析】

(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.

(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.

【详解】

解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.

(1)在Rt△ANE中,AN=10,∠NAB=36.5°

∴NE=AN?sin∠NAB=10?sin36.5°=6,

AE=AN?cos∠NAB=10?cos36.5°=8,

过M作MC⊥AB于点C,

在Rt△MAC中,AM=5,∠MAB=53.5°

∴AC=MA?sin∠AMB=MA?sin36.5°=3,

MC=MA?cos∠AMC=MA?cos36.5°=4,

过点M作MD⊥NE于点D,

在Rt△MND中,MD=AE-AC=5,

ND=NE-MC=2,

∴MN22

52

+29

即M,N29

(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.

DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得

MN22

+5

510

∴村庄M、N到P站的最短距离和是5

【点睛】

本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.

10.已知:如图,在Rt△ABO中,∠B=90°,∠OAB=30°,OA=3.以点O为原点,斜边OA 所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P 与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:

(发现)(1)MN的长度为多少;

(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.

(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.

(拓展)当MN与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.

【答案】【发现】(1)MN 的长度为π3;(2)重叠部分的面积为3

8

;【探究】:点P 的坐标为10(,);或3

03()或23

03

-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.

【解析】 【分析】

发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;

拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现]

(1)∵P (4,0),∴OP =4. ∵OA =3,∴AP =1,∴MN 的长度为6011803

ππ

?=. 故答案为

3

π

; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°3=∴S 重叠部分=S △APQ 12=

PQ ×AQ 3

8

= 3

[探究]

①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);

②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123

303

cos ==?,∴点P 的坐标为(

23

3

,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 23

3

=

; ∴点P 的坐标为(23

3

-

,0);

[拓展]

t 的取值范围是2<t ≤3,4≤t <5,理由:

如图5,当点N 运动到与点A 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 41

1

-==3,MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3.

如图6,当⊙P 运动到PM 与OB 重合时,MN 与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.

【点睛】

本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

人教数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)? 【答案】 【解析】 于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD 四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可. 3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm. (1)AE的长为 cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离. 【答案】(1);(2)12cm;(3)cm. 【解析】 试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

培优锐角三角函数之欧阳光明创编

锐角三角函数 欧阳光明(2021.03.07) 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若 cos α>21,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有()A.(1)(2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是() A.160cos 60sin 0202=+ B .130cos 30sin 00=+ C.0055cos 35sin = D.tan45°>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是() A.0°<∠A ≤90° B.90°<∠A<180° C.0°≤∠A<90° D.0°≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=0.8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知 sin α·cos α=81,且45°<α<90°,则COS α-sin α的值为() A.23B.2 3- C.43D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是()

A.sinA+cosB=sinC B.sinA+sinB=sinC C.2cos 2sin C B A += D.2tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式() A.m=n B.m=2n+1 C.122+=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O , AC=6,若a ABD =∠,则下列式子正确的是() A.sin α=54 B.cos α=53 C.tan α=34 D.cot α=34 变式:1、设0°<α<45°,sin αcos α=167 3,则sin α= 2、已知sin α-cos α=5 1,0°<α<180°,则tan α的值是( )43B.43- C.34D.34- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。 4、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。 (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。 题型:三角函数值的计算(1) 例:计算:000020246tan 45tan 44tan 42sin 48sin ??-+= 变式:1、计算: 2002020010)60cot 4()60tan 25.0(?= 2、计算:0 000002000027tan 63tan 60cot 360sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值的计算(2)

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若cos α> 2 1 ,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有( )A.(1) (2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是( ) A.160cos 60sin 0 2 2 =+ B .130cos 30sin 0 =+ C.0 55cos 35sin = °>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是( ) °<∠A ≤90° °<∠A<180° °≤∠A<90° °≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α= 8 1 ,且45°<α<90°,则COS α-sin α的值为( ) A. 23 B.23- C.4 3 D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是( ) A.sinA+cosB=sinC +sinB=sinC C.2cos 2sin C B A += D.2 tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式( ) A.m=n =2n+1 C.122 +=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O ,AC=6,若a ABD =∠,则 下列式子正确的是( ) A.sin α= 54 α=53 α=34 α=3 4 变式:1、设0°<α<45°,sin αcos α= 16 7 3,则sin α= 2、已知sin α-cos α= 51,0°<α<180°,则tan α的值是( )43 B.43- C.34 D.3 4- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。

锐角三角函数(培优)

知识要点 1、 锐角三角函数定义? 斜边的对边αα∠= sin 斜边的邻边αα∠=cos 的邻边的对边 ααα∠∠= t a n 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300 、450 、600 、的记忆规律: 3、 角度变化与锐角三角函数的关系 当锐角α在00∽900 之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。 4、 同角三角函数之间有哪些关系式 平方关系:sin 2A +cos 2 A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tan B =1; 5、 互为余角的三角函数有哪些关系式? Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900 -A )=ctan A ; 一、选择题 1.在Rt △ABC 中,∠C =900 ,∠A =∠B ,则sinA 的值是( ).A . 2 1 B .22 C .23 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A . 2 1 B .33 C .1 D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的 5 1 ,那么锐角A 的各个三角函数值( ). A .都缩小 5 1 B .都不变 C .都扩大5倍 D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α= 54 B .cos α= 53 C .tan α= 34 D .tan α= 4 3 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .tan 4B = 6.已知ΔABC 中,∠C =90?,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A. 513 B. 1213 C.10 13 D.512 8.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG = B. sin EH G EF = C. sin GH G FG = D. sin FH G FG = 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).

锐角三角函数培优题目

锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tgα=ααcos sin ,ctgα=α αsin cos ; 倒数关系:tgαctgα=1. 【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 135,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不 难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21== ; (2)R C c B b A a 2sin sin sin ===. 【例2】 在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.

锐角三角函数-基础+培优

A B C D α A (第7题) 1l 3l 2l 4l A D E B 图 C 一、锐角三角函数定义:sin αα∠= 的() ( ) cos αα∠=的()() tan α= () () 例1.在△ABC 中,∠C =90°,sinA =3 2 ,求cosA 、tanB . 例2.△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC =63,BD =3. (1)求cosA (2)求BC 的长及△ABC 的面积. 例3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =43,求AD 的长. 例4.如图1,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43 ,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是 练习.1.在7,35,90==∠=AB B 中,则BC 的长为( ) (A ) 35sin 7 (B ) 35 cos 7(C ) 35cos 7 (D ). 35tan 7 2.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .2tan B = 3.已知ΔABC 中,∠C =90 ,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 4. Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C sin sin a b A B +. D.cos sin a b A B + 5. 如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为 6. 在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A = a b .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A (C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1 7.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 8.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于 C B A E F D 第8题 C M B A 第7题 D B C A C B 第2题

中考数学锐角三角函数(大题培优)及答案

中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 639=?=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC = 81 4 .动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM

中考数学锐角三角函数(大题培优 易错 难题)附详细答案

中考数学锐角三角函数(大题培优易错难题)附详细答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

中考数学锐角三角函数(大题培优)及详细答案

中考数学锐角三角函数(大题培优)及详细答案 一、锐角三角函数 1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1m).备用数据:, 【答案】(1)∠BPQ=30°; (2)该电线杆PQ的高度约为9m. 【解析】 试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可; (2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解. 试题解析:延长PQ交直线AB于点E, (1)∠BPQ=90°-60°=30°; (2)设PE=x米. 在直角△APE中,∠A=45°, 则AE=PE=x米; ∵∠PBE=60° ∴∠BPE=30° 在直角△BPE中,33 米, ∵AB=AE-BE=6米, 则3 , 解得:3

则BE=(33+3)米. 在直角△BEQ中,QE= 3 3 BE= 3 3 (33+3)=(3+3)米. ∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米). 答:电线杆PQ的高度约9米. 考点:解直角三角形的应用-仰角俯角问题. 2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7). 【答案】32.4米. 【解析】 试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解. 试题解析:如图,过点B作BE⊥CD于点E, 根据题意,∠DBE=45°,∠CBE=30°. ∵AB⊥AC,CD⊥AC, ∴四边形ABEC为矩形, ∴CE=AB=12m, 在Rt△CBE中,cot∠CBE=BE CE , ∴33 在Rt△BDE中,由∠DBE=45°,得3 ∴CD=CE+DE=123)≈32.4.答:楼房CD的高度约为32.4m.

锐角三角函数学而思培优

第九讲 锐角三角函数 板块一 锐角三角函数 【例1】⑴(2010年人大附统练)如图,在ABC △中,AB AC =,45A =?∠,AC 的垂直平分线分别交AB 、 AC 于D 、E 两点,连接CD ,如果1AD =,那么tan BCD =∠ 。 ⑵(2007海淀二模)如图,四边形ABCD 、A 1B 1BA 、…、A 5B 5B 4A 4都是边长为1的小正方形。已知 ∠ACB =α,∠A 1CB 1=α1,…,∠A 5CB 5=α5。则tanα·tanα1+tanα1·tanα2+…+tanα4·tanα5的值 为( ) A .1 B .5 C .45 D .56 ⑶(2010年济宁市)如图,是一张宽m 的矩形台球桌ABCD ,一 球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点。如果MC n =,CMN α∠=。那么P 点与B 点的距离为 。 【例2】⑴(2010年人大附统练)已知ABC △,90C =?∠,设sin A m =,当A ∠是最小的内角时,m 的 取值范围是( ) A .1 02 m << B .02m << C .0m < D .0m << B 5 B 4 B 3 B 2B 1 A 5A 4A 3A 2A 1B A C D E D C B A B N

12?5? D C B A ⑵(十一学校2009年初三数学学习能力测试)已知1 sin cos 8 αα?=,且4590α<<°°,则 cos sin αα-的值是( ) A B . C . 34 D . ⑶(北京二中分校2009学年度第一学期初三质量检测)因为1sin 302= °,1 sin 2102 =-°,所以 ()sin 210sin 18030sin 30=+=-°°°° ;因为sin 452= ° ,sin 2252 =°,所以 ()sin 225sin 18045sin 45=+=-°°°°;由此猜想并推理知:一般地,当α为锐角时,有()sin 180sin αα+=-°。由此可知sin 240=°( ) A .1 2 - B . C . D . 板块二 解直角三角形及应用 【例3】(2009浙江台州)如图,有一段斜坡BC 长为10米,坡角 12CBD ∠=?,为方便残疾人的轮椅车通行,现准备把 坡角降为5?。 ⑴求坡高CD ; ⑵求斜坡新起点A 与原起点B 的距离(精确到0.1米) (参考数据:sin120.21cos120.98tan50.09?≈?≈?≈,,) 【例4】面积专题: 题源:(2010年人大附统练)如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为 α,则它们重叠部分(图中阴影部分)的面积为( ) A . 1sin α B .1 cos α C .sin α D .1

锐角三角函数培优题型分类(答案版)

锐角三角函数培优-题型分类 【考点】待定系数法求一次函数解析式;锐角三角函数的定义.1.(2009?牡丹江二模)直线y=kx﹣4与y轴相交所成锐角的正切值为,则k 的值为() A.B.2 C.±2 D. 【分析】首先确定直线y=kx﹣4与y轴和x轴的交点,然后利用直线y=kx﹣4与y轴相交所成锐角的正切值为这一条件求出k的值. 【解答】解:由直线的解析式可知直线与y轴的交点为(0,﹣4),即直线y=kx ﹣4与y轴相交所成锐角的邻边为|﹣4|=4,与x轴的交点为y=0时,x=, ∵直线y=kx﹣4与y轴相交所成锐角的正切值为, 即||=4×,k=±2. 故选C. 【考点】锐角三角函数的定义;三角形中位线定理. 2.(1998?台州)如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,若cot∠BCD=3,则tanA=() A.B.1 C.D. 【分析】若想利用cot∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ABC的中位线,可分别得到所求的角的正切值相关的线段的比. 【解答】解:过B作BE∥AC交CD于E. ∵AB=BD, ∴E是CD中点, ∴AC=2BE, ∵AC⊥BC,

∴BE⊥BC,∠CBE=90°. ∴BE∥AC. 又∵cot∠BCD=3,设BE=x,则BC=3x,AC=2x, ∴tanA===,故选A. 【考点3】锐角三角函数的定义. 3.将一副直角三角板中的两块按如图摆放,连接AC,则tan∠DAC的值为() A.B.C.D. 【分析】欲求∠DAC的正切值,需将此角构造到一个直角三角形中. 过C作CE⊥AD于E,设CD=BD=1,然后分别表示出AD、CE、DE的值,进而可在Rt△ACE中,求得∠DAC的正切值. 【解答】解:如图,过C作CE⊥AD于E. ∵∠BDC=90°,∠DBC=∠DCB=45°, ∴BD=DC, 设CD=BD=1, 在Rt△ABD中,∠BAD=30°,则AD=2. 在Rt△EDC中,∠CDE=∠BAD=30°,CD=1, 则CE=,DE=. ∴tan∠DAC===.

锐角三角函数培优讲义

讲义编号:组长签字:签字日期:

2、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。 3、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 4、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 、 5 5 B 、 25 5 C 、12 D 、2 5、如图(3),在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =, 32AB =,则tan BCD ∠的值为( ) A 、2 B 、 2 2 C 、 63 D 、33 6、如图(5),A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为( ) A 、1 2 B 、13 C 、14 D 、 24

7、如图(6),菱形ABCD的边长为10cm,DE⊥AB,3 A ,则这个菱 sin 5 形的面积= cm2。 8、如图,在Rt△ABC中,∠C=90°,sinB=3 ,点D在BC边上,且 5 ∠ADC=45°,DC=6,求∠BAD的正切值。 9、如图,在正方形ABCD中,M为AD的中点,E为AB上一点,且BE=3AE,求sin∠ECM。 10、如图,在梯形ABCD中,AB∥DC,∠BCD=90°,AB=1,BC=2, tan∠ADC=2。 (1)求证:DC=BC (2)E是梯形ABCD内一点,F是梯形ABCD外一点,且∠EDC=∠FBC,DE=BF,是判断△ECF的形状,并证明你的结论;

(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE 的值。 考点三:利用特殊角的三角函数值进行计算 1、计算: (1)019(π4)sin 302 --+-- (2)201()(32)2sin 3032 ---+?+- (3)1 0182sin 45(2)3-?? -+-π- ??? (4)2sin45°+3cos30°-2 3 2、∠B 是Rt△ABC 中的一个内角,且sinB=23,则cos 2 B =( ) A 、2 1 B 、 23 C 、22 D 、2 1 3、在△ABC 中,a =3,b =4,∠C=60°,则△ABC 的面积为________。 4、Rt△ABC 中,∠C=90°,c =12,tanB=3 3 ,则△ABC 的面积为( ) A 、363 B 、183 C 、16 D 、18

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>co sα;(3)若co sα>,则α<60°;(4)。正确得有( )A 、(1) (2) (3)(4) B 、(2)(3)(4) C 、(1)(3)(4) D 、(1)(2)(3) 变式: 1、下列各式中,不正确得就就是( ) A. B 、 C 、 D 、tan 45°>sin 45° 2、已知∠A满足等式,那么∠A 得取值范围就就是( ) A 、0°<∠A ≤90° B 、90°<∠A<180° C 、0°≤∠A <90° D、0°≤∠A ≤90° 3、α就就是锐角,若sin α=cos150,则α= 4。若sin53018\=0、8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α=,且45°<α<90°,则COS α-si nα得值为( ) A 、 B、 C、 D、 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确得就就是( ) A.sinA +c osB=s inC B 、si nA +sinB=sinC C 、 D 、 2、已知si nα+cos α=m ,sin α×cos α=n,则m ,n 得关系式( ) A.m=n B、m=2n+1 C 、 D 、 题型:求三角函数值 例:如图,菱形得边长为5,AC 、BD 相交于点O,AC=6,若,则下列式子正确得就就是( ) A.sin α= B 、cos α= C 、t an α= D 、cot α= 变式:1、设0°<α<45°,sin αco sα=,则s in α= 2、已知si nα-co sα=,0°<α<180°,则tan α得值就就是( ) B 、 C 、 D、 3、如图,在正方形ABCD 中,M为AD 得中点,E 为AB 上一点,且BE=3A E,求sin ∠ECM 。 4、如图,在矩形中,就就是边上得点,,,垂足为,连接。 (1)求证:;(2)如果,求得值。 题型:三角函数值得计算(1) 例:计算:= 变式:1、计算:= 2、计算:0000002000027tan 63tan 60cot 360 sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值得计算(2) 例:化简根式:= 变式:1、若,化简下式: αααααα αsin )90sin()90cos(21tan tan 21sin cos 21002+----+--= 2、已知tanA=3,且∠A 为锐角,则cotA -= 3、已知为锐角,,求得值。 题型:三角函数与一元二次方程得综合题(1) 例:在Rt △ABC 中,∠C=90°,斜边=5,两直角边得长a,b 就就是关于x 得一元二次方程得两个实数根,求Rt △ABC 中较小锐角得正弦值。 变式:1、若就就是得三边,,且方程有两个相等得实数根,求得值。 2、已知a,b,c 为△A BC 中三个内角∠A,∠B,∠C 得对边。当m >0时,关于x 得方程有两个相等得实数根,且。试判断△ABC 得形状、

锐角三角函数培优题目

1锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin2α+cos2α=1; 商数关系:tgα=??cossin,ctgα=??sincos; 倒数关系:tgαctgα=1. 【例题求解】 【例1】已知在△ABC中,∠A、∠B是锐角,且sinA=135,tanB=2,AB=29cm,则S△ABC = 思路点拨过C作CD⊥AB于D,这样由三角函数定义得到线段的比, sinA=135?ACCD,tanB=2?BDCD,设CD=5m,AC=13m,CD=2n,BD=n,解题的关键是求出m、n的值. 注:设△ABC中,a、b、c为∠A、∠B、∠C的对边,R为△ABC外接圆的半径, 不难证明:与锐角三角函数相关的几个重要结论: (1) S△ABC=CabBacAbcsin21sin21sin21??; (2)RCcBbAa2sinsinsin???.

【例2】在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=( ) A 32? B32? C.0.3 D23? 思路点拨由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换. 2【例3】如图,已知△ABC是等腰直角三角形,∠ACB=90°,过BC的中点D 作DE⊥AB于E,连结CE,求sin∠ACE的值. 思路点拨作垂线把∠ACE变成直角三角形的一个锐角,将问题转化成求线段的比.

初三数学锐角三角函数的专项培优练习题及答案

初三数学锐角三角函数的专项培优练习题及答案 一、锐角三角函数 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得DC= 3 3 3,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=333∴3 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE 5032 35 答:从无人机'A 上看目标D 2 35

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm. (1)求∠CAO'的度数. (2)显示屏的顶部B'比原来升高了多少? (3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度? 【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°. 【解析】 试题分析:(1)通过解直角三角形即可得到结果; (2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得 BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果; (3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°. 试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm, ∴sin∠CAO′=, ∴∠CAO′=30°; (2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,

相关主题
文本预览
相关文档 最新文档