当前位置:文档之家› 数据流聚类算法分析

数据流聚类算法分析

数据流聚类算法分析
数据流聚类算法分析

维普资讯 https://www.doczj.com/doc/672157312.html,

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

数据结构与算法分析习题与参考答案

大学 《数据结构与算法分析》课程 习题及参考答案 模拟试卷一 一、单选题(每题 2 分,共20分) 1.以下数据结构中哪一个是线性结构?( ) A. 有向图 B. 队列 C. 线索二叉树 D. B树 2.在一个单链表HL中,若要在当前由指针p指向的结点后面插入一个由q指向的结点, 则执行如下( )语句序列。 A. p=q; p->next=q; B. p->next=q; q->next=p; C. p->next=q->next; p=q; D. q->next=p->next; p->next=q; 3.以下哪一个不是队列的基本运算?() A. 在队列第i个元素之后插入一个元素 B. 从队头删除一个元素 C. 判断一个队列是否为空 D.读取队头元素的值 4.字符A、B、C依次进入一个栈,按出栈的先后顺序组成不同的字符串,至多可以组成( ) 个不同的字符串? A.14 B.5 C.6 D.8 5.由权值分别为3,8,6,2的叶子生成一棵哈夫曼树,它的带权路径长度为( )。 以下6-8题基于图1。 6.该二叉树结点的前序遍历的序列为( )。 A.E、G、F、A、C、D、B B.E、A、G、C、F、B、D C.E、A、C、B、D、G、F D.E、G、A、C、D、F、B 7.该二叉树结点的中序遍历的序列为( )。 A. A、B、C、D、E、G、F B. E、A、G、C、F、B、D C. E、A、C、B、D、G、F E.B、D、C、A、F、G、E 8.该二叉树的按层遍历的序列为( )。

A.E、G、F、A、C、D、B B. E、A、C、B、D、G、F C. E、A、G、C、F、B、D D. E、G、A、C、D、F、B 9.下面关于图的存储的叙述中正确的是( )。 A.用邻接表法存储图,占用的存储空间大小只与图中边数有关,而与结点个数无关 B.用邻接表法存储图,占用的存储空间大小与图中边数和结点个数都有关 C. 用邻接矩阵法存储图,占用的存储空间大小与图中结点个数和边数都有关 D.用邻接矩阵法存储图,占用的存储空间大小只与图中边数有关,而与结点个数无关 10.设有关键码序列(q,g,m,z,a,n,p,x,h),下面哪一个序列是从上述序列出发建 堆的结果?( ) A. a,g,h,m,n,p,q,x,z B. a,g,m,h,q,n,p,x,z C. g,m,q,a,n,p,x,h,z D. h,g,m,p,a,n,q,x,z 二、填空题(每空1分,共26分) 1.数据的物理结构被分为_________、________、__________和___________四种。 2.对于一个长度为n的顺序存储的线性表,在表头插入元素的时间复杂度为_________, 在表尾插入元素的时间复杂度为____________。 3.向一个由HS指向的链栈中插入一个结点时p时,需要执行的操作是________________; 删除一个结点时,需要执行的操作是______________________________(假设栈不空而 且无需回收被删除结点)。 4.对于一棵具有n个结点的二叉树,一个结点的编号为i(1≤i≤n),若它有左孩子则左 孩子结点的编号为________,若它有右孩子,则右孩子结点的编号为________,若它有 双亲,则双亲结点的编号为________。 5.当向一个大根堆插入一个具有最大值的元素时,需要逐层_________调整,直到被调整 到____________位置为止。 6.以二分查找方法从长度为10的有序表中查找一个元素时,平均查找长度为________。 7.表示图的三种常用的存储结构为_____________、____________和_______________。 8.对于线性表(70,34,55,23,65,41,20)进行散列存储时,若选用H(K)=K %7 作为散列函数,则散列地址为0的元素有________个,散列地址为6的有_______个。 9.在归并排序中,进行每趟归并的时间复杂度为______,整个排序过程的时间复杂度为 ____________,空间复杂度为___________。 10.在一棵m阶B_树上,每个非树根结点的关键字数目最少为________个,最多为________ 个,其子树数目最少为________,最多为________。 三、运算题(每题 6 分,共24分) 1.写出下列中缀表达式的后缀形式: (1)3X/(Y-2)+1 (2)2+X*(Y+3) 2.试对图2中的二叉树画出其: (1)顺序存储表示的示意图; (2)二叉链表存储表示的示意图。 3.判断以下序列是否是小根堆? 如果不是, 将它调 图2 整为小根堆。 (1){ 12, 70, 33, 65, 24, 56, 48, 92, 86, 33 } (2){ 05, 23, 20, 28, 40, 38, 29, 61, 35, 76, 47, 100 } 4.已知一个图的顶点集V和边集E分别为: V={1,2,3,4,5,6,7};

数据流聚类算法D-Stream

Density-Based Clustering for Real-Time Stream Data 基于密度的实时数据流聚类(D-Stream) 翻译by muyefei E-mail: muyefei@https://www.doczj.com/doc/672157312.html, 注释:版权归作者所有,文档仅用于交流学习,可以用大纲视图查看文档结构 摘要:现有的聚类算法比如CluStream是基于k-means算法的。这些算法不能够发现任意形状的簇以及不能处理离群点。而且,它需要预先知道k值和用户指定的时间窗口。为了解决上述问题,本文提出了D-Stream算法,它是基于密度的算法。这个算法用一个在线部分将数据映射到一个网格,在离线部分计算网格的密度然后基于密度形成簇。算法采用了密度衰减技术来捕获数据流的动态变化。为了探索衰减因子、数据密度以及簇结构之间的关系,我们的算法能够有效的并且有效率地实时调整簇。而且,我们用理论证明了移除那些属于离群点的稀疏网格是合理的,从而提高了系统的时间和空间效率。该技术能聚类高速的数据流而不损失聚类质量。实验结果表明我们的算法在聚类质量和效率是有独特的优势,并且能够发现任意形状的簇,以及能准确地识别实时数据流的演化行为。 关键词 流数据挖掘基于密度的聚类D-Stream 分散的网格 1 介绍 实时聚类高维数据流是困难的但很重要。因为它在各个领域应用到。比如... 聚类是一项关键的数据挖掘任务。挖掘数据流有几项关键的挑战: (1)单遍扫描 (2)将数据流视为数据一个很长的向量在很多应用中捉襟见肘,用户更加关注簇的演化行为。 近来,出现了许多数据流聚类方法。比如STREAM、CluStream以及扩展(在多数据流,分布式数据流,并行数据流上的扩展)等。 CluStream以及扩展的算法有以下一些缺陷: 1、只能发现球形簇,不能发现任意形状的簇。 2、不能够识别噪声和离群点。 3、基于k-means的算法需要多次扫描数据(其实CluStream利用两阶段方法和微簇解决了该问题)。 基于密度的聚类算法介绍。基于密度的方法可以发现任意形状的簇,可以处理噪声,对原始数据集只需一次扫描。而且,它不需要像k-means算法那样预先设定k值。 文本提出了D-Stream,一种基于密度的数据流聚类框架。它不是简单用基于密度的算法替代k-means的数据流算法。它有两项主要的技术挑战: 首先,我们不大愿意将数据流视为静态数据很长的一个序列,因为我们对数据流演化的时间特征更加感兴趣。为了捕获簇的动态变化,我们提出了一个新颖的方案,它可以将衰减

1基于网格的数据流聚类算法

3)国家自然科学基金(60172012)。刘青宝 博士生,副教授,主要研究方向为数据仓库技术和数据挖掘;戴超凡 博士,副教授,主要研究方向为数据仓库技术和数据挖掘;邓 苏 博士,教授,主要研究方向指挥自动化、信息综合处理与辅助决策;张维明 博士生导师,教授,主要研究方向为军事信息系统、信息综合处理与辅助决策。 计算机科学2007Vol 134№13   基于网格的数据流聚类算法3) 刘青宝 戴超凡 邓 苏 张维明 (国防科学技术大学信息系统与管理学院 长沙410073)   摘 要 本文提出的基于网格的数据流聚类算法,克服了算法CluStream 对非球形的聚类效果不好等缺陷,不仅能在 噪声干扰下发现任意形状的类,而且有效地解决了聚类算法参数敏感和聚类结果无法区分密度差异等问题。关键词 聚类,数据流,聚类参数,相对密度  G rid 2based Data Stream Clustering Algorithm L IU Qing 2Bao DA I Chao 2Fan DEN G Su ZHAN G Wei 2Ming (College of Information System and Management ,National University of Defense Technology ,Changsha 410073)   Abstract With strong ability for discovering arbitrary shape clusters and handling noise ,grid 2based data stream cluste 2ring algorithm efficiently resolves these problem of being very sensitive to the user 2defined parameters and difficult to distinguish the density distinction of clusters.K eyw ords Clustering ,Data stream ,Clustering parameter ,Relative density 随着计算机和传感器技术的发展和应用,数据流挖掘技术在国内外得到广泛研究。它在网络监控、证券交易分析、电信记录分析等方面有着巨大的应用前景。特别在军事应用中,为了获得及时的战场态势信息,大量使用了各种传感器,对这些传感器数据流的分析处理已显得极为重要。针对数据流数据持续到达,且速度快、规模大等特点,数据流挖掘技术的研究重点是设计高效的单遍数据集扫描算法[12]。数据流聚类问题一直是吸引许多研究者关注的热点问题,已提出多种一次性扫描的方法和算法,如文[1~4]等等,但它们的聚类结果通常是球形的,不能支持对任意形状类的聚类[5]。 本文提出的基于网格的数据流聚类算法,在有限内存条件下,以单遍扫描方式,不仅能在噪声干扰下发现任意形状的类,而且有效地解决了基于绝对密度聚类算法所存在的高密度聚类结果被包含在相连的低密度聚类结果中的问题。 本文第1节简要介绍数据流聚类相关研究,并引出基于网格的数据流聚类算法的思路及其与相关研究的异同;第2节给出基于网格的数据流聚类算法所使用到的基本概念;第3节给出一个完整的基于网格的数据流聚类算法,详细解析算法的执行过程;第4节进行算法性能分析对比;最后总结本文的主要工作和贡献,并指出需要进一步研究和改进的工作。 1 相关研究 在有限内存约束下,一般方法很难对数据流进行任意形状的聚类。第一个增量式聚类挖掘方法是文[6]提出的In 2crementalDBSCAN 算法,它是一个用于数据仓库环境(相对稳定的数据流)的有效聚类算法,可以在有噪声的数据集中发现任意形状的类。但是,它为了形成任意形状的类,必须用类中的所有点来表示,要求获得整个数据流的全局信息,这在内存有限情况下是难以做到的。而且,它采用全局一致的绝对 密度作参数,使得聚类结果对参数值非常敏感,设置的细微不同即可能导致差别很大的聚类结果。 Aggarwal 在2003年提出的一个解决数据流聚类问题的框架CluStream [1]。它使用了两个过程来处理数据流聚类问题:首先,使用一个在线的micro 2cluster 过程对数据流进行初级聚类,并按一定的时间跨度将micro 2cluster 的结果按一种称为pyramid time f rame 的结构储存下来。同时,使用另一个离线的macro 2cluster 过程,根据用户的具体要求对micro 2cluster 聚类的结果进行再分析。但它采用距离作为度量参数,聚类结果通常是球形的,不能支持对任意形状类的聚类。而且,它维护的是micro 2cluster 的聚类特征向量(CF 2x ;CF 1x ;CF 2t ;CF 1t ;n ),这在噪声情况下,会产生干扰误差。 2006年,Feng Cao 等人在文[5]中提出了针对动态进化数据流的DenStream 算法。它相对CluStream 有很大的改进,继承了IncrementalDBSCAN 基于密度的优点,能够支持对有噪声的动态进化(非稳定)的数据流进行任意形状的聚类。但由于采用全局一致的绝对密度作参数,使得聚类结果对参数值非常敏感。同时,与CluStream 算法相比,它只能提供对当前数据流的一种描述,不能反映用户指定时间窗内的流数据的变化情况。 朱蔚恒等在文[13]中提出的基于密度与空间的ACluS 2tream 聚类算法,通过引入有严格空间的意义聚类块,在对数据流进行初步聚类的同时,尽量保留数据的空间特性,有效克服了CluStream 算法不能支持对任意形状聚类的缺陷。但它在处理不属于已有聚类块的新数据点时,使用一种类似“抛硬币”的方法来猜测是否为该点创建一个新的聚类块,误差较大。而且它以绝对密度做参考,所以在聚类结果中无法区分密度等级不同的簇[7]。 本文提出的基于网格的数据流聚类算法GClustream

聚类算法总结

聚类算法的种类:

--------------------------------------------------------- 几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:

--------------------------------------------------------- 目前聚类分析研究的主要内容: 对聚类进行研究是数据挖掘中的一个热门方向,由于以上所介绍的聚类方法都 存在着某些缺点,因此近些年对于聚类分析的研究很多都专注于改进现有的聚 类方法或者是提出一种新的聚类方法。以下将对传统聚类方法中存在的问题以 及人们在这些问题上所做的努力做一个简单的总结: 1 从以上对传统的聚类分析方法所做的总结来看,不管是k-means方法,还是CURE方法,在进行聚类之前都需要用户事先确定要得到的聚类的数目。然而在 现实数据中,聚类的数目是未知的,通常要经过不断的实验来获得合适的聚类 数目,得到较好的聚类结果。 2 传统的聚类方法一般都是适合于某种情况的聚类,没有一种方法能够满足各 种情况下的聚类,比如BIRCH方法对于球状簇有很好的聚类性能,但是对于不 规则的聚类,则不能很好的工作;K-medoids方法不太受孤立点的影响,但是 其计算代价又很大。因此如何解决这个问题成为当前的一个研究热点,有学者 提出将不同的聚类思想进行融合以形成新的聚类算法,从而综合利用不同聚类 算法的优点,在一次聚类过程中综合利用多种聚类方法,能够有效的缓解这个 问题。 3 随着信息时代的到来,对大量的数据进行分析处理是一个很庞大的工作,这 就关系到一个计算效率的问题。有文献提出了一种基于最小生成树的聚类算法,该算法通过逐渐丢弃最长的边来实现聚类结果,当某条边的长度超过了某个阈值,那么更长边就不需要计算而直接丢弃,这样就极大地提高了计算效率,降 低了计算成本。 4 处理大规模数据和高维数据的能力有待于提高。目前许多聚类方法处理小规 模数据和低维数据时性能比较好,但是当数据规模增大,维度升高时,性能就 会急剧下降,比如k-medoids方法处理小规模数据时性能很好,但是随着数据 量增多,效率就逐渐下降,而现实生活中的数据大部分又都属于规模比较大、 维度比较高的数据集。有文献提出了一种在高维空间挖掘映射聚类的方法PCKA (Projected Clustering based on the K-Means Algorithm),它从多个维度中选择属性相关的维度,去除不相关的维度,沿着相关维度进行聚类,以此对 高维数据进行聚类。 5 目前的许多算法都只是理论上的,经常处于某种假设之下,比如聚类能很好 的被分离,没有突出的孤立点等,但是现实数据通常是很复杂的,噪声很大, 因此如何有效的消除噪声的影响,提高处理现实数据的能力还有待进一步的提高。

数据结构与算法分析—期末复习题及答案

单选题(每题2 分,共20分) 1.对一个算法的评价,不包括如下(B )方面的容。 A.健壮性和可读性B.并行性C.正确性D.时空复杂度 2.在带有头结点的单链表HL中,要向表头插入一个由指针p指向的结点,则执行( A )。 A. p->next=HL->next; HL->next=p; B. p->next=HL; HL=p; C. p->next=HL; p=HL; D. HL=p; p->next=HL; 3.对线性表,在下列哪种情况下应当采用链表表示?( B ) A.经常需要随机地存取元素 B.经常需要进行插入和删除操作 C.表中元素需要占据一片连续的存储空间 D.表中元素的个数不变 4.一个栈的输入序列为1 2 3,则下列序列中不可能是栈的输出序列的是( C ) A. 2 3 1 B. 3 2 1 C. 3 1 2 D. 1 2 3 6.若需要利用形参直接访问实参时,应将形参变量说明为(D )参数。 A.值B.函数C.指针D.引用 8.在稀疏矩阵的带行指针向量的存储中,每个单链表中的结点都具有相同的(A )。 A.行号B.列号C.元素值D.非零元素个数 10. 从二叉搜索树中查找一个元素时,其时间复杂度大致为(C )。 A. O(n) B. O(1) C. O(log2n) D. O(n2) 二、运算题(每题6 分,共24分) 1.数据结构是指数据及其相互之间的_联系。当结点之间存在M对N(M:N)的联系时,称这种结构为 __图__。 2.队列的插入操作是在队列的___尾_进行,删除操作是在队列的_首_进行。 3.当用长度为N的数组顺序存储一个栈时,假定用top==N表示栈空,则表示栈满的条件是___top==0___(要超出才为满)_______________。 4.对于一个长度为n的单链存储的线性表,在表头插入元素的时间复杂度为___ O(1)__,在表尾 插入元素的时间复杂度为___ O(n)___。 5.设W为一个二维数组,其每个数据元素占用4个字节,行下标i从0到7 ,列下标j从0到3 , 则二维数组W的数据元素共占用_128__个字节。W中第6 行的元素和第4 列的元素共占用__44_个字节。 若按行顺序存放二维数组W,其起始地址为100,则二维数组元素W[6,3]的起始地址__108_。 7.二叉树是指度为2的___有序___树。一棵结点数为N的二叉树,其所有结点的度的总和是 ___n-1____。 8.对一棵二叉搜索树进行中序遍历时,得到的结点序列是一个_有序序列__。对一棵由算术表达式组 成的二叉语法树进行后序遍历得到的结点序列是该算术表达式的__后缀表达式____。 9.对于一棵具有n个结点的二叉树,用二叉链表存储时,其指针总数为_____________个,其中 _______________个用于指向孩子,_________________个指针是空闲的。 10.若对一棵完全二叉树从0开始进行结点的编号,并按此编号把它顺序存储到一维数组A中,即编号为0 的结点存储到A[0]中。其余类推,则A[ i ]元素的左孩子元素为________,右孩子元素为_______________,双亲元素为____________。 11.在线性表的散列存储中,处理冲突的常用方法有________________________和 _____________________________两种。

聚类分析算法解析

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象<- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法"median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

聚类算法分析报告汇总

嵌入式方向工程设计实验报告 学院班级:130712 学生学号:13071219 学生姓名:杨阳 同作者:无 实验日期:2010年12月

聚类算法分析研究 1 实验环境以及所用到的主要软件 Windows Vista NetBeans6.5.1 Weka3.6 MATLAB R2009a 2 实验内容描述 聚类是对数据对象进行划分的一种过程,与分类不同的是,它所划分的类是未知的,故此,这是一个“无指导的学习” 过程,它倾向于数据的自然划分。其中聚类算法常见的有基于层次方法、基于划分方法、基于密度以及网格等方法。本文中对近年来聚类算法的研究现状与新进展进行归纳总结。一方面对近年来提出的较有代表性的聚类算法,从算法思想。关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析。最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题等。 实验中主要选择了K 均值聚类算法、FCM 模糊聚类算法并以UCI Machine Learning Repository 网站下载的IRIS 和WINE 数据集为基础通过MATLAB 实现对上述算法的实验测试。然后以WINE 数据集在学习了解Weka 软件接口方面的基础后作聚类分析,使用最常见的K 均值(即K-means )聚类算法和FCM 模糊聚类算法。下面简单描述一下K 均值聚类的步骤。 K 均值算法首先随机的指定K 个类中心。然后: (1)将每个实例分配到距它最近的类中心,得到K 个类; (2)计分别计算各类中所有实例的均值,把它们作为各类新的类中心。 重复(1)和(2),直到K 个类中心的位置都固定,类的分配也固定。 在实验过程中通过利用Weka 软件中提供的simpleKmeans (也就是K 均值聚类算法对WINE 数据集进行聚类分析,更深刻的理解k 均值算法,并通过对实验结果进行观察分析,找出实验中所存在的问题。然后再在学习了解Weka 软件接口方面的基础上对Weka 软件进行一定的扩展以加入新的聚类算法来实现基于Weka 平台的聚类分析。 3 实验过程 3.1 K 均值聚类算法 3.1.1 K 均值聚类算法理论 K 均值算法是一种硬划分方法,简单流行但其也存在一些问题诸如其划分结果并不一定完全可信。K 均值算法的划分理论基础是 2 1 min i c k i k A i x v ∈=-∑∑ (1) 其中c 是划分的聚类数,i A 是已经属于第i 类的数据集i v 是相应的点到第i 类的平均距离,即

K-means聚类算法分析应用研究

K-means聚类算法分析应用研究 发表时间:2011-05-09T08:59:20.143Z 来源:《魅力中国》2011年3月上作者:李曼赵松林 [导读] 本文浅谈了数字图像处理的发展概况、研究背景并对彩色图像K-means算法进行分析。 李曼赵松林 (商丘职业技术学院河南商丘,476000) 中图分类号:TP39 文献标识码:A 文章编号:1673-0992(2011)03-0000-01 摘要:本文浅谈了数字图像处理的发展概况、研究背景并对彩色图像K-means算法进行分析.主要详细谈论了是对K-means算法的一些认识,并且介绍K-means聚类的算法思想、工作原理、聚类算法流程、以及对算法结果进行分析,得出其特点及实际使用情况。 关键字:数字图像处理;K-means算法;聚类 一、数字图像处理发展概况及边缘的概念 数字图像处理(Digital Image Processing)即计算机图像处理,就是利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术[1]。最早出现于20世纪50年代,它作为一门学科大约形成于20世纪60年代初期。它以改善图像的质量为对象,以改善人的视觉效果为目的。在处理过程中,输入低质量图像,输出质量高图像,图像增强、复原、编码、压缩等都是图像处理常用的方法[1]。数字图像处理在航天、航空、星球探测、通信技术、军事公安、生物工程和医学等领域都有广泛的应用,并取得了巨大的成就。 边缘就是图像中灰度有阶跃变化或屋顶变化的像素的集合,边缘是图像最重要的特征之一,它包含了图像的大部分信息。实质上边缘检测就是采用算法提取图像中对象与背景间的交界线。在目标与背景、目标与目标、区域与区域、基元与基元之间都存在边缘,这是图像分割所依赖的最重要的特征之一。根据灰度变化的剧烈程度,边缘可以分为两种:一种是屋顶边缘,一种为阶跃性边缘。对于屋顶状边缘,二阶导数在边缘初取极值,而对阶跃性边缘,二阶导数在边缘处零交叉;。 二、彩色图像的K-means聚类算法 (一)K-means聚类 聚类就是把数据分成几组,按照定义的测量标准,同组内数据与其他组数据相比具有较强的相似性。K-means聚类就是首先从n个数据对象任选k个对象作为初始聚类中心;剩下的其它对象,则根据它们与这些聚类中心的距离(相似度),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);一直重复此过程直至标准测度函数收敛为止。通常都采用均方差作标准测度函数。k个聚类有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 聚类的用途是很广泛的。在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。 (二)算法思想分析 输入:聚类个数k,以及包含 n个数据对象的彩色图片。 输出:满足方差最小标准的k个聚类。 处理流程: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (3)重新计算每个(有变化)聚类的均值(中心对象); (4)循环(2)到(3)直到每个聚类不再发生变化为止。 首先设置K值,也就是确定若干个聚类中心。使用rand函数随机获得K个颜色值,存放在矩阵miu中,第一次对每个像素点中的K种颜色进行迭代运算,得到最小的颜色矩阵的2范数,同时标记该颜色,依次相加的到各点的颜色矩阵总值。再次迭代得到K中颜色的各个矩阵均值。最后提取出标记的各个颜色,依次对各个点进行颜色赋值,使每个像素点的颜色归类。得到聚类后的图像。 (三)算法的数学描述 (四)算法过程分析 设置K值为8,读入一幅图片后计算图像上所有的像素点个数为N,即令N=size(X,1)*size(X,2),令颜色矩阵R为矩阵[N,K]并清零。随机获得颜色聚类中心为Miu=fix(255*rand(K,3))。

数据结构与算法分析习题及参考答案

四川大学计算机学院 《数据结构与算法分析》课程模拟试卷及参考答案 模拟试卷一 一、 单选题(每题 2 分,共20分) 1. 以下数据结构中哪一个是线性结构?( ) A. 有向图 B. 队列 C. 线索二叉树 D. B 树 2. 在一个单链表HL 中,若要在当前由指针p 指向的结点后面插入一个由q 指向的结点, 则执行如下( )语句序列。 A. p=q; p->next=q; B. p->next=q; q->next=p; C. p->next=q->next; p=q; D. q->next=p->next; p->next=q; 3. 以下哪一个不是队列的基本运算?( ) A. 在队列第i 个元素之后插入一个元素 B. 从队头删除一个元素 C. 判断一个队列是否为空 D.读取队头元素的值 4. 字符A 、B 、C 依次进入一个栈,按出栈的先后顺序组成不同的字符串,至多可以组成 ( )个不同的字符串? A.14 B.5 C.6 D.8 5. 由权值分别为3,8,6,2的叶子生成一棵哈夫曼树,它的带权路径长度为( )。 A . 11 B.35 C. 19 D. 53 以下6-8题基于图1。 6. 该二叉树结点的前序遍历的序列为( )。 A. E 、G 、F 、A 、C 、D 、B B. E 、A 、G 、C 、F 、B 、D C. E 、A 、C 、B 、D 、G 、F D. E 、G 、A 、C 、D 、F 、B 7. 该二叉树结点的中序遍历的序列为( )。 A. A 、B 、C 、D 、E 、G 、F B. E 、A 、G 、C 、F 、B 、D C. E 、A 、C 、B 、D 、G 、F E. B 、D 、C 、A 、F 、G 、E 8. 该二叉树的按层遍历的序列为( )。 A .E 、G 、F 、A 、C 、D 、 B B. E 、A 、 C 、B 、 D 、G 、F C. E 、A 、G 、C 、F 、B 、D D. E 、G 、A 、C 、D 、F 、B E A G C B D F 图1

数据结构和算法习题及答案解析

第1章绪论 习题 1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。 2.试举一个数据结构的例子,叙述其逻辑结构和存储结构两方面的含义和相互关系。 3.简述逻辑结构的四种基本关系并画出它们的关系图。 4.存储结构由哪两种基本的存储方法实现? 5.选择题 (1)在数据结构中,从逻辑上可以把数据结构分成()。 A.动态结构和静态结构 B.紧凑结构和非紧凑结构 C.线性结构和非线性结构 D.部结构和外部结构 (2)与数据元素本身的形式、容、相对位置、个数无关的是数据的()。 A.存储结构 B.存储实现 C.逻辑结构 D.运算实现 (3)通常要求同一逻辑结构中的所有数据元素具有相同的特性,这意味着()。 A.数据具有同一特点 B.不仅数据元素所包含的数据项的个数要相同,而且对应数据项的类型要一致 C.每个数据元素都一样 D.数据元素所包含的数据项的个数要相等 (4)以下说确的是()。 A.数据元素是数据的最小单位 B.数据项是数据的基本单位 C.数据结构是带有结构的各数据项的集合 D.一些表面上很不相同的数据可以有相同的逻辑结构 (5)以下与数据的存储结构无关的术语是()。 A.顺序队列 B. 链表 C.有序表 D. 链栈(6)以下数据结构中,()是非线性数据结构 A.树 B.字符串 C.队 D.栈 6.试分析下面各程序段的时间复杂度。 (1)x=90; y=100; while(y>0) if(x>100) {x=x-10;y--;} else x++; (2)for (i=0; i

数据结构与算法分析》实验报告

《数据结构与算法分析》实验报告 姓名学号_ _____ __年__月__ __日 1. 上机题目:以静态链表为存储结构,编写给定权值 {7,19,2,6,32,3}构造哈夫曼树的算法。(输出以存储结构表示或以树型显示(90度旋转)) 2.需求分析 (1)输入数据必须为int的整形数据,其数值范围为:-21474836~2147483647 (2)输出的数据格式为:%d (3)测试数据的数据为:{7,19,2,6,32,3} 3.详细设计 (1)该程序采用顺序表的存储结构,其数据结构定义如下:#define n 6 #define m 2*n-1 #define max 100typedef struct {int data; int lchild,rchild,prnt; }hufmtree; 所用数据类型中每个操作的伪码算法如下: 创建哈夫曼树 Program hufm(hufmtree t[m]) FOR i=0;i

FOR i=n;i

聚类分析(Q型,R型聚类)算法

信息与计算科学专业课程设计 信息与计算科学专业实验报告 课程名称数据挖掘原理与算法总实验学时:第次共次实验项目名称聚类分析本次实验学时数:实验类型日期20 16 年 5 月 25 日星期三年级本13信计01班学生姓名黄顺团学号20134390131 课任教师唐志刚 1.实验目的: 用数据挖掘聚类算法(Q型聚类、R型聚类)求分类微博数据。 2.实验环境: MATLAB 7.0。 Windows 7操作系统。

3.实验内容 由于数据集比较大,数据TXT文件不引入报告中。命名为julei.txt。相关两个源文件代码文件如下: 1、Untitled.m clc,clear load julei.txt %把原始数据保存在纯文本文件julei.txt 中 r=corrcoef(julei); %计算相关系数矩阵 d=1-r; %进行数据变换,把相关系数转化为距离 d=tril(d); %取出矩阵d 的下三角元素 d=nonzeros(d); %取出非零元素 d=d'; %化成行向量 z=linkage(d,'average'); %按类平均法聚类 dendrogram(z); %画聚类图 T=cluster(z,'maxclust',4) %把变量划分成4类 for i=1:4 tm=find(T==i); %求第i 类的对象 tm=reshape(tm,1,length(tm)); %变成行向量 fprintf('第%d类的有%s \n',i,int2str(tm)); %显示分类结果end r %显示相关系数矩阵 2、Untitled2.m clc,clear load julei.txt %把原始数据保存在纯文本文件julei.txt中 julei(:,5)=[]; %删除数据矩阵的第5列,即使用变量1,2,3,4 julei=zscore(julei); %数据标准化 y=pdist(julei); %求对象间的欧氏距离,每行是一个对象 z=linkage(y,'average'); %按类平均法聚类 dendrogram(z); %画聚类图 for k=2:8 fprintf('划分成%d类的结果如下:\n',k) T=cluster(z,'maxclust',k); %把样本点划分成k类

相关主题
文本预览
相关文档 最新文档