当前位置:文档之家› 人教【数学】数学锐角三角函数的专项培优易错试卷练习题附答案

人教【数学】数学锐角三角函数的专项培优易错试卷练习题附答案

人教【数学】数学锐角三角函数的专项培优易错试卷练习题附答案
人教【数学】数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在

BAC 的平分线上?

(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;

(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.

【答案】(1)4s t =;(2)PEGO S 四边形2

31568

8

t t =-+

+ ,(05)t <<;(3)5

2t =时,

PEGO S 四边形取得最大值;(4)16

5

t =

时,OE OQ ⊥. 【解析】 【分析】

(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.

(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.

(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ

OC OG

=,由此构建方程即可解决问题. 【详解】

(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

∴∠BAC=∠DCO , ∵∠DOC=∠ACB , ∴△DOC ∽△BCA , ∴AC AB BC

OC CD OD ==, ∴

61083CD OD

==, ∴CD=5(cm ),OD=4(cm ), ∵PB=t ,PE ⊥AB , 易知:PE=

34

t ,BE=54t ,

当点E 在∠BAC 的平分线上时, ∵EP ⊥AB ,EC ⊥AC , ∴PE=EC ,

34

t=8-5

4t ,

∴t=4.

∴当t 为4秒时,点E 在∠BAC 的平分线上. (2)如图,连接OE ,PC .

S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC ) =

1414153154338838252

524524t t t t t ?????????

?-?+??-+?-?-??- ? ? ? ??????????? =2

815

16(05)3

3

t t t -+

+<<. (3)存在.

∵2

8568

(05)323

S t t ??=--+<< ???,

∴t=

52

时,四边形OPEG 的面积最大,最大值为683.

(4)存在.如图,连接OQ . ∵OE ⊥OQ ,

∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,

∴tan∠EOC=tan∠QOG,∴EC GQ

OC OG

=,

3

5

8

5

4

4

34

5

t

t

t

-

=

-

整理得:5t2-66t+160=0,

解得

16

5

t=或10(舍弃)

∴当16

5

t=秒时,OE⊥OQ.

【点睛】

本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.

2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C 处,求该船与B港口之间的距离即CB的长(结果保留根号).

【答案】.

【解析】

试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.

试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,

∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,

∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,

∴BC=.故该船与B港口之间的距离CB的长为海里.

考点:解直角三角形的应用-方向角问题.

3.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.

(1)求证:PA是☉O的切线;

(2)若=,且OC=4,求PA的长和tan D的值.

【答案】(1)证明见解析;(2)PA =3,tan D=.

【解析】

试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;

(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.

试题解析:(1)连接OB,则OA=OB,

∵OP⊥AB,∴AC=BC,

∴OP是AB的垂直平分线,∴PA=PB,

在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)

∴∠PBO=∠PAO,PB=PA,

∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,

∴PA是⊙O的切线;

(2)连接BE,

∵,且OC=4,∴AC=6,∴AB=12,

在Rt△ACO中,由勾股定理得:AO=,

∴AE=2OA=4,OB=OA=2,

在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,

在Rt△APO中,由勾股定理得:AP==3.

易证,所以,解得,

则,在中,.

考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.

4.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.

(1)若点P在线CD上,如图1,

①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;

(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求

DP长的思路.(可以不写出计算结果)

【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或

【解析】

试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,

AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.

(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°

∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,

∴.

试题解析:(1)①

法一:轴对称作法,判断:AH=PH,AH⊥PH

证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,

∠HPC=∠HCP

BD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,

∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.

法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,

∠APH=∠ADH=45°,∴△APH等腰Rt△.

(2)法一:轴对称作法

考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,

∴∠DAH=17°

∴∠DCH=17°.设DP=x,则.

由得:,∴.即PD=

法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,

∴.

考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆

5.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.

(1)求证:AE=CE

(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.

(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=3

4

,DE=

39

4

时,N

为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.

【答案】(1)详见解析;(2)详见解析;(3)

4013 NL

【解析】

【分析】

(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.

(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.

(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=4

3

a,再由相交弦定理

得到GH?HF=BH?AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN?LF=AL?BL,进而求出LN的长.

【详解】

解:

(1)证明:如图1中,连接AD.

∵AB是直径,

∴∠ADB=∠ADC=90°,

∵EA、ED是⊙O的切线,

∴EA=ED,

∴∠EAD=∠EDA,

∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,

∴ED=EC,

∴AE=EC.

(2)证明:如图2中,连接AD.

∵AC是切线,AB是直径,

∴∠BAC=∠ADB=90°,

∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,

∵∠EDC=∠C,

∴∠BAD=∠EDC,

∵∠DBF=∠DAF,

∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.

(3)解:如图3中,

由(1)可知,DE=AE=EC,∵DE=39

4

∴AC=39

2

∵tan∠ABC=3

4

AC

AB

39 32 4AB =,

∴AB=26,

∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=4

3

a,∵GH?HF=BH?AH,

∴4a2=4

3a(26﹣

4

3

a),

∴a=6,

∴FH=12,BH=8,AH=18,

∵GH=HF,

∴AB⊥GF,

∴∠AHG=90°,

∵∠NFH+∠CAF=∠AHG,

∴∠NFH+∠CAF=90°,

∵∠NFH+∠HLF=90°,

∴∠HLF=∠CAF,

∵AC∥FG,

∴∠CAF=∠AFH,

∴∠HLF=∠AFH,

∵∠FHL=∠AHF,

∴△HFL∽△HAF,

∴FH2=HL?HA,

∴122=HL?18,

∴HL=8,

∴AL

=10,BL=16,FL=

∵LN?LF=AL?BL,

LN=10?16,

∴LN

【点睛】

本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相

交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.

6.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .

(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)

(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )

【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm . 【解析】 【分析】

(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .

(2)用扇形面积公式即可求得. 【详解】

(1)在Rt △ODE 中,15cm DE =,67ODE ∠=?. ∵cos DE

ODE DO

∠=, ∴15

0.39

OD ≈

, ∴()384614245cm OA OD AD =-≈-≈.

., 答:半径OA 的长约为24.5cm . (2)∵67ODE ∠=?, ∴157BOC ∠=?, ∴2

360

BOC

n r S π=

扇形 2

157 3.1424.52360

??≈

()2822cm ≈.

答:扇形BOC 的面积约为2822cm . 【点睛】

此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.

7.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为

60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)

【答案】工件如图摆放时的高度约为61.9cm.

【解析】

【分析】

过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.

【详解】

解:如图,过点A作AP⊥CD于点P,交BC于点Q,

∵∠CQP=∠AQB,∠CPQ=∠B=90°,

∴∠A=∠C=60°,

在△ABQ中,∵AQ=(cm),

BQ=AB tan A=20tan60°=20(cm),

∴CQ=BC﹣BQ=60﹣20(cm),

在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,

∴AP =AQ+PQ=40+30(﹣1)≈61.9(cm),

答:工件如图摆放时的高度约为61.9cm.

【点睛】

本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.

8.如图①,在菱形ABCD 中,60B ?∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作

//PN AC ,且3

PN PQ =

,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S . (1)用含t 的代数式表示线段PQ 的长. (2)当点M 落在边BC 上时,求t 的值. (3)当0t 1<<时,求S 与t 之间的函数关系式,

(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值

【答案】(1)23PQ t =;(2)

45

;(3)2193403163t t -+-;(4) 2

3t = 或

8

7

t = . 【解析】 【分析】

(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;

(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得3

,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤45时,3t ,3

,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当

4

5

<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,33(5t-4),S=矩形PQMN 的面积-2△EFN 的面积,即可得出结果;

(4)分两种情况:当0<t≤

4

5

时,△ACD 是等边三角形,AC=AD=4,得出OA=2,OG 是△MNH 的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可;

当4

5

<t≤2时,由平行线得出△OEF∽△MEQ,得出

EF OF

EQ MQ

=,即

2

3

3

EF t

t

EF t

-

=

+

解得EF=

2

4

3

2

3

2t t

t

-

-

,得出EQ=

2

33

2

2

3

4

t t

t

t

-

-

+,由三角形面积关系得出方程,解方

程即可.

【详解】

(1)∵在菱形ABCD中,∠B=60°,

∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,

∵PQ⊥AC,

∴△APQ是等腰三角形,

∴PF=QF,PF=PA?sin60°=2t×3

2

=3t,

∴PQ=23t;

(2)当点M落在边BC上时,如图2所示:

由题意得:△PDN是等边三角形,

∴PD=PN,

∵PN=3PQ=3×23t=3t,

∴PD=3t,

∵PA+PD=AD,

即2t+3t=4,

解得:t=4

5

(3)当0<t≤4

5

时,如图1所示:

PQ=23t,PN=

3

2

PQ=

3

2

×23t=3t,

S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;

当4

5

<t<1时,如图3所示:

∵△PDN是等边三角形,

∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,

∴NE=PN-PE=3t-(4-2t)=5t-4,

∴FN=3NE=3(5t-4),

∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×1

2

×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;

(4)分两种情况:当0<t≤4

5

时,如图4所示:

∵△ACD是等边三角形,

∴AC=AD=4,

∵O是AC的中点,

∴OA=2,OG是△MNH的中位线,

∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,

∴△MNH的面积=1

2MN×NH=

1

2

3(8t-4)=

1

3

3t2,

解得:t=2

3

当4

5

<t≤2时,如图5所示:

∵AC ∥QM , ∴△OEF ∽△MEQ ,

∴EF OF EQ MQ =233t

t EF t -=+, 解得:2332t t -,

∴2

332

34t t t t --+,

∴△MEQ 的面积=12×3t×2

3322

34t t t t -+)=1332,

解得:t=

87

; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为

23

或87

. 【点睛】

本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.

9.已知Rt △ABC ,∠BAC =90°,点D 是BC 中点,AD =AC ,BC =3A ,D 两点作⊙O ,交AB 于点E , (1)求弦AD 的长;

(2)如图1,当圆心O 在AB 上且点M 是⊙O 上一动点,连接DM 交AB 于点N ,求当ON 等于多少时,三点D 、E 、M 组成的三角形是等腰三角形?

(3)如图2,当圆心O 不在AB 上且动圆⊙O 与DB 相交于点Q 时,过D 作DH ⊥AB (垂足为H )并交⊙O 于点P ,问:当⊙O 变动时DP ﹣DQ 的值变不变?若不变,请求出其值;若变化,请说明理由.

【答案】(1)23

(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形

(3)不变,理由见解析

【解析】

【分析】

(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;

(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后

根据含30°的直角三角形三边的关系得DN=1

2

3

3

当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,

∠DEA=60°,DE=2,于是OE=DE=2,OH=1,

又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到

∠DNO=45°,根据等腰直角三角形的性质得到33;

(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得

∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,3DP-DQ的值.

【详解】

解:(1)∵∠BAC=90°,点D是BC中点,BC=3

∴AD=1

2

BC=3

(2)连DE、ME,如图,∵DM>DE,

当ED和EM为等腰三角形EDM的两腰,

∴OE⊥DM,

又∵AD=AC,

∴△ADC为等边三角形,

∴∠CAD=60°,

∴∠DAO=30°,

∴∠DON=60°,

在Rt△ADN中,DN=1

2

AD3,

在Rt△ODN中,ON=

3

3

DN=1,

∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形;

当MD=ME,DE为底边,如图3,作DH⊥AE,

∵AD=23,∠DAE=30°,

∴DH=3,∠DEA=60°,DE=2,

∴△ODE为等边三角形,

∴OE=DE=2,OH=1,

∵∠M=∠DAE=30°,

而MD=ME,

∴∠MDE=75°,

∴∠ADM=90°﹣75°=15°,

∴∠DNO=45°,

∴△NDH为等腰直角三角形,

∴NH=DH=3,

∴ON=3﹣1;

综上所述,当ON等于1或3﹣1时,三点D、E、M组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=23.理由如下:

连AP、AQ,如图2,

∵∠C=∠CAD=60°,

而DP⊥AB,

∴AC∥DP,

∴∠PDB=∠C=60°,

又∵∠PAQ=∠PDB,

∴∠PAQ=60°,

∴∠CAQ=∠PAD,

∵AC=AD,∠AQC=∠P,

∴△AQC≌△APD,

∴DP=CQ,

∴DP﹣DQ=CQ﹣DQ=CD=23.

【点睛】

本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相

等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.

10.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E

(1)判断直线PD是否为⊙O的切线,并说明理由;

(2)如果∠BED=60°,PD=3,求PA的长;

(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.

【答案】(1)证明见解析;(2)1;(3)证明见解析.

【解析】

【分析】

(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;

(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;

(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.

【详解】

(1)直线PD为⊙O的切线,

理由如下:

如图1,连接OD,

∵AB是圆O的直径,

∴∠ADB=90°,

∴∠ADO+∠BDO=90°,

又∵DO=BO,

∴∠BDO=∠PBD,

∵∠PDA=∠PBD,

∴∠BDO=∠PDA,

∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,

∴直线PD为⊙O的切线;

(2)∵BE是⊙O的切线,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

∵PD为⊙O的切线,

∴∠PDO=90°,

在Rt△PDO中,∠P=30°,

∴0 tan30

OD

PD

=,解得OD=1,

∴PO,

∴PA=PO﹣AO=2﹣1=1;

(3)如图2,

依题意得:∠ADF=∠PDA,∠PAD=∠DAF,

∵∠PDA=∠PBD∠ADF=∠ABF,

∴∠ADF=∠PDA=∠PBD=∠ABF,

∵AB是圆O的直径,

∴∠ADB=90°,

设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,

∵四边形AFBD内接于⊙O,

∴∠DAF+∠DBF=180°,

即90°+x+2x=180°,解得x=30°,

∴∠ADF=∠PDA=∠PBD=∠ABF=30°,

∵BE、ED是⊙O的切线,

∴DE=BE,∠EBA=90°,

∴∠DBE=60°,∴△BDE是等边三角形,

∴BD=DE=BE,

又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,

∴BD=DF=BF,

∴DE=BE=DF=BF,

∴四边形DFBE为菱形.

【点睛】

本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.

相关主题
文本预览
相关文档 最新文档