当前位置:文档之家› 对基于数据流CluStream聚类算法的改进

对基于数据流CluStream聚类算法的改进

对基于数据流CluStream聚类算法的改进
对基于数据流CluStream聚类算法的改进

(完整word版)各种聚类算法介绍及对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个 类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类” 的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

数据流聚类算法D-Stream

Density-Based Clustering for Real-Time Stream Data 基于密度的实时数据流聚类(D-Stream) 翻译by muyefei E-mail: muyefei@https://www.doczj.com/doc/6f7119398.html, 注释:版权归作者所有,文档仅用于交流学习,可以用大纲视图查看文档结构 摘要:现有的聚类算法比如CluStream是基于k-means算法的。这些算法不能够发现任意形状的簇以及不能处理离群点。而且,它需要预先知道k值和用户指定的时间窗口。为了解决上述问题,本文提出了D-Stream算法,它是基于密度的算法。这个算法用一个在线部分将数据映射到一个网格,在离线部分计算网格的密度然后基于密度形成簇。算法采用了密度衰减技术来捕获数据流的动态变化。为了探索衰减因子、数据密度以及簇结构之间的关系,我们的算法能够有效的并且有效率地实时调整簇。而且,我们用理论证明了移除那些属于离群点的稀疏网格是合理的,从而提高了系统的时间和空间效率。该技术能聚类高速的数据流而不损失聚类质量。实验结果表明我们的算法在聚类质量和效率是有独特的优势,并且能够发现任意形状的簇,以及能准确地识别实时数据流的演化行为。 关键词 流数据挖掘基于密度的聚类D-Stream 分散的网格 1 介绍 实时聚类高维数据流是困难的但很重要。因为它在各个领域应用到。比如... 聚类是一项关键的数据挖掘任务。挖掘数据流有几项关键的挑战: (1)单遍扫描 (2)将数据流视为数据一个很长的向量在很多应用中捉襟见肘,用户更加关注簇的演化行为。 近来,出现了许多数据流聚类方法。比如STREAM、CluStream以及扩展(在多数据流,分布式数据流,并行数据流上的扩展)等。 CluStream以及扩展的算法有以下一些缺陷: 1、只能发现球形簇,不能发现任意形状的簇。 2、不能够识别噪声和离群点。 3、基于k-means的算法需要多次扫描数据(其实CluStream利用两阶段方法和微簇解决了该问题)。 基于密度的聚类算法介绍。基于密度的方法可以发现任意形状的簇,可以处理噪声,对原始数据集只需一次扫描。而且,它不需要像k-means算法那样预先设定k值。 文本提出了D-Stream,一种基于密度的数据流聚类框架。它不是简单用基于密度的算法替代k-means的数据流算法。它有两项主要的技术挑战: 首先,我们不大愿意将数据流视为静态数据很长的一个序列,因为我们对数据流演化的时间特征更加感兴趣。为了捕获簇的动态变化,我们提出了一个新颖的方案,它可以将衰减

1基于网格的数据流聚类算法

3)国家自然科学基金(60172012)。刘青宝 博士生,副教授,主要研究方向为数据仓库技术和数据挖掘;戴超凡 博士,副教授,主要研究方向为数据仓库技术和数据挖掘;邓 苏 博士,教授,主要研究方向指挥自动化、信息综合处理与辅助决策;张维明 博士生导师,教授,主要研究方向为军事信息系统、信息综合处理与辅助决策。 计算机科学2007Vol 134№13   基于网格的数据流聚类算法3) 刘青宝 戴超凡 邓 苏 张维明 (国防科学技术大学信息系统与管理学院 长沙410073)   摘 要 本文提出的基于网格的数据流聚类算法,克服了算法CluStream 对非球形的聚类效果不好等缺陷,不仅能在 噪声干扰下发现任意形状的类,而且有效地解决了聚类算法参数敏感和聚类结果无法区分密度差异等问题。关键词 聚类,数据流,聚类参数,相对密度  G rid 2based Data Stream Clustering Algorithm L IU Qing 2Bao DA I Chao 2Fan DEN G Su ZHAN G Wei 2Ming (College of Information System and Management ,National University of Defense Technology ,Changsha 410073)   Abstract With strong ability for discovering arbitrary shape clusters and handling noise ,grid 2based data stream cluste 2ring algorithm efficiently resolves these problem of being very sensitive to the user 2defined parameters and difficult to distinguish the density distinction of clusters.K eyw ords Clustering ,Data stream ,Clustering parameter ,Relative density 随着计算机和传感器技术的发展和应用,数据流挖掘技术在国内外得到广泛研究。它在网络监控、证券交易分析、电信记录分析等方面有着巨大的应用前景。特别在军事应用中,为了获得及时的战场态势信息,大量使用了各种传感器,对这些传感器数据流的分析处理已显得极为重要。针对数据流数据持续到达,且速度快、规模大等特点,数据流挖掘技术的研究重点是设计高效的单遍数据集扫描算法[12]。数据流聚类问题一直是吸引许多研究者关注的热点问题,已提出多种一次性扫描的方法和算法,如文[1~4]等等,但它们的聚类结果通常是球形的,不能支持对任意形状类的聚类[5]。 本文提出的基于网格的数据流聚类算法,在有限内存条件下,以单遍扫描方式,不仅能在噪声干扰下发现任意形状的类,而且有效地解决了基于绝对密度聚类算法所存在的高密度聚类结果被包含在相连的低密度聚类结果中的问题。 本文第1节简要介绍数据流聚类相关研究,并引出基于网格的数据流聚类算法的思路及其与相关研究的异同;第2节给出基于网格的数据流聚类算法所使用到的基本概念;第3节给出一个完整的基于网格的数据流聚类算法,详细解析算法的执行过程;第4节进行算法性能分析对比;最后总结本文的主要工作和贡献,并指出需要进一步研究和改进的工作。 1 相关研究 在有限内存约束下,一般方法很难对数据流进行任意形状的聚类。第一个增量式聚类挖掘方法是文[6]提出的In 2crementalDBSCAN 算法,它是一个用于数据仓库环境(相对稳定的数据流)的有效聚类算法,可以在有噪声的数据集中发现任意形状的类。但是,它为了形成任意形状的类,必须用类中的所有点来表示,要求获得整个数据流的全局信息,这在内存有限情况下是难以做到的。而且,它采用全局一致的绝对 密度作参数,使得聚类结果对参数值非常敏感,设置的细微不同即可能导致差别很大的聚类结果。 Aggarwal 在2003年提出的一个解决数据流聚类问题的框架CluStream [1]。它使用了两个过程来处理数据流聚类问题:首先,使用一个在线的micro 2cluster 过程对数据流进行初级聚类,并按一定的时间跨度将micro 2cluster 的结果按一种称为pyramid time f rame 的结构储存下来。同时,使用另一个离线的macro 2cluster 过程,根据用户的具体要求对micro 2cluster 聚类的结果进行再分析。但它采用距离作为度量参数,聚类结果通常是球形的,不能支持对任意形状类的聚类。而且,它维护的是micro 2cluster 的聚类特征向量(CF 2x ;CF 1x ;CF 2t ;CF 1t ;n ),这在噪声情况下,会产生干扰误差。 2006年,Feng Cao 等人在文[5]中提出了针对动态进化数据流的DenStream 算法。它相对CluStream 有很大的改进,继承了IncrementalDBSCAN 基于密度的优点,能够支持对有噪声的动态进化(非稳定)的数据流进行任意形状的聚类。但由于采用全局一致的绝对密度作参数,使得聚类结果对参数值非常敏感。同时,与CluStream 算法相比,它只能提供对当前数据流的一种描述,不能反映用户指定时间窗内的流数据的变化情况。 朱蔚恒等在文[13]中提出的基于密度与空间的ACluS 2tream 聚类算法,通过引入有严格空间的意义聚类块,在对数据流进行初步聚类的同时,尽量保留数据的空间特性,有效克服了CluStream 算法不能支持对任意形状聚类的缺陷。但它在处理不属于已有聚类块的新数据点时,使用一种类似“抛硬币”的方法来猜测是否为该点创建一个新的聚类块,误差较大。而且它以绝对密度做参考,所以在聚类结果中无法区分密度等级不同的簇[7]。 本文提出的基于网格的数据流聚类算法GClustream

改进的K-means聚类算法及应用

改进的K-means聚类算法及应用 摘要:传统的k-means算法需要事先确定初始聚类中心,聚类精确程度不高。针对以上问题,本文结合熵值法和动态规划算法来对传统的k-means算法进行改进,提出了基于熵值法及动态规划的改进k-means算法。熵值法用来修订算法的距离计算公式,以提高算法的聚类精确程度, 动态规划算法用来确定算法的初始聚类中心。将改进算法应用于矿井监测传感器聚类中,结果显示较传统的k-means算法,改进算法效率有了明显提高,聚类精确程度有较大增强。 关键词:k-means;动态规划;熵值法;聚类精确度;矿井监测传感器 【abstract】the traditional k-means has sensitivity to the initial clustering centers, and its clustering accuracy is low. to against these short comings, an improved k-means algorithm based on the combination of dynamic programming algorithm and entropy method is proposed. the entropy method is used to amend the distance calculating formula to improve the clustering accuracy, and dynamic programming algorithm is used to define the initial cluster centers. the result of the simulation on the clustering in the mine monitoring sensors shows that the proposed algorithm has better

K-means文本聚类算法

最大距离法选取初始簇中心的K-means文本聚类算法的研究 的评论 背景 随着计算机技术和网络技术的飞速发展,人们的生活方式产生了极大的改变。计算机从一个有几个房子大小的巨无霸,已经变成了小巧的笔记本。网络设备也已经从PC端走向移动端。越来越丰富的网络设备,让人们能在网络里畅游,网络对于人们来说触手可及,同时也产生了巨大的数据流量。人们如何从海量的数据中找到有用的信息,成为了现在计算机学科的研究热点。聚类是数据挖掘中重要的一支。由于聚类具有无需先验知识的优势,可以根据数据自然分部而获取知识。聚类成为数据挖掘领域一个非常活跃的领域,而且得到了广泛的应用。聚类就是把一个数据集合分成几个簇,在同一个簇里,数据相关性最高,但是在2个不同的簇里,数据相关性最低。K-means聚类算法主要针对处理大数据集时,处理快速简单,并且算法具有高效性和可伸缩性。但是,K-means聚类算法随机的选择初始簇中心会导致以下缺点:(1)得到的聚类结果中容易出现局部最优,而不是全局最优;(2)聚类结果不具有稳定性,很大程度上依赖于初始簇中心;(3)聚类过程中的迭代次数增加使聚类过程中的总耗时增加。 传统的k-means聚类算法 传统的聚类算法思想:首先从N个数据对象集合中随机选择k个对象,然后计算剩余的N-k个对象与k个对象的距离(相似度),与k个对象中哪个对象的距离最小,就把分给那个对象;然后在计算每个簇中的簇中心,即是每个簇中对象的均值;不断重复这一过程步骤,直到标准测度函数E开始收敛为止。 K-means算法描述如下: 输入:迭代终止条件ε,最大的迭代次数为max,簇的总数目是k,样本集有N个数据对象。 输出:满足迭代终止条件的k个簇和迭代次数s。 随机初始化k个簇中心: 对每个数据对象,分别计算该对象与k个簇中心均值的距离,并选择距离最小的簇将该对象加个到该簇里; 重新计算k个簇的中心,利用函数E计算出此时的函数值; 如果带到最大迭代次数或满足:

机器学习聚类算法实现

《人工智能与机器学习》 实验报告 年级__ xxxx班____________ 专业___________xxxxx____ _____ 学号____________6315070301XX___________ 姓名_____________gllh________________ 日期___________2018-5-12 __

实验五聚类算法实现 一、实验目的 1、了解常用聚类算法及其优缺点 2、掌握k-means聚类算法对数据进行聚类分析的基本原理和划分方法 3、利用k-means聚类算法对已知数据集进行聚类分析 实验类型:验证性 计划课间:4学时 二、实验内容 1、利用python的sklearn库函数对给定的数据集进行聚类分析 2、分析k-means算法的实现流程 3、根据算法描述编程实现,调试运行 4、对所给数据集进行验证,得到分析结果 三、实验步骤 1、k-means算法原理 2、k-means算法流程 3、k-means算法实现 4、对已知数据集进行分析 四、实验结果分析 1.利用python的sklearn库函数对给定的数据集进行聚类分析: 其中数据集选取iris鸢尾花数据集 import numpy as np from sklearn.datasets import load_iris iris = load_iris() def dist(x,y):

return sum(x*y)/(sum(x**2)*sum(y**2))**0.5 def K_means(data=iris.data,k=3,ping=0,maxiter=100): n, m = data.shape centers = data[:k,:] while ping < maxiter: dis = np.zeros([n,k+1]) for i in range(n): for j in range(k): dis[i,j] = dist(data[i,:],centers[j,:]) dis[i,k] = dis[i,:k].argmax() centers_new = np.zeros([k,m]) for i in range(k): index = dis[:,k]==i centers_new[i,:] = np.mean(data[index,:],axis=0) if np.all(centers==centers_new): break centers = centers_new ping += 1 return dis if __name__ == '__main__': res = K_means() print(res) (1)、首先求出样本之间的余弦相似度: sum(x*y)/(sum(x**2)*sum(y**2))**0.5 (2)、设置k类别数为3,最大迭代次数为100 K_means(data=iris.data,k=3,ping=0,maxiter=100):

K 均值聚类算法(原理加程序代码)

K-均值聚类算法 1.初始化:选择c 个代表点,...,,321c p p p p 2.建立c 个空间聚类表:C K K K ...,21 3.按照最小距离法则逐个对样本X 进行分类: ),(),,(min arg J i i K x add p x j ?= 4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点) 5.若J 不变或代表点未发生变化,则停止。否则转2. 6.),(1∑∑=∈=c i K x i i p x J δ 具体代码如下: clear all clc x=[0 1 0 1 2 1 2 3 6 7 8 6 7 8 9 7 8 9 8 9;0 0 1 1 1 2 2 2 6 6 6 7 7 7 7 8 8 8 9 9]; figure(1) plot(x(1,:),x(2,:),'r*') %%第一步选取聚类中心,即令K=2 Z1=[x(1,1);x(2,1)]; Z2=[x(1,2);x(2,2)]; R1=[]; R2=[]; t=1; K=1;%记录迭代的次数 dif1=inf; dif2=inf; %%第二步计算各点与聚类中心的距离 while (dif1>eps&dif2>eps) for i=1:20 dist1=sqrt((x(1,i)-Z1(1)).^2+(x(2,i)-Z1(2)).^2); dist2=sqrt((x(1,i)-Z2(1)).^2+(x(2,i)-Z2(2)).^2); temp=[x(1,i),x(2,i)]'; if dist1

[改进的聚类算法在农业经济类型划分中的应用] kmeans聚类算法改进

[改进的聚类算法在农业经济类型划分中的应用] kmeans聚类算法改进 一、引言 吉林省各地自然、经济、社会条件各有差异,对农业经济的 影响很大。为了稳定提高粮食综合生产能力,促进农业经济结构 进一步优化。就需要准确地对省内各市县农业经济类型进行划 分,以期做到合理的资源优化配置。本文采用一种改进的k-均值 聚类分析技术对所采集的吉林省各县市农业生产的相关数据进行 分析,目的是对吉林省各地农业经济类型进行划分,揭示各地区 农业生产的特点和优势,为加快全省农业经济发展提供依据。 二、改进的聚类算法基本原理 改进的聚类算法的基本思想是:首先对数据集合进行系统聚 类分析,得到聚类树及相应的聚类中心矩阵;接着从聚类树中查 找较早形成的大类,并计算其聚类中心,这样我们就得到了较好 的聚类数k及比较具有代表性的初试聚类中心集合;最后通过k- 均值算法进行聚类分析。 虽然此改进算法需要我们人为的设定条件,但是这些条件都 是在进行系统聚类分析之后的数据基础上得来的,比经典的k-均 值算法的直接判断聚类数和随机抽取初始聚类中心要具有明显的 优势。根据本文待挖掘的数据量和系统聚类的结果,初始条件设

定如下:被判定为较早形成的大类聚类,其包含的数据对象应大于4,与下一次合并的聚类间距越小越好,且应小于所有聚类过程中的聚类间距均值。 三、改进的聚类算法在吉林农业经济类型划分中的应用 分类指标的选择 农业经济系统是一个多因素、多层次、结构复杂的系统,要正确地划分农业经济类型,首先必须选择一套能全面反映当前农业经济状况的指标体系。为此我们根据吉林农业的实际情况,选择对农业经济发展起主导作用的因子作为聚类指标,通过实地调查和对统计资料的综合分析,选定以下10个指标:X1 ,年平均降水量;X2 ,年平均温度;X3 ,农业人口;X4 ,每公顷粮食产量;X5 ,农业机械总动力;X6 ,粮食面积占耕地面积比例; X7 ,林业产值占农业总产值比例;X8 ,牧业产值占农业总产值比例;X9,渔业产值占农业总产值比例;X10 ,人均收入。 数据准备 根据以上10项指标,我们通过查阅xx年《吉林省统计年鉴》可以得到吉林省各地区农业经济各项指标的原始数据,如表1所示。 数据来源:根据xx年《吉林省统计年鉴》整理。 数据挖掘结果 首先对以上数据进行标准化转换,之后采用系统聚类分析法得到聚类树,分析聚类树及聚类间距我们可以得到初始聚类数为

基于向量空间模型的文本聚类算法

基于向量空间模型的文本聚类算法 转自:https://www.doczj.com/doc/6f7119398.html,/2009/0910/15270.php 1 文本聚类研究现状 Internet 已经发展为当今世界上最大的信息库和全球范围内传播信息最主要的渠道。随着Internet 的大规模普及和企业信息化程度的提高,各种资源呈爆炸式增长。在中国互联网络信息中心(CNNIC)2007 年1 月最新公布的中国互联网络发展状况统计报告中显示,70.2% 的网络信息均以文本形式体现。对于这种半结构或无结构化数据,如何从中获取特定内容的信息和知识成为摆在人们面前的一道难题。近年来,文本挖掘、信息过滤和信息检索等方面的研究出现了前所未有的高潮。 作为一种无监督的机器学习方法,聚类技术可以将大量文本信息组成少数有意义的簇,并提供导航或浏览机制。 文本聚类的主要应用点包括: (1) 文本聚类可以作为多文档自动文摘等自然语言处理应用的预处理步骤。其中比较典型的例子是哥伦比亚大学开发的多文档自动文摘系统Newsblaster[1] 。该系统将新闻进行 聚类处理,并对同主题文档进行冗余消除、信息融合、文本生成等处理,从而生成一篇简明扼要的摘要文档。 (2) 对搜索引擎返回的结果进行聚类,使用户迅速定位到所需要的信息。比较典型的系统有Infonetware Real Term Search 。Infonetware 具有强大的对搜索结果进行主题分类的功能。另外,由Carrot Search 开发的基于Java 的开源Carrot2 搜索结果聚合聚类引擎2.0 版也是这方面的利用,Carrot2 可以自动把自然的搜索结果归类( 聚合聚类) 到相应的语义类别中,提供基于层级的、同义的以及标签过滤的功能。 (3) 改善文本分类的结果,如俄亥俄州立大学的Y.C.Fang 等人的工作[2] 。 (4) 文档集合的自动整理。如Scatter/Gather[3] ,它是一个基于聚类的文档浏览系统。 2 文本聚类过程 文本聚类主要依据聚类假设:同类的文档相似度较大,非同类的文档相似度较小。作为一种无监督的机器学习方法,聚类由于不需要训练过程、以及不需要预先对文档手工标注类别,因此具有较高的灵活性和自动化处理能力,成为对文本信息进行有效组织、摘要和导航的重要手段。文本聚类的具体过程如图 1 所示。 图 1 文本聚类过程

K-MEANS聚类算法的实现及应用

内容摘要本文在分析和实现经典k-means算法的基础上,针对初始类中心选择问题,结合已有的工作,基于对象距离和密度对算法进行了改进。在算法实现部分使用vc6.0作为开发环境、sql sever2005作为后台数据库对算法进行了验证,实验表明,改进后的算法可以提高算法稳定性,并减少迭代次数。 关键字 k-means;随机聚类;优化聚类;记录的密度 1 引言 1.1聚类相关知识介绍 聚类分析是直接比较各事物之间性质,将性质相近的归为一类,将性质不同的归为一类,在医学实践中也经常需要做一些分类工作。如根据病人一系列症状、体征和生化检查的结果,将其划分成某几种方法适合用于甲类病的检查,另几种方法适合用于乙类病的检查,等等。聚类分析被广泛研究了许多年。基于聚类分析的工具已经被加入到许多统计分析软件或系统中,入s-plus,spss,以及sas。 大体上,聚类算法可以划分为如下几类: 1) 划分方法。 2) 层次方法。 3) 基于密度的算法。 4) 基于网格的方法。 5) 基于模型的方法。 1.2 研究聚类算法的意义 在很多情况下,研究的目标之间很难找到直接的联系,很难用理论的途径去解决。在各目标之间找不到明显的关联,所能得到的只是些模糊的认识,由长期的经验所形成的感知和由测量所积累的数据。因此,若能用计算机技术对以往的经验、观察、数据进行总结,寻找个目标间的各种联系或目标的优化区域、优化方向,则是对实际问题的解决具有指导意义和应用价值的。在无监督情况下,我们可以尝试多种方式描述问题,其中之一是将问题陈述为对数分组或聚类的处理。尽管得到的聚类算法没有明显的理论性,但它确实是模式识别研究中非常有用的一类技术。聚类是一个将数据集划分为若干聚类的过程,是同一聚类具有较高相似性,不同聚类不具相似性,相似或不相似根据数据的属性值来度量,通常使用基于距离的方法。通过聚类,可以发现数据密集和稀疏的区域,从而发现数据整体的分布模式,以及数据属性间有意义的关联。 2 k-means算法简介 2.1 k-means算法描述 k-means 算法接受输入量k,然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高,而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的。k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数。 k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 2.2 k-means算法实现步骤 在原始的k-means算法中,由于数据对象的分类被不断地调整,因此平均误差准则函数在每次迭代过程中的值必定在不断减小。当没有数据对象被调整时,e(e指每个对象到该类中心的距离平方之和)的值不再变化,说明算法运行结果已经达到最优,同时算法运行结束。

改进C均值聚类算法

改进C 均值聚类算法 C 均值算法属于聚类技术中一种基本的划分方法,具有简单、快速的优点。其基本思想是选取c 个数据对象作为初始聚类中心,通过迭代把数据对象划分到不同的簇中,使簇内部对象之间的相似度很大,而簇之间对象的相似度很小。对C 均值算法的初始聚类中心选择方法进行了改进,提出了一种从数据对象分布出发动态寻找并确定初始聚类中心的思路以及基于这种思路的改进算法。 1、C-均值聚类算法 ① 给出n 个混合样本,令1=I ,表示迭代运算次数,选取c 个初始聚合中心)1(j Z ,c j ,...,2,1=; ② 计算每个样本与聚合中心的距离))(,(I Z x D j k ,n k ,....,2,1=,c j ,...,2,1=。 若},...,2,1)),(,({min ))(,(,...,2,1n k I Z x D I Z x D j k c j i k ===,则i k w x ∈。 ③ 计算c 个新的集合中心:∑== +j n k j k j j x n I Z 1 )(1)1(,c j ,...,2,1=。 ④ 判断:若)()1(I Z I Z j j ≠+,c j ,...,2,1=,则1+=I I ,返回②,否则算法结束。 2、C-均值改进算法的思想 在C-均值算法中,选择不同的初始聚类中心会产生不同的聚类结果且有不同的准确率,此方法就是如何找到与数据在空间分布上尽可能相一致的初始聚类中心。对数据进行划分,最根本的目的是使得一个聚类中的对象是相似的,而不同聚类中的对象是不相似的。如果用距离表示对象之间的相似性程度,相似对象之间的距离比不相似对象之间的距离要小。如果能够寻找到C 个初始中心,它们分别代表了相似程度较大的数据集合,那么就找到了与数据在空间分布上相一致的初始聚类中心。 目前,初始聚类中心选取的方法有很多种,在此仅介绍两种: 1)基于最小距离的初始聚类中心选取法 其主要思想: (1) 计算数据对象两两之间的距离; (2) 找出距离最近的两个数据对象,形成一个数据对象集合A1 ,并将它们从总的数据集合U 中删除; (3) 计算A1 中每一个数据对象与数据对象集合U 中每一个样本的距离,找出在U 中与A1 中最近的数据对象,将它并入集合A1 并从U 中删除, 直到A1 中的数据对象个数到达一定阈值; (4) 再从U 中找到样本两两间距离最近的两个数据对象构成A2 ,重复上面的过程,直到形成k 个对象集合; (5) 最后对k 个对象集合分别进行算术平均,形成k 个初始聚类中心。 这种方法和Huffman 算法一样。后一种算法介绍是是基于最小二叉树的方法,看

k-means文本聚类

目录 1 概念及应用背景 (1) 1.1概念 (1) 1.2应用背景................................................................................... 错误!未定义书签。 2 系统设计框架..................................................................................... 错误!未定义书签。 2.1总体框架................................................................................... 错误!未定义书签。 2.2文本聚类的具体过程 (1) 3应用程序具体实现及说明 (3) 3.1获取文档的输入....................................................................... 错误!未定义书签。 3.2提取文档的TF/IDF权重 (3) 3.3 k-means进行数据聚类 (4) 4 实验结果及分析................................................................................. 错误!未定义书签。 4.1实验结果................................................................................... 错误!未定义书签。 4.2结果分析................................................................................... 错误!未定义书签。5结论...................................................................................................... 错误!未定义书签。 5.1实验结论................................................................................... 错误!未定义书签。 5.2个人感受................................................................................... 错误!未定义书签。附录:项目框架和主程序代码............................................................. 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档