当前位置:文档之家› 反应注射成型技术

反应注射成型技术

反应注射成型技术
反应注射成型技术

反应注射成型技术

反应注射成型起源于聚氨酯塑料。随着工艺技术的进步,该工艺也扩展到了多种材料的加工中。与此同时,为了拓宽RIM技术的应用领域,特别是在汽车行业中的应用,该工艺还引入了纤维增强技术。

RIM简介

反应注射成型(简称“RIM”)是指将具有高化学活性、相对分子质量低的双组分材料经撞击混合后,在常温低压下注入密闭的模具内,完成聚合、交联和固化等化学反应并形成制品的工艺过程。这种将聚合反应与注射成型相结合的新工艺,具有物料混合效率高、流动性好、原料配制灵活、生产周期短及成本低的特点,适用于大型厚壁制品生产,故而受到了世界各国的重视。

RIM最早仅用于聚氨酯材料,随着工艺技术的进步,RIM也可应用于多种材料(如环氧、尼龙、聚脲及聚环戊二烯等)的加工。用于橡胶与金属成型的RIM工艺是当前研究的热点。为了拓宽RIM的应用领域,提高RIM制品的刚性与强度,使之成为结构制品,RIM技术得到了进一步的发展,出现了专门用于增强型制品成型的增强反应注射成型(RRIM)和专门用于结构制件成型的结构反应注射成型(SRIM)技术等。RRIM和SRIM成型工艺原理与RIM 相同,不同之处主要在于纤维增强复合材料制品的制备。目前,典型的RIM制品有汽车保险杠、挡泥板、车体板、卡车货箱、卡车中门和后门组件等大型制品。它们的产品质量比SMC产品好,生产速度更快,所需二次加工量更小。

RIM成型工艺

1.工艺过程

RIM工艺过程为:单体或预聚物以液体状态经计量泵以一定的配比进入混合头进行混合。混合物注入模具后,在模具内快速反应并交联固化,脱模后即为RIM制品。这一过程可简化为:贮存→计量→混合→充模→固化→顶出→后处理。

2.工艺控制

(1)贮存。RIM工艺所用的两组分原液通常在一定温度下分别贮存在2个贮存器中,贮存器一般为压力容器。在不成型时,原液通常在0.2~0.3 MPa的低压下,在贮存器、换热器和混合头中不停地循环。对聚氨酯而言,原液温度一般为20~40℃,温度控制精度为±1℃。(2)计量。两组分原液的计量一般由液压系统来完成,液压系统由泵、阀及辅件(控制液体物料的管路系统与控制分配缸工作的油路系统)所组成。注射时还需经过高低压转换装置将压力转换为注射所需的压力。原液用液压定量泵进行计量输出,要求计量精度至少为±1.5%,最好控制在±1%。

(3)混合。在RIM制品成型中,产品质量的好坏很大程度上取决于混合头的混合质量,生产能力则完全取决于混合头的混合质量。一般采用的压力为10.34~20.68MPa,在此压力范围内能获得较佳的混合效果。

(4)充模。反应注射物料充模的特点是料流的速度很高。为此,要求原液的粘度不能过高,例如,聚氨酯混合料充模时的粘度为0.1Pa.s左右。

当物料体系及模具确定之后。重要的工艺参数只有2个,即充模时间和原料温度。聚氨酯物料的初始温度不得超过90℃,型腔内的平均流速一般不应超过0.5m/s。

(5)固化。聚氨酯双组分混合料在注入模腔后具有很高的反应性,可在很短的时间内完成固

化定型。但由于塑料的导热性差,大量的反应热不能及时散发,故而使成型物内部温度远高于表层温度,致使成型物的固化从内向外进行。为防止型腔内的温度过高(不能高于树脂的热分解温度),应该充分发挥模具的换热功能来散发热量。

反应注射模内的固化时间,主要由成型物料的配方和制品尺寸决定。另外,反应注射制品从模内脱出后还需要进行热处理。热处理有两个作用:一是补充固化,二是涂漆后的烘烤,以便在制品表面形成牢固的保护膜或装饰膜。

(6)成型制品缺陷产生的原因及解决方法。RIM制品缺陷产生的原因及解决办法见表1。

表1 RIM成型常见制品缺陷和对策

RIM模具与制品设计

1.模具设计

(1)浇注系统。浇注系统又称“注入系统”,由浇口、流道和排气孔组成。在进行RIM模具设计时,浇口形状与高度取决于成型制品的壁厚与型腔流量。大容量的模具通常宜采用直棒状浇口,而小容量模具则宜采用扇形浇口。

主流道的位置应直接设在模具上,但应注意,在确定流道位置时,务必使物料从制品的横截面的最低处进入型腔。排气孔的位置则应设在物料流动的末端,以便注射时将空气赶出型腔。(2)模温控制系统。这里仅以RIM金属模具为例加以说明。模具温度的控制方法通常是在模内埋设套管,通入水进行加热或冷却。金属模具厚度应为50mm,而套管间距要因加工树脂不同而有所不同。通常,聚氨酯RIM的模温为40~80℃,模温控制精度为±4℃,最好为±1℃。套管间距为80~100mm,冷却孔与模具腔壁之间的距离应为9.5mm。

(3)分型面。对分型面的位置设置有一总体要求,就是将分型面位置设在加工制件轮廓的附近稍下方,这样可使正在膨胀并充满型腔的物料将型腔内的残留空气排至模外。

2.制品设计

(1)制品厚度。与常规注射制品相同,在进行RIM制品的壁厚设计时,同样应避免壁厚过厚或过薄。以聚氨酯泡沫塑料RIM制品为例,常规壁厚应控制在6.35~12.7mm,当壁厚大于12.7mm或小于3.17mm时,则应采取适当的补救措施。

(2)加强筋。使用加强筋的目的是提高制品的刚性与强度。应选用细而长的加强筋,避免选用粗而短的加强筋。加强筋的设置应沿物料流动方面为宜,这样不会影响物料流动过程中的气体排放。

(3)脱模斜度。RIM制品的脱模斜度应选择2°,太大或太小都不利于制品脱模。

(4)圆角。RIM制品的内部圆角半径不得小于3.175mm,外部圆角半径不得小于1.578mm。(5)凸台。凸台应采用2°的脱模斜度并沿制件周边或内筋布置,若凸台的设计高度超过6.57mm,则必须由撑板相辅。在导入孔中成型,必须准确确定定位螺纹和自攻螺纹的位置。凸台和导入孔的尺寸对于脱模强度影响很大,应加以注意。

多种多样的RIM技术

1.聚氨酯RIM

聚氨酯RIM所用原料与通用型聚氨酯原料不同的是:要求液体原料粘度低、流动性好及反应活性高,而且原料应配制成A(多元醇)、B(二异氰酯)两组分。其工艺过程包括:将A、B两组分原料分别置于注射机的原料罐中,并使它们在N2气氛中、于一定温度下保持适宜的粘度(1Pa·s以下)和反应活性;用定量泵将两组分原料按一定比例压入混合器并注入密封的模具中;混合物在模具内迅速聚合,固化成型。在这一过程中,从原料压出到充满模腔只需1~4s,而完整的生产周期则为30~120s。

2.聚氨酯RRIM

聚氨酯RRIM工艺所用的双组分是多元醇和异氰酸酯。多元醇为聚醚型,相对分子质量为1?800~2?400,官能度为2~3;异氰酸酯一般为二苯基甲烷二异氰酸酯(MDI)或多异氰酸酯及其异构体的混合物,官能度为2~7。RRIM的增强材料主要有两种,即短切增强纤维和磨碎增强纤维。纤维的长度一般为1.5~3.0mm,这种长度既能保证增强效果,又便于通过注射系统。纤维长度的分散性越大,则增强效果越差。RRIM制品中的增强纤维含量(质量分数)一般在20%以下,对于特殊要求的高强度制品,增强纤维的含量可达50%。

3.环氧树脂RIM

环氧树脂是继聚氨酯之后开发的又一热固性RIM品种。双组分环氧树脂RIM工艺过程与聚氨酯RIM大致相同。环氧树脂与固化剂配比及工艺条件见表2。

表2 环氧树脂配方及工艺条件

环氧树脂RIM制品的拉伸强度和弯曲模量高,线膨胀系数低,并具有优良的耐化学性和较高的耐热性(与聚氨酯和尼龙相比)。为了改善环氧树脂的冲击强度,可在原料中添加带有异氰酸酯基、相对分子质量为4?000的聚乙二醇预聚物。

另外,为进一步提高力学性能,还可加入各种增强材料,如各种纤维、须状粉末、片状粉末、微珠料及长纤维等,使之成为RRIM制品,它们在汽车工业的应用中极具竞争力。

4.尼龙6 RIM

尼龙6 RIM所用的原料包括聚醚多元醇和催化剂制成的预聚物(A组分)及己内酰胺(B组分)。加工时,先将己内酰胺加入原料罐中,控制温度为74~85℃,再加入催化剂,封闭容器,强力搅拌使催化剂溶于己内酰胺中,混合物在N2下脱气15min。再将己内酰胺和预聚物混合,混合温度74~85℃,搅拌均匀后脱气。随后在压力作用下,两种液体组分经过混合器进入模具,固化成型。由于预聚物和己内酰胺发生了嵌段共聚反应,因而所得制品柔性好,冲击强度高。

添加了增强材料的尼龙6 RRIM制品的刚性更高,线膨胀系数较低。尼龙6 RIM和RRIM制品用途较广,主要用于汽车工业,如挡泥板、门板、发动机罩和防撞盖等。

5.双环戊二烯(DCPD)RIM

DCPD RIM的原料主要包括DCPD、催化剂、活化剂、稳定剂、调节剂、填料、抗氧剂、弹性体、发泡剂、阻燃剂及成核剂等。

在DCPD RIM体系中,一般将各种原料按配方要求分为A、B两组分,其中A组分包括DCPD、催化剂、稳定剂及其他助剂等。B组分包括DCPD、活化剂、调节剂及其他助剂等。

加工时,经准确计量的A、B两组分在混合头内混合均匀后,被注入密封模具内,在模具中发生快速聚合反应,随之固化成型。需要特别注意的是,在模具未充满前,由聚合反应时间调节剂来控制化学反应。充满模具后,大约在10s内完成聚合而成型。制品一般不需要经过后熟化过程。

6.聚脲RIM

聚脲RIM使用的是一种含内脱模剂的自脱模物料体系,成型时由端氨基聚醚、胺扩链剂与端基为异氰酸基的预聚物(MDI)反应制成聚脲。该工艺具有很多优良特性:由于胺基和异氰酸基的反应活性高,因而不需要催化剂;反应物料注入模腔时粘度大,充模时减少了涡流,因此带入空气少,制品的废品率低;物料入模后1~2s内即发生凝胶,在模具内仅需停留20s;脱模时物料不黏附模腔,选用内脱模剂体系受限制较少;加入增强玻璃纤维制备聚脲RRIM 制品时,对胺与异氰酸酯之间的反应亦无影响。

聚脲生成的整个反应过程中不需要催化剂,使得制品中无残存催化剂,故而聚脲RIM制品在高温下不发生降解,制品稳定性好。

端氨基聚醚、二胺扩链剂与MDI的反应速度很快。为使反应处于可控制状态,可用部分聚醚多元醇对MDI进行改性以制成半预聚物,从而降低物料之间的反应速度,减缓反应物料的凝胶速度。同时,通过调节游离异氰酸基含量,还可制得具有不同弯曲弹性模量的聚脲RIM制品。陶氏化学公司的SPECTRIMTMHT系列聚脲的性能见表3。

表3 聚脲SPECTRIMTMHT系列性能

7.毡片模塑RIM

将增强纤维制成毡片,预先放置于模具中,然后,两组分低粘度液体经高压撞击混合并注入型腔。在型腔中,混合液体浸渍纤维毡片并反应形成制品,这种成型方法被称为“毡片模塑RIM(MM/RIM)”。ARIMA×1000是Ashland公司开发的MM/RIM 产品,其性能见表4。

表4 ARIMA×1000的性能

8.可变纤维反应注射成型(VFRIM)

MM/RIM技术是先将纤维铺设于模具型腔,然后再注入液态树脂。这种工艺的缺点是需要预制纤维毡,从而使工序变得复杂,提高了成本。另外由于铺纤维毡需要手工进行,也大大增加了劳动强度。基于此,又催生出了可变纤维反应注射成型(Variable fiber injection reaction injecction molding,VFRIM)。

这一技术由德国克劳斯玛菲公司与意大利Cannon—Technos公司在20世纪90年代开发。其重要特征是,先将纤维粗纱送入切碎机,切成分散的短纤维,然后再将短纤维送入L形混合头,与树脂发生混合,最后将混合物注入模具进行固化成型。

目前已经采用VFRIM技术生产的产品有汽车门板、坐垫托盘、保险杠、遮阳板、行李托盘及轻型货车箱板等。表5和表6分别是典型的低密度和高密度VFRIM制品与传统R1M制品的性能比较。从中可以看到,采用VFRIM技术生产的低密度制品的性能与传统的RIM制品

相当。而采用VFRIM技术生产的高密度制品较之RIM制品,则显示出了更好的性能。

表5 低密度VFRIM车门板与传统低密度RIM车门板的性能比较

表6 高密度VFRIM制品与传统高密度SRIM制品的性能比较

VFRIM技术的优点之一是,通过调节纤维切碎机,可以控制纤维的长度、密集程度和纤维粗纱的数量,从而控制纤维在整个制品中的分布。优点之二是成本大幅降低。纤维粗纱成本比用于传统SRIM技术的玻璃纤维毡低60%。由于减少了将玻璃纤维铺放入模具内的工序,成本也相应降低;在注入树脂/玻璃纤维混合物时,由于控制精确,可减少废料。这些综合因素使得整个生产成本降低,这是该技术的最主要优势。

VFRIM技术目前正在不断发展中,相信该技术将会在汽车部件制造业中发挥越来越重要的作用。

反应注射成型技术在聚氨酯材料合成中的研究与应用

反应注射成型技术在聚氨酯材料合成中的研究与应用 摘要:主要介绍反应型注射技术,以及在聚氨酯合成中的研究与应用,并对几种不同的类型的RIM-PU注射成型技术进行介绍 关键词:反应型注射聚氨酯自增强 1. 前言: 反应注射成型,简称RIM( Reaction Injection Molding),是将两种或两种以上具有反应性的液体组分在一定温度下注入模具型腔内,在其中直接生成聚合物的成型技术。即将聚合与成型加工一体化,或者说,直接从单体得到制品的“ 一步法注射技术”。和传统的热塑性注射成型(TIM)不同,RIM是单体在模具中聚合而形成固体聚合物,而TIM是聚合物在模具中冷却才成型。其它反应成型加工方法,如单体浇铸成型、热固性塑料的注射成型,虽然也是在形成部件的形状后完成聚合反应。而在RIM中,单体和模具的温度没有很大的不同,而是靠基体激烈撞击混合来活化反应。和各种聚合物加工方法相比RIM制品最节能,RIM 是目前聚合物加工领域中引人注目的新方向。 RIM技术可用于聚氨酯、硅橡胶、环氧树脂和尼龙的成型加工。RIM聚氨酯发展尤为迅速,现已用于制造汽车内饰件、机器外壳和家具等。汽车行业为了获得高模量的聚氨酯制品,又发展了增强反应注射成型(RRIM)。聚氨酯(PU) 反应注射成型(RIM) 近年来发展十分迅速,其主要原料有A料和B料。A料通常为低分子量聚酯或聚醚,有时也加入其他添加剂。B料为各种异氰酸酯,目前国内外常用二苯甲烷二异氰酸酯(MDI )或液化改性MDI (L—MDI)。反应注射成型聚氨醋( RIM—PU) 是70年代初聚合物加工领域中研制开发的一门新型交叉成型技术,它是由低粘度高活性的异氰酸酯和多元醇经高压碰撞混合,通过化学、物理等变化而成型的。它具有成型温度和压力低、能耗少、材料性能优良等优点,近年来发展和应用极为迅速。 2. RIM在聚氨酯方面的发展 聚氨酯RIM聚氨酯制品(RIM—PUR) 是世界上开发最早且首先达到实用

注射成型原理

1.塑料成型的种类: A注射成型:是塑料料先在注塑机的加热料筒中受热熔融,而后由往复式螺杆将熔体推挤到闭合模具的模腔中成型的一种方法。它不仅可在高生产率下制得高精度,高质量的制品,而且可加工的塑料品种多,产量大(约为塑料总量的1/3)和用途广,因此,注塑是塑料加工中重要成型方法之一。 B挤出成型:挤出是在挤出机中通过加热,加压而使塑料以流动状态连续通过口模成型的方法。一般用于板材。管材。单丝。扁丝。薄膜。电线电缆的包覆等的成型,用途广。产量高。因此,它是塑料加中重要成型方法之一。 C发泡成型:是指发泡材料中加入适当的发泡剂,产生多孔或泡沬制品的加方式发泡制品具有相对密度小,比强度高,原料用量少及隔音,隔热等伏点,发泡材料有pvc,pe和ps等。制品有:薄膜,板材,管材,和型材等。发泡可分为化学发泡和物理发泡。 D吹塑成型:吹(胀膜)塑(或称中空吹塑)是指借助流体(压缩空气)压力将闭合模中热的热塑性塑料型坯或片材吹胀成为中空制品的一种成型方法。用这种方法生产的塑料容器。如各种瓶子,方,圆或扁桶,汽油箱等已得到广泛应用,新开发的各种工业零部件和日用制品,如双层壁箱形制品,l-环形大圆桶。码垛板。冲浪板。座椅靠背及课桌,以及汽车用的前阻流板。皮带罩。仪表板。空调通风管等,已在实践中应用,所加工的材料从是日用塑料向工程塑料方面发展。现在吹塑法已成为塑料加工中重要的成型方法之一。但吹塑过程的基本步骤是:1.熔化材料。2.将熔融树脂形成管状物或型坯。3.将中空型坯吹塑模中熔封。4.将模内型坯吹胀。5.冷却吹塑制品。6.从模中取出制品。7.修整。 E注射吹塑成型:注射吹塑是一种吹塑方法。先用注塑法将塑料制成有底型坯,然后将它移至吹塑模中吹制成中空制品。这种方法可生产用于日用品。化妆品。医药。食品等的包装容器。但其容积不应超过1l。常用的塑料有聚乙烯。聚苯乙烯和聚氯乙烯等。 F挤出吹塑成型:挤出吹塑是一种吹塑方法。与注射吹塑不同。它的型坯是用挤出法制造的。

LSR(注射成型)最新技术详解-精

注射成型LSR的最新进展 在这一制品中,,用作滤 图1热塑性塑料/LSR包覆成型的一个应用是水龙头滤网 包覆成型的一个应用是水龙头滤网。。在这一制品中 网的LSR被包覆成型到尼龙66上 得益于材料、设备和工艺的改进与革新,液态硅橡胶(LSR)逐渐摆脱了小众需求的现状,扩大了应用领域。其中,大型、微型和发泡制品,以及多色或多材料的组合是LSR应用的新领域。 液态硅橡胶(LSR)对于注塑加工商的商业机会的拓宽,要归功于更新的成型工艺,如发泡、多色或者多硬度注射,以及热塑性塑料/热固性塑料包覆技术的涌现。材料、设备和模具的改进增加了产品的多功能性,提高了产品质量,降低了注塑加工商准入的门槛。

今天的LSR注塑加工商拥有更多的原材料选择、更大的模具选择余地以及更好的工艺技术,不但可以成型小至数千分之一g的制品,而且也能够加工32kg以上的巨大产品。 材料、模具和加工设备供应商表示,在过去的几年里,对LSR感兴趣的人逐渐增加。“一些塑料公司对此感兴趣,一些新公司也希望开拓他们的业务,同时医疗领域的加工商也更多地加入进来。”Roembke Mfg.&Design模具公司副总裁Greg Roembke说。“我们发现,汽车工业已开始应用LSR。也许传统的硅橡胶在汽车工业中的应用已达到了极致,下一步需要从LSR获得更多的东西。”他补充说。 图2LSR的双注射包覆成型通常在一个成型单元内完成, 而LSR和热塑性塑料则分别在不同的注射机上成型 LSR注塑加工商表示,他们已经从高温硅橡胶(HCR)、EPDM、乳胶、天然橡胶、TPE、PVC甚至陶瓷的应用领域中抢占了一些市场。Momentive Performance Materials(前GE Silicones)的弹性体和RTV总经理Bill French说,由于LSR惰性、耐热且耐化学品,因此可用于生产奶嘴和奶头、医用装置阀门或密封条、医疗植入体、医用手套和汽车密封条

详细解析微注射成型技术以及其缺点

详细解析微注射成型技术以及其缺点 导语:微注射成型点击认领开放分类:技术微注射成型的提出源于1985年,微注射成型(也称微成型)用于生产总体尺寸、或特征功能区、或公差要求以毫米甚至微米计的制品。随着高技术和精密技术的快速发展,在光通信、计算机数据存储、医疗技术、生物技术、传感器和传动装置、微光学器件、电子和消费类产品,以及设备制造和机械工程等领域中,微注射成型制品呈现快速增长的需求。微注射成型- 简介微齿轮微注射成型的提出源于1985年,微注射成型(也称微成型)用于生产总体尺寸、或特征功能区、或公差要求以毫米甚至微米计的制品。随着高技术和精密技术的快速发展,在光通信、计算机数据存储、医疗技术、生物技术、传感器和传动装置、微光学器件、电子和消费类产品,以及设备制造和机械工程等领域中,微注射成型制品呈现快速增长的需求。典型例子包括:手表和照相机部件,汽车撞击、加速和距离传感器,硬盘和光盘驱动器读写头,医疗传感器,微型泵,小线轴,高精度齿轮、滑轮和螺旋管,光纤开关和接插件,微电机,外科仪器和通讯制品等。由于制品的微型特征,因此需要特殊的成型机械和辅助设备来完成各种生产操作,如:注射量控制、模具排空(真空)、注射工艺、制品顶出、分离、检验、存放、定位和包装。另外模具嵌件和模腔制造也需要特殊的技术。微注射成型- 分类尽管微注射成型的方法并没有清楚定义,但一般认为应用于生产以下三类产品或部件的工艺可称为微注射成型。1、重几微克到几分之一克,尺寸可能在微米(mm)级的微注塑成型制品,如微齿轮、微操纵杆等。图1是德国Hengstler公司用聚醚酰亚胺制得的微齿轮,齿轮轴孔直径和齿廓宽度均小于1mm。聚碳酸酯小透镜2、传统尺寸的注射成型制品,但具有微结构区域或特征功能区,例如:带有数据点隙的光盘、具有微表面特征的透镜、使用塑料薄片技术制造微齿轮的薄片等。图2和图3是聚碳酸酯小透镜和透明小齿轮。注意齿轮表面布有宽度小于1mm的同心圆,用于后续制作计数器的数据区。3、可具有任意尺度,但尺寸公差在微米级的高精度制品,例如光纤技术用接插件等。图4是一种汽车用微卡子,卡体采用聚甲醛(POM Delrin),卡体尾片厚度为700mm。为减轻运行时卡体振动,采用第二台注射机和旋转模具,在卡体中部共注射一小块弹性体,材料为PE-PA共聚物。微注射

注射成型工艺

1注射成型的原理、特点、应用 原理:将粒状或粉状的塑料从注射机的料斗送入配有加热装置的机筒中进行加热熔融塑化,使之成为粘流态的熔体,然后再注射机柱塞的压推作用下,以很高的流速通过机筒前端的喷嘴注入温度较低的闭合型腔中,经过一点时间的保压冷却定型后,开模分型即可从型腔中脱出具有一定形状和尺寸的塑料制件。 特点: 应用: 2注射成型的工艺过程 答:注射成型工艺过程包括成型前的准备,注射过程和塑件的后处理三部分。 (1)成型前的准备:原料外观的检查和工艺性能测定;原材料的染色及对料粉的造粒;对易吸湿的塑料进行充分的预热和干燥,防止产生斑纹、气泡和降解等缺陷;生产中需要改变产品、更换原料、调换颜色或发现塑料中有分解现象时的料筒清洗;对带有嵌件塑料制件的嵌加进行预热及对脱模困难的塑料制件选择脱模剂等。 (2)注射过程:加料、塑化、注射、冷却和脱模。注射过程又分为充模、保压、倒流、交口冻结后的冷却和脱模。 (3)塑件的后处理:退火处理、调湿处理。 3注射成型工艺参数:温度、压力、作用时间 温度控制包括料筒温度、喷嘴温度和模具温度。 料筒温度分布一般采用前高后低的原则,即料筒的加料口(后段)处温度最低,喷嘴处的温度最高。料筒后段温度应比中段、前段温度低5~10°C。对于吸湿性偏高的塑料,料筒后段温度偏高一些;对于螺杆式注射机,料筒前段温度略低于中段。螺杆式注射机料筒温度比柱塞式注射机料筒温度低10~20°C。 压力分为塑化压力和注射压力。 作用时间(只完成一次注射成型过程所需的时间)亦称成型周期。 4注射成型周期包括哪几部分? 答:注射成型周期包括(1)合模时间(2)注射时间(3)保压时间(4)模内冷却时间(5)其他时间(开模、脱模、喷涂脱模剂、安放嵌件的时间)。 合模时间是指注射之前模具闭合的时间,注射时间是指注射开始到充满模具型腔的时间,保压时间是制型腔充满后继续加压的时间,模内冷却时间是制塑件保压结束至开模以前所需要的时间,其他是是指开模,脱模,涂脱磨剂,安放嵌件的时间。 塑件的结构工艺性设计

(新)新型注射成型技术_

新型注射成型技术 1. 共注射成型(芯层注射成型) 采用共注射成型有助于观察到制件中独特的结构。塑料“甲”先注射充入部分型腔,然后塑料:“乙”紧跟着“甲”注射进入型腔并保持初始推动流动压力场。根据表皮区和芯层的尺寸大小,按正确的比例关系计量出“甲”和“乙”的用料量,可制得1个内芯层为“甲”外表完全由“乙”包裹的制件。 另外,在化妆品应用方面,有小部分的表皮“甲”料放在“乙”料之后注射,以使浇口部分的表皮能完全闭合。用2种不同颜色的树脂进行共注射成型的制件,形成一个容易区分的表皮和芯层区间(认识到所有的注射成型件中存在有类似的表皮和芯层这一点非常重要。)如果没有先进的检测技术,通常难以区分表皮—芯层的区域及其分界面。共注射成型并非一门新的工艺技术。英国ici公司早在70年代就开始应用这一技术,并取得了包括基础理论,生产产品及机器设备等几项专利。现普遍采用的ici生产工艺类似“三明治模塑”,由于模塑外层表皮的材料与中间或芯层的材料不同,因此两种材料必须有一定的相容性,并且芯层材料要求具有可高度辐射、发泡成型和100%回收利用等性能。选用材料应经多种选择比较而定。共注射成型工艺问世15年后,才真正得以普及推广。一种采用共注射成型的厚齿输制

作横截面。 表皮材料是非填充尼龙,而芯层材料是玻璃-珠料-填充尼龙。芯层中玻璃珠粒料收缩率极低,具有良好的尺寸稳定性。尼龙表皮赋予齿轮齿牙良好的润滑性并避免了珠粒料容易产生的磨蚀问题。 基于共注射成型的基础理论目前已开发出几种新型加工改进方法。例如,模内“上漆”和气体辅助模塑成型扩大了采用这种工艺的范围。模内上漆加工方法是采用低分子量聚合物作为外层材料,而气体辅助模塑成型是采用氮气或另一种气体作为芯层(或部分芯层)材料。随着产品设计与生产加工设备的不断完善改进,将满足各种新应用和新技术的需求,共注射技术必将成为富有潜力的工业化大规模生产工艺方法。 2. 气体辅助注射成型 气体辅助注射成型技术主要是为了减轻重量和(或)节省循环时间等而逐渐发展起来的。 通常的共注射成型中,首先注射外层材料,并只部分填充型腔。然后气体通过喷嘴注射或直接进入模腔内,模腔制件的芯层部位。液化气体也可注射到待成型制件的芯层部分。一般而言,在芯层内气体压力推动熔料向前流动,直至完全充满型腔,并防止制件表层在固化阶段从模腔壁凹下,相连的表皮层紧贴着模腔壁,气体则保存在模塑制件的芯层区间。由于注入气体的压力高于大气压力,故此该气体的压力必须在制件顶出之前降低,以避免当起限位作用的模腔壁移动时,

塑料成型工艺

在产品设计中,要达到合理运用塑料材料的目的,除了要掌握各种塑料的特性、按照正确的选材方法合理选材外,还要熟练掌握塑料的工艺,只有这样才能按照产品的功能要求合理的进行塑料构成类的产品设计。对于工业设计师来说,必须较全面地认识各种塑料的性质,懂得如何将造型设计的细节与成型、加工过程整体规划,最终才能获得满意的产品。 一、塑料的成型工艺 塑料的成型是将原材料制成具有一定形状制品的工艺过程。塑料的成型工艺有多种,着重介绍注射成型、挤出成型、压制成型、压延成型、吹塑成型、热成型、手糊成型、传递模塑成型、浇铸成型、缠绕成型、喷射成型、醮涂成型、片状模塑料成型、拉拔成型、发泡成型等。 (一)注射成型 注射成型又称注塑成型,是热塑性塑料的主要成型方法之一,也适应部分热固性塑料的成型。其原理是将粒状或粉状的原料加入到注射机的料斗里,原料经加热熔化呈流动状态,在注射机的螺杆或活塞推动下,经喷嘴和模具的浇注系统进入模具型腔,在模具型腔内硬化定型。如图6-53为注射成型原理图。 图6-53注射成型原理图 (引自杰姆斯·伽略特著常初芳译. 设计与技术. 北京:科学出版社,2004.)注射成型的模具具有一个型腔,其形状与需要加工成型的零件形状相反。熔融的塑料通过模具中心的浇注口进入,填充模具,溶液在模具内部形成了中空的形状。注射成型的模具有冷流道二板模具、冷流道三板模具、热流道模具几种。 注射成型工艺的优点有:能一次成型外形复杂、尺寸精确的塑料制件;可利用一套模具,成批地制得规格、形状、性能完全相同的产品;生产性能好、成型周期短、可实现自动化或半自动化作业;原材料损耗小、操作方便、成型的同时产品可取得着色鲜艳的外表等。

材料成型加工与工艺学-习题解答(9-10-11)备课讲稿

材料成型加工与工艺学-习题解答(9-10- 11)

第八章注射成型 2.塑料挤出机螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同? (p278)注射螺杆与挤出螺杆在结构上有何区别: (a)注射螺杆长径比较小,约在10~15之间。 (b)注射螺杆压缩比较小,约在2~5之间。 (c) 注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。 (d)注射螺杆的头部呈尖头形,与喷嘴能有很好的吻合,以防止物料残存在料筒端部而引起降解。 (p221)挤出机螺杆成型作用是对物料的输送、传热塑化塑料及混合均化物料。 移动螺杆式注射机的螺杆成型作用是对塑料输送、压实、塑化及传递注射压力。是间歇式操作过程,它对塑料的塑化能力、操作时的压力稳定以及操作连续性等要求没有挤出螺杆严格。 3.请从加热效率出发,分析柱塞是注射机上必须使用分流梭的原因? (p278)分流梭的作用是将料筒内流经该处的物料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起热分解现象。同时塑料熔体分流后,在分流梭与料筒间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料进一步的混合塑化,有效提高柱塞式注射机的生产量及制品质量。

6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。 (p298) 料温高时注射压力减小;反之,所需的注射压力加大。 8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。 (p297)结晶性塑料注射入模具后,将发生向转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结晶度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和充及强度下降。反过来,骤冷所得制品的结晶度下降,韧性较好。但在骤冷的时不利大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和曲性较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质和制品的使用性能要求来决定。例如对于结晶速率较小的PET塑料,要求提高其结晶度就应选用较高的模温。

国外高分子材料新型注射成型技术

国外高分子材料新型注射成型技术 发布时间:2004-3-21 14:51:09 浏览数:5引言 在21世纪已经到来的今天,高分子材料已经成为支持人类文明社会发展的科学进步的重要物质基础。众所周知,高分子材料技术是以合成技术、改性技术、形体设计技术、成型加工技术、应用技术和回收再利用技术为基础的综合技术,但由于高分子材料是为了制造各种制品而存在的,因此从应用的角度来讲,以对其进行形状赋予为主要目的的成型加工技术有着重要的意义。高分子材料的主要成型方法有挤出成型、注射成型、吹塑成型、压延成型、压制成型等等,其中注射成型因可以生产和制造形状较为复杂的制品,在高分子材料的成型加工方法中一直占有极其重要的位置。 本文主要参考近年来发表的日本有关成型加工方面的文献,着眼于高分子材料注射成型技术的最新发展动向,概要地介绍若干种用途较为广泛的注射成型新技术的原理。 气体辅助成型法(GAM,Cas Assist Molding) GAM法的要点是在树脂充填(不完全充填)完成后,利用型腔内树脂冷却前的时间差,将具有一定压力的惰性气体迅速地注入成型品内部,此时气体可在成品壁较厚的部分形成空腔,这样即能使成品壁厚变得均匀,防止产生表面缩痕或收缩翘曲,使制品表面平整光滑。 GAM法近年来发展较快,国外很多公司为了进行专利回避,相继开发了具有不同特征的新方法,如日本旭化成公司的AGI法(Asahi Gas Iniection)、三菱工程塑料公司的CINPRES法(Controlled Internal Pressure)及出光石油化学公司的GIM法(Gas Injection Molding)等等,但各方法原理完全相同,如AGI法是将惰性气体(一般为N2)喷嘴设在注射机料口喷嘴内部,而CINPRES法是将惰性气体喷嘴设置在模具上,且可以是1个也可以是几个。 注射压缩成型法(IPM,Injection Press Molding) IPM法技术由日本三菱重工业、名古屋机械制作所、出光石油化学等公司相继开发成功。有整体压缩法和部分压缩法之分。整体压缩法成型是首先在保持模具一定开度的状态下合模,将树脂充填(不完全充填)进去,而后利用油缸压缩使模具的动模移动至完全合模的情况下充填树脂(不完全充填),压缩不是靠整个动模移动,而是靠动模板上制品赋形面部分(可以是全体也可以是一部分)的移动而实现的。注射压缩成型法的优点是可以采用较低的注射压力成型薄形制品或需较大成型压力的制品,一般适用流动性较差且薄壁的制品,如高分子量PC或纤维填充工程塑料等。

注塑机工作原理及构造.docx

第一章注塑机工作原理及构造 第一节注塑机工作原理 一、注塑机工作原理 注塑成型机简称 注塑机,其机械部分主 要由注塑部件和合模部 件组成。注塑部件主要 由料筒和螺杆及注射油 缸组成示意如图 1-19所示。 注塑成型是用塑性 的热物理性质,把物料 从 料斗加入料筒内,料筒外由 加热圈加热,使物料熔融。在料筒内装有在外动力 油马达作用下驱动旋转的螺杆。物料在螺杆的作用下,沿着螺槽向前输送并压实。 物料在外加热和螺杆剪切的双重作用下逐渐的塑化、熔融和均化。当螺杆旋转时, 物料在螺槽摩擦力及剪切力的作用下把已熔融的物料推到螺杆的头部,与此同 时,螺杆在物料的反作用力作用下向后退, 使螺杆头部形成储料空间,完成塑化 过程。然后,螺杆在注射油缸活塞杆推力的作用下,以高速、高压,将储料室的 熔融料通过喷嘴注射到模具的型腔中。 型腔中的容料经过保压、冷却、固化定型 后,模具在合模机构的作用下,开启模具,并通过顶出装置把定型好的制件从模 具顶出落下。 塑料从固体料经料斗加入到料筒中,经过塑化熔融阶段,直到注射、保压、冷却、 启模、顶出制品落下等过程,全是按着严格地自动化工作程序操作的,如图1-20 所示。 1—模具 2—喷嘴 3—料筒 4—螺杆 5—加热圈 6—料斗7 —油马达 8—注射油缸 9 一储料室 10 —制件 11—顶杆 注射 > 座动 作选 择

第二节注塑机组成 注塑机根据注塑成型工艺要求是一个机电一体化很强的机种,主要由注塑 部件、合模部件、机身、液压系统、加热系统、冷却系统、电气控制系统、加料 装置等组成,如图 1?21所示。 厂螺杆 料筒 r 塑化装置 s 螺杆头 注射座 丿 i 喷嘴 A 注射油缸 螺杆驱动装置 I 注射座油缸 r 合模装置 合模部件x 调模装置 I 制品顶出装置 厂泵、油马达、阀 S 蓄能器、冷却器、过滤装置 ?管路、压力表 冷却系统 —— 入料口冷却、模具冷却 润滑系统——润滑装置、分配器 「动作程序控制;料筒温度控制;泵电机控制 、" 1安全保护;故障监测、报警;显示系统 加料装置 机械手 图1-21注塑机组成示图 注塑部件 机身 液压系统

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.doczj.com/doc/7013365586.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

注射成型原理及设备简述

注射成型原理及设备简述 一、注射成型原理 注射成型(Injection Molding )就是利用类似注射的方式,将熔融状态(塑化后)的树脂(塑料粒子)加入到模具中,最终使树脂成为塑料制品的成型方式。 其成型原理可以参考图1、图2、图3所示。 二、注射成型设备 注射成型是将热塑性或热固性塑料制成各种塑料制件的主要成型方法之一,它是在注射成型机上实现这个生产过程的,注射成型机是注射成型的主要设备。 (一)注射成型机的结构组成 1. 通用型注射成型机的关键部件: 螺杆――将料筒中的塑料推送到模具中的装置,可以旋转着前、后运动, 表面有螺纹,在旋转时,其螺纹会对树脂产生极大的剪切作用, 促进树脂进入熔融状态,同时可以根据螺杆前后运动的距离, 确定需要加入到模具中的树脂的量(这个量的确定称为计量)。 图1 树脂在料筒中呈熔融状态 ① 料筒 ②螺杆 ③ 熔融状态的树脂 ④ 模具 ⑤模具型腔 图2 树脂在螺杆的推动下注入模具型腔 图3 冷却成型后模具打开,从模具中取出制品

料筒――将树脂由塑料粒子状态转变为熔融状态的装置,附有大量的高 温加热装置,内部有螺杆,外部有一个料斗用来加入树脂。 2. 通用型注射成型机的基本组成 (参见图4) (二)注射成型机的基本分类 1. 按注射、塑化方式分类 (1)柱塞式注射成型机 通过柱塞依次将落入料筒的颗粒状塑料推向料筒前端的塑化室,依靠料筒外加热器提供的热量使塑料塑化,然后,呈熔融状态的树脂被柱塞注射到模具型腔中成型。这是早期的注射成型机类型,现在已经很少见。 (2)螺杆式注射成型机 和柱塞式注射成型机的工作原理基本相同,只是树脂的熔融塑化由螺杆 图4 通用型注射成型机组成简图 注射装置:① 驱动装置 ② 料斗 ③ 塑化部件 合模装置:④ 固定模板 ⑤ 移动模板 ⑥ 制品顶出装置 ⑦ 驱动装置 控制装置

聚氨酯化学与工艺_反应注射成型(RIM)聚氨酯

聚氨酯化学与工艺 反应注射成型(RIM)聚氨酯 ?6.1 反应注射成型简介 ?6.2RIM-聚氨酯加工机械简介 ?6.3RIM-聚氨酯的化学反应特性 ?6.4RIM-聚氨酯用原料 ?6.5增强RIM材料 ?6.6RIM聚氨酯的应用 第六章反应注射成型(RIM)聚氨酯 6.1 反应注射成型简介 反应注射成型又称反应注塑模制RIM(Reaction Injection Moulding),是由分子量不大的齐聚物以液态形式进行计量,瞬间混合的同时注入模具,而在模腔中迅速反应,材料分子量急骤增加,以极快的速度生成含有新的特性基团结构的全新聚合物的工艺。 它是集液体输送、计量、冲击混合、快速反应和成型同时进行为特征的、一步完成的全新加工新工艺,其加工简单、快捷。 RIM加工技术的优点包括以下几点: ⑴RIM加工技术能量消耗低。它与传统热塑型合成材料加工成型相比,由于加工时物料为低粘度液体状态,注模压力较低。反应放热量大,模温较低,模具的夹持力较少,因此,其设备和加工费用相对较低。尤其对大型制品的生产尤为突出。 (2)模具强度要求较低。物料呈液体状态注入模具,模腔内压较低,模具承压能力较传统塑料成型模要低得多。 (3)所用原料体系比较广泛。该项新工艺除了适用于聚氨酯、聚脲材料的生产,同时还可以用于环氧树脂、尼龙、双环戊二烯、聚

酯等材料的加工成型。 (4)与传统塑料加工成型法相比,RIM工艺对制备大型制品、形状复杂制品、薄壁制品更为有利,产品表面质量好,花纹图案清晰,重现性好。 (5)该工艺加工勿需普通塑料热塑成型所需的昂贵的热流道体系,设备费仅为热塑型结构泡沫塑料成型设备的1/2~1/3,且生产出的制品无成型应力、成型周期短、生产效率高,尤其对于大批量、大尺寸制品的生产,生产成本的降低更为明显。 (6)物料以液体形态注入模具,有利于生产断面形状复杂的制品,可嵌入插入件一次成型,也可以在液体原料中添入某些增强材料。 生产增强型反应注塑模制(RRIM——Reinforced Reaction lnjection Moulding)以及在模腔中预置增强片材等生产结构增强型反应注塑模制品(SRIM——Structural Reaction Injection Moulding)等。可以制备带有较厚加强筋的制品,普通塑料壁厚和加强筋厚之比最大为1:0.3,而R1M工艺可生产高达1:0.8的厚筋制品。 (7)可以使用模内涂装(IMC-Inmold Coating)技术,减少制品后涂装工序。降低加工成本。 目前聚氨酯RIM一般指两类材料,一类为密度较高从800到1200千克每立方米以上的外皮密实、内芯气泡较少或基本无泡孔的聚氨酯材料;另一类是密度在200千克每立方米以上的软质或硬质自结皮聚氨酯泡沫塑料。 6.2RIM-聚氨酯加工机械简介 随着聚氨酯工业的迅速发展、应用领域的扩大和消费量的激增,传统式的低压计量、混合装置的某些技术缺陷暴露得越来越明显,在聚氨酯化学研究和相关制造部门的紧急配合下,1976年,德国拜耳公司和Hennecke公司首先推出了以高压冲击方式进行混合和具有自动 清洁功能为特征的高压反应注射计量、混合、分配装备。由于这种装备具有许多低压机无法比拟的优点,更适宜大规模工业化生产的需要,生产产品类型多样,因此很受聚氨酯工业的欢迎,逐渐成为聚氨酯行业使用的主要装备。

注射成型工艺过程

注射成型工艺过程—注射成型过程 各种注塑机完成注射成型的动作程序可能不完全相同,但其成型的基本过程还就是相同的。现以螺杆式注塑机为例予以说明。从料斗落入料筒中的塑料,随着螺杆的转动沿着螺杆向前输送。在这一输送过程中,物料被逐渐压实,物料中的气体由加料口排除。 在料筒外加热与螺杆剪切热的作用下,物料实现其物理状态的变化,最后呈黏流态,并建立起一定的压力。当螺杆头部的熔料压力达到能克服注射油缸活塞退回时的阻力(所谓背压)时,螺杆便开始向后退,进行所谓计量。与此同时,料筒前端与螺杆头部熔料逐渐增多,当达到所需要的注射量时(即螺杆退回到一定位置时),计量装置撞击限位开关,螺杆即停止转动与后退。至此,预塑完毕。同时,合模油缸中的压力油推动合模机构动作,移动模板使模具闭合。继而,注射座前移,注射油缸充入压力油,使油缸活塞带动螺杆按要求的压力与速度将熔料注入到模腔内。当熔料充满模腔后,螺杆仍对熔料保持一定的压力,即所谓进行保压,以防止模腔中熔料的反流,并向模腔内补充因制品冷却收缩所需要的物料。模腔中的熔料经过冷却,由黏流态回复到玻璃态,从而定型,获得一定的尺寸精度与表面粗糙度。当完全冷却定型后,模具打开,在顶出机构的作用下,将制件脱出,从而完成一个注射成型过程,参瞧下图。

图注射成型过程 1—合模注射;2—保压;3—螺杆预塑、制品顶出 按照习惯,我们把一个注射成型过程称为一个工作循环,而该循环由合模算起,为了明了起见,我们用下面工艺流程图表示。 合模→注射→保压(螺杆预塑)→冷却→开模→顶出制品→合模 注射成型过程包括加料、加热塑化、闭模、加压注射、保压、冷却定型、启模、制件取出等工序。其中,加热塑化、加压射、冷却定型就是注射过程中三个基本步骤。 ①加料。每次加料量应尽量保持一定,以保证塑化均匀一致,减少注射成型压力传递的波动。 ②塑化。塑料在进入模腔之前要达到规定的成型温度,提供足够数量

反应注射成型技术

反应注射成型技术 反应注射成型起源于聚氨酯塑料。随着工艺技术的进步,该工艺也扩展到了多种材料的加工中。与此同时,为了拓宽RIM技术的应用领域,特别是在汽车行业中的应用,该工艺还引入了纤维增强技术。 RIM简介 反应注射成型(简称“RIM”)是指将具有高化学活性、相对分子质量低的双组分材料经撞击混合后,在常温低压下注入密闭的模具内,完成聚合、交联和固化等化学反应并形成制品的工艺过程。这种将聚合反应与注射成型相结合的新工艺,具有物料混合效率高、流动性好、原料配制灵活、生产周期短及成本低的特点,适用于大型厚壁制品生产,故而受到了世界各国的重视。 RIM最早仅用于聚氨酯材料,随着工艺技术的进步,RIM也可应用于多种材料(如环氧、尼龙、聚脲及聚环戊二烯等)的加工。用于橡胶与金属成型的RIM工艺是当前研究的热点。为了拓宽RIM的应用领域,提高RIM制品的刚性与强度,使之成为结构制品,RIM技术得到了进一步的发展,出现了专门用于增强型制品成型的增强反应注射成型(RRIM)和专门用于结构制件成型的结构反应注射成型(SRIM)技术等。RRIM和SRIM成型工艺原理与RIM 相同,不同之处主要在于纤维增强复合材料制品的制备。目前,典型的RIM制品有汽车保险杠、挡泥板、车体板、卡车货箱、卡车中门和后门组件等大型制品。它们的产品质量比SMC产品好,生产速度更快,所需二次加工量更小。 RIM成型工艺 1.工艺过程 RIM工艺过程为:单体或预聚物以液体状态经计量泵以一定的配比进入混合头进行混合。混合物注入模具后,在模具内快速反应并交联固化,脱模后即为RIM制品。这一过程可简化为:贮存→计量→混合→充模→固化→顶出→后处理。 2.工艺控制 (1)贮存。RIM工艺所用的两组分原液通常在一定温度下分别贮存在2个贮存器中,贮存器一般为压力容器。在不成型时,原液通常在0.2~0.3 MPa的低压下,在贮存器、换热器和混合头中不停地循环。对聚氨酯而言,原液温度一般为20~40℃,温度控制精度为±1℃。(2)计量。两组分原液的计量一般由液压系统来完成,液压系统由泵、阀及辅件(控制液体物料的管路系统与控制分配缸工作的油路系统)所组成。注射时还需经过高低压转换装置将压力转换为注射所需的压力。原液用液压定量泵进行计量输出,要求计量精度至少为±1.5%,最好控制在±1%。 (3)混合。在RIM制品成型中,产品质量的好坏很大程度上取决于混合头的混合质量,生产能力则完全取决于混合头的混合质量。一般采用的压力为10.34~20.68MPa,在此压力范围内能获得较佳的混合效果。 (4)充模。反应注射物料充模的特点是料流的速度很高。为此,要求原液的粘度不能过高,例如,聚氨酯混合料充模时的粘度为0.1Pa.s左右。 当物料体系及模具确定之后。重要的工艺参数只有2个,即充模时间和原料温度。聚氨酯物料的初始温度不得超过90℃,型腔内的平均流速一般不应超过0.5m/s。 (5)固化。聚氨酯双组分混合料在注入模腔后具有很高的反应性,可在很短的时间内完成固

材料成型新技术复习题(带答案)

《材料成型新技术》复习题 绪论 1.什么是铸造? 答:铸造是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能金属零件毛坯的成型方法。 2.铸造的方法有哪些? 答:一般分为砂型铸造(湿型铸造、干型铸造和表面干型铸造)和特种铸造(熔模铸造、金属型铸造、离心铸造、压力铸造)两大类。 3.铸造的特点 答:1、适用范围广2、铸造生产能采用的材料广3、铸造具有一定的尺寸精度4、成本低廉,综合经济性能好,能源、材料消耗及成本为其它金属成形方法所不及。第一章造型材料 1.什么是砂型的退让性、耐火度、透气性溃散性?P4 答:退让性:型砂不阻碍铸件收缩的高温性能称为退让性 耐火度:型(芯)砂承受高温作用的能力成为耐火度 透气性:紧实砂样孔隙度的指标 溃散性:浇注后型(芯)砂是否容易结题而脱离铸件表面的性能。 第二章铸型制备 1.常用的手工造型方法有哪些? 答:1、整模铸造2、分模铸造3、挖砂和假箱造型4、活块和砂芯造型5、活砂造型6、多箱造型7、实物造型8、刮板造型9、抽心模造型和劈箱造型10、脱箱造型(活箱造型)11、叠箱造型12、模板造型13、漏模造型14、地坑造型。 2.砂芯芯头的作用? 答:祈祷制成、定位和排气的作用。 3.芯骨的的作用?(P79) 答:提高砂芯的整体强度和刚度且便于吊运和下芯 4.砂芯通气的方法有哪些? 答:留通气孔(针扎、蜡线熔烧,模板压出通气道等)、对于特殊砂芯添加辅助材料焦炭或者炉渣等加强通气材料。 第三章浇注系统设计(重点考核) 1.什么是充型能力? 2.影响充型能力的因素有哪些? 答:充型能力:液态金属充满铸型型腔,获得完整、轮廓清晰的铸件的能力,称为也太金属的充型能力。 影响充型能力的因素有:1、金属性质2、铸型性质3、浇注条件4、铸件结构 2.浇注系统有那四个部分组成 答:典型浇注系统四部分结构:浇口盆、直浇道、横浇道、内浇道。 3.浇口盆分为哪两大类,常见的盆形浇口盆有哪些类型? 答:漏斗形、盆形。 4.浇注系统按内浇道在铸件上的位置分为哪些类型? 答:1、顶注(上注)式浇注系统2、底注(下注)式浇注系统3、分型面(中间)式浇注系统4、阶梯式浇注系统5、垂直式浇注系统 第四章铸件的凝固与补缩(重点考核) 1. 1、铸件的凝固方式是按(凝固区域宽度大小)划分为哪3种凝固方式。P112 答:一般分为逐层凝固、糊状凝固(体积凝固)、中间层凝固三种方式。

塑料注射成型工艺中成型零部件

塑料注射成型工艺中成型零部件 摘要随着塑料制品在日常生活中的广泛利用,人们对塑料制品的质量与数量要求日趋提高,而国内塑料制造行业所掌握的技术普遍相对落后,要提高我国塑料行业的整体竞争力,对成型模具的研究与改进是必须的。实际上塑料注射所用的模具(简称注射模一一实现注射成型工艺的重要工艺装备)成型技术已成为衡量一个国家塑料制造水平的重要标志之一。本文介绍了几种塑料成型工艺中重要模具的特点,并对不同种类凹模凸模的结构和使用条件进行探究。 关键词塑料成型;注塑机;凹模;凸模 中图分类号TS91 文献标识码A 文章编号1674-6708 (2016 )162-0149-02 注射成型(注塑)是一种将已经在加热料筒中预先均匀塑化的热固性或热塑性材料,高速推挤到闭合模具的模腔中用以成型工业产品的生产方法。产品通常使用橡胶注塑和塑料注塑。注塑方法又可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是一种常用的塑料成型设备,它利用塑料成型模具将热塑性塑料制成各种形状的塑料制品。近年来,注射成型也成功地用于成型某些热固性塑料。 我国的注塑机从无到有,从单一品种到多品种,已经有

了长足的发展。但相比于其他如德国等制造工艺技术发达的 国家,我国的塑料工业还处于初级发展阶段,所以注塑成型 在我国的高分子材料发展进程中有着广阔的前景。同时随着塑料制品在日常社会中得到广泛利用,塑料注射成型所用的模具(简称注射模,它是实现注射成型工艺的重要工艺装备)技术已成为衡量一个国家制造水平的重要标志之一。 注射模的基本组成: 1)成型零部件; 2)浇注系统:浇注系统是指注塑机喷嘴将塑料喷出后,流体到达模具型腔前所流经的通道; 3)导向机构:导向机构是用于保证动、定模合模时准确对合; 4)支承零部件:支承零部件是指起支持作用的零部件轴承,常与导向机构组合构成模架; 5)推出机构:推出机构是将模具中已经完成成型后的塑件及浇注系统中的凝料推出模具的装置; 6)侧向分型与抽芯机构:该机构将成型孔、凹穴或凸台的型芯或瓣合模块从塑件上脱开或抽出,合模时又将其复位; 7)温度调节系统:满足注射工艺对模温的要求; 8)排气系统:将型腔内的气体排出模外。 其中,成型零部件是指直接与塑料接触或部分接触,并决定塑件形状、尺寸、表面质量的零件,它们是模具的核心 零件。包括型腔、型芯、螺纹型芯、螺纹型环、镶件等。

注射成型机的基本结构及分类

4.2.1 注射成型机的基本结构 注射机为塑料注射成型所均的主要设备,技其外形可分为立式、卧式和直角式三种 闯4—8所示为最常用的卧式注射机外形。 注射成型时,注射模具安装在注射机的动模板和定模板上,钽电容内锁模装置合模并锁紧,塑料在料筒内加热呈熔融状态,由注射装置将塑料熔体注入涩腔内,塑料制品固化冷却后内锁模装置开模,并由推出装置将制品推出。 根据注射成型过程,一般可将注射机分为以下几个部分。 (1)注射装量。泞射装置的主要作用是使固态的塑料颗粒均匀地塑化呈熔融状态,并以足够的压力和速度将塑料熔体注入到闭合的型腔中。注射装置包括料斗、料简、加热器、计量装置、螺杆(柱塞式注射机为柱塞和分流梭)及其驱动装置、喷嘴等部件。 (2)锁模装置。锁模装置的作用有三点,第一是实现模具的开闭动作,第二是在成型时提供足够的夹紧力使模具锁紧,第三是开模时推出模内制品,锁模装置可以是机械式、液压机械联合作用方式。推出机构也有机械式推出和液压式推出两种。 (3)液压传动和电气控制。由注射成型工艺过程可知,注射成型由塑料熔融、模具闭合、熔体充模、压实、保压、冷却定型、开模推出制品等多个工序组成。液压传动和电气控制系统是保证注射成型按照预定的工艺要求(压力、速度、时间、温度)和动作程序准确进 行而设置的。液压传动系统是注射机的动力系统,而电气控制系统则是各个动力液压缸完成开启、闭合和注射、推出等动作的控制系统。 4.2.2注射成型机的分类 注射机按外形特征可划分为如下三类。 (1)立式注射机。立式注射机的注射装置和定模板设置在设备的上部,而锁模装置、动 模板、推出机构均设置在设备的下部。立式注射机的优点是设备占地面积小,模具装拆方便,安装嵌件和活动型芯简便可靠;缺点是不易自动操作,只适用于小注射量的场合,一般注射量为10一60g。 (2)卧式注射机。卧式注射机的注射装置和定模板在设备的一侧,而锁模装置、动模板、推出机构均设置在另一侧。这是注射机最普通、最主要的形式。卧式注射机的主要优点是机体较矮,容易操作加料,制品推出后能自动落下,便于实现自动化操作,大、中型注射机多采用这种形式,缺点是设备占地圆积大,模具安装比较麻烦。一般将额定注射容始低于350 cm’的称为小型注射机,将低于4000cm3的称为中型注射机,特大型注射机的额定注射

塑料注射成型工艺中成型零部件-精选文档

塑料注射成型工艺中成型零部件 注射成型(注塑)是一种将已经在加热料筒中预先均匀塑化的热固性或热塑性材料,高速推挤到闭合模具的模腔中用以成型 工业产品的生产方法。产品通常使用橡胶注塑和塑料注塑。注塑 方法又可分注塑成型模压法和压铸法。注射成型机(简称注射机 或注塑机)是一种常用的塑料成型设备,它利用塑料成型模具将 热塑性塑料制成各种形状的塑料制品。近年来,注射成型也成功地用于成型某些热固性塑料。 我国的注塑机从无到有,从单一品种到多品种,已经有了长足的发展。但相比于其他如德国等制造工艺技术发达的国家,我国的塑料工业还处于初级发展阶段,所以注塑成型在我国的高分子材料发展进程中有着广阔的前景。同时随着塑料制品在日常社会中得到广泛利用,塑料注射成型所用的模具(简称注射模,它是实现注射成型工艺的重要工艺装备)技术已成为衡量一个国家制造水平的重要标志之一。 注射模的基本组成: 1)成型零部件; 2)浇注系统:浇注系统是指注塑机喷嘴将塑料喷出后,流 体到达模具型腔前所流经的通道; 3)导向机构:导向机构是用于保证动、定模合模时准确对 合;

4)支承零部件:支承零部件是指起支持作用的零部件轴承,常与导向机构组合构成模架; 5)推出机构:推出机构是将模具中已经完成成型后的塑件 及浇注系统中的凝料推出模具的装置; 6)侧向分型与抽芯机构:该机构将成型孔、凹穴或凸台的 型芯或瓣合模块从塑件上脱开或抽出,合模时又将其复位; 7)温度调节系统:满足注射工艺对模温的要求; 8)排气系统:将型腔内的气体排出模外。 其中,成型零部件是指直接与塑料接触或部分接触,并决定塑件形状、尺寸、表面质量的零件,它们是模具的核心零件。包括型腔、型芯、螺纹型芯、螺纹型环、镶件等。 这里主要对成型零部件中凹模、凸模的结构进行分类,以及对其使用条件进行分析。 1凹模结构分类 凹模也可以称作型腔或者凹模型腔,是用来成型塑件外形轮廓的主要零件。可在安装在定模上也可以安装在动模上。凹模的类型有很多,凹模按外形可以分为圆形和矩形;按刃口有平刃和斜刃;按结构形式不同则可以把它们分为整体式凹模、整体嵌入式凹模、局部镶拼组合式凹模、大面积镶拼组合式凹模。 1.1整体式凹模 整体式凹模是由整块材料制作加工而成。这种凹模结构相对 比较简单,具有较高的强度和较好的刚性,不易使塑件因加工过 程中产生的拼接缝痕迹而出现质量问题,也可以使注射模中成型零件的数量大大减少,从而提高了模具的装配效率,也使整个模具的外形尺寸和结构得到一定程度的缩小。 但常出现的问题是塑件热处理不方便,如果整体式凹模用来成型

相关主题
文本预览
相关文档 最新文档