当前位置:文档之家› 基于信息熵降维的混合属性数据流聚类算法

基于信息熵降维的混合属性数据流聚类算法

基于信息熵降维的混合属性数据流聚类算法
基于信息熵降维的混合属性数据流聚类算法

K - M e a n s 聚 类 算 法

基于K-means聚类算法的入侵检测系统的设计 基于K-means聚类算法的入侵检测系统的设计 今天给大家讲述的是K-means聚类算法在入侵检测系统中的应用首先,介绍一下 聚类算法 将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程的研究,就形成了历史学,有关世界空间地域的研究,则形成了地理学。 又如在生物学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将它们归属于不同的界、门、纲、目、科、属、种之中。 事实上,分门别类地对事物进行研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具有更多的近似特性。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analysis)作为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。 (聚类分析我们说得朴实一点叫做多元统计分析,说得时髦一点叫做数据挖掘算法,因为这个算法可以在一堆数据中获取很有用的信息,这就不就是数据挖掘吗,所以大家平时也不要被那些高大上的名词给吓到了,它背后的核心原理大多数我们都是可以略懂一二的,再

比如说现在AI这么火,如果大家还有印象的话,以前我们在大二上学习概率论的时候,我也和大家分享过自然语言处理的数学原理,就是如何让机器人理解我们人类的自然语言,比如说,苹果手机上的Siri系统,当时还让杨帆同学帮我在黑板上写了三句话,其实就是贝叶斯公式+隐含马尔可夫链。估计大家不记得了,扯得有点远了接下来还是回归我们的正题,今天要讨论的聚类算法。) K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,结果稳定,聚类的效果也还不错, 相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。 要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似程度。一个事物常常需要用多个特征变量来刻画,就比如说我们举一个例证,就有一项比较神奇的技术叫面部识别技术,其实听起来很高大上,它是如何做到的,提取一个人的面部特征,比如说嘴巴的长度,鼻梁的高度,眼睛中心到鼻子的距离,鼻子到嘴巴的距离,这些指标对应得数值可以组成一个向量作为每一个个体的一个标度变量(),或者说叫做每一个人的一个特征向量。 如果对于一群有待分类的样本点需用p 个特征变量值描述,则每

【CN110084316A】一种基于精细时移多尺度排列熵与萤火虫算法优化支持向量机的故障诊断方法【专

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910372132.X (22)申请日 2019.05.06 (71)申请人 安徽工业大学 地址 243002 安徽省马鞍山市湖东路59号 (72)发明人 董治麟 郑近德 潘海洋 童靳于  刘庆运 张义方  (74)专利代理机构 合肥顺超知识产权代理事务 所(特殊普通合伙) 34120 代理人 周发军 (51)Int.Cl. G06K 9/62(2006.01) G06K 9/00(2006.01) G06N 3/00(2006.01) (54)发明名称 一种基于精细时移多尺度排列熵与萤火虫 算法优化支持向量机的故障诊断方法 (57)摘要 本发明公开了故障诊断技术领域的一种基 于精细时移多尺度排列熵与支持向量机的故障 诊断方法,本发明的步骤为:采集待诊断物体的 原始故障振动信号;提取原始故障振动信号的精 细时移多尺度排列熵值;将故障样本分为多个训 练样本和测试样本;采用多个训练样本对基于萤 火虫优化的支持向量机多故障分类器进行训练; 采用已训练完成的多故障分类器(萤火虫算法优 化的支持向量机)对测试样本进行分类;根据分 类结果识别故障物体的工作状态和故障类型。本 发明提出的故障诊断方法在特征提取的过程中 有较高的创新性,在故障识别过程中具有较高的 识别度。权利要求书3页 说明书7页 附图4页CN 110084316 A 2019.08.02 C N 110084316 A

1.一种基于精细时移多尺度排列熵与萤火虫算法优化的支持向量机的故障诊断方法,其特征在于:包括步骤: 步骤1-1:采集待诊断物体的原始故障振动信号; 步骤1-2:提取原始故障振动信号的精细时移多尺度排列熵值; 步骤1-3:将故障特征样本分为多个训练样本和测试样本; 步骤1-4:采用多个训练样本对基于萤火虫算法优化的支持向量机的多故障特征分类器进行训练; 步骤1-5:采用已训练完成的多故障特征分类器对测试样本进行分类; 步骤1-6:根据分类结果识别物体的工作状态和故障类型。 2.根据权利要求1所述的一种基于精细时移多尺度排列熵与萤火虫算法优化的支持向量机的故障诊断方法,其特征在于:步骤1-2中所测取原始故障信息的精细时移多尺度排列熵值的过程包括: 步骤2-1:对获取的原始故障振动信号进行时移粗粒化; 步骤2-2:计算同一尺度因子τ下生成的τ个符号序列的概率; 步骤2-3:对同一尺度下的所有符号概率求平均,通过信息熵的定义得到原始故障振动信号的精细时移多尺度排列熵值; 步骤2-4:对所有的尺度因子重复步骤2-2到2-3的操作,得到振动信号在所有尺度因子下的精细时移多尺度排列熵值。 3.根据权利要求1所述的一种基于精细时移多尺度排列熵与萤火虫算法优化的支持向量机的故障诊断方法,其特征在于:步骤1-5中所述萤火虫算法优化的支持向量机用于对故障特征样本中各样本的工作状态和故障类型进行分类,并分别根据已经训练完成的多故障特征分类器中的每单一萤火虫算法优化的支持向量机的输出O(y)是否是+1进行判断;具体判断步骤包括: 步骤3-1:若输出是O(y)=+1,则停止输入到下一个支持向量机,输出该测试样本集的分类; 步骤3-2:若输出是O(y)=-1,则将该测试样本输入到下一个支持向量机,直到输出结果为+1时,输出测试样本的分类。 4.根据权利要求2所述的一种基于精细时移多尺度排列熵与萤火虫算法优化的支持向量机的故障诊断方法,其特征在于:步骤2-1中所述时移粗粒化过程包括: 步骤4-1:对于给定的尺度因子τ和时间序列X={x 1,x 2,...x N },经过时移的处理,可以 得到新的时间序列: 其中,k(1≤k≤τ)和β(β=τ)是正整数,分别表示时间序列的起点和间隔点数,i表示时间序列y的第i个点;Δ(k,β)=(N - β)/k,是四舍五入的整数并表示上边界个数;步骤4-2:尺度因子为τ,对得到的y k ,β 中的每个序列依次进行粗粒化, 其表达式为如下:其中,j表示时间序列Z的第j个点。 权 利 要 求 书1/3页2CN 110084316 A

基于信息熵的快速求核算法

收稿日期!"##$%&"%&’基金项目!国家自然科学基金重点资助项目()*+’$##&,作者简介!徐章艳-男-&*."年生-博士研究生-讲师-研究方向为模糊集-粗糙集-数据挖掘/杨炳儒-男-&*0’年生-教授-博士生导师-研究方向为人工智能-数据挖掘/郭燕萍-女-&*+"年生-硕士研究生-研究方向为粗糙集-数据挖掘/宋威-男-&*+#年生-博士研究生-研究方向为粗糙集-数据挖掘1 基于信息熵的快速求核算法 徐章艳&-"-杨炳儒"-郭燕萍&-宋威" &(广西师范大学 计算机系-广西桂林$0&##0,"( 北京科技大学 信息工程学院-北京&###+’, 2%3456!789:67.";84<==1>=31>? 摘 要!基于信息熵的求核算法的最好时间复杂度为@(A B A " A C A 6=D A C A ,1为降低算法的时间复杂度-本文首先给出了基于信息熵的简化差别矩阵及相应核的定义-并证明了该核与基于信息熵的属性约简的核是等价的1然后以基数排序的思想设计了一个新的求C E B 的算法-其时间复杂度为@(A B A A C A ,1在此基础上-设计了一个新求核算法-其时间复杂度被降为347F @(A B A A C E B A " ,-@(A B A A C A ,G 1最后用一个实例说明了新求核算法的高效性1关键词!H =I D =3r 6K 75L 8=5L =3r I L 5?D>=p K 644K 7=?5?5=p 34L 5=?K ?L p =r 854@(A B A " A C A 6=D A C A ,18=p >I L L 5?D 7=:?L =3r 6K 75L 8-L K p ?56565L 834L p 57644K 7=?5?5=p 34L 5=?K ?L p =r 84?7L =p p K 4r =?75?D 7K 55?5L 5=?=5>=p K 4p K 55p 4L r p =957K 71O L L =p K 54L =p K 644K 7=?5?5=p 34L 5=?K ?L p =r 81M =3r I L 5?D C E B547K 45D ?K 7-5L 4L 53K >=3r 6K 75L 854@(A B A A C A ,1q ?L <54>=?75L 5=?-4?K :46 D =p 5L <35=p >=3r I L 5?D>=p K 547K 45D ?K 7-4?75L 4L 53K >=3r 6K 75L 854>I L 7=:?L =347 F @(A B A A C E B A " ,-@(A B A A C A ,G 1O L L 5K ?L =5L <54?K :46D =p 5L <31 :a h ;X Y e d !p =I D <4K L /5?5=p 34L 5=?K ?L p =r 8/>=p K /453r 6555K 775>K p ?56565L 834L p 57/>=3r 6K 75L 8 <引 言 在粗糙集理论=&-"> 中-属性约简是重要研究内容之一1在 很多属性约简算法中-一般都要求先求出核属性集-然后再由核属性集通过启发式知识扩展到最小约简1因此-提高求核算法的效率是一件很有意义的工作1 为避免通过求出决策表中的所有不可缺少属性来求核这一方法的缺点-?j 给出一种基于差别矩阵的求核方法=’> -该方法可有效地减少计算量-提高求核的效率-但该方法的时间 复杂度为@(A B A A C A " , 1另一方面-王国胤教授在文献=0>中指出在不一致决策表中-由?j 的差别矩阵求出的核与基于信息熵的属性约简中所定义的核(简称信息熵的核,是不一致的1到目前为止还没有学者试图用差别矩阵的方法来求信息熵的核1文献=0>中讨论过基于信息熵的求核算法-该算法是利用信息熵的核的性质!@w A ,|x u (B ,的充分必要条件是B (t A B ,C F w G ,D B (t A B ,来设计的1要判断条件属性w 是否是核属性-只有计算出B (t A B C F w G ,和B (t A B ,后才能判断-而计算B (t A B C F w G ,的时间复杂度由文献=0%)>知为@(A B A A C A " , -若用文献=.>的方法求出C E B -则计算B (t A B C F w G ,的时间复杂度为@(A B A A C A 6=D A C A ,-故利用核的性质设计的求核算法的最好时间复杂度为@(A B A "A C A 6=D A C A ,1为降低求基于信息熵的核的算法的时间复杂度-本该首先给出了简化决策表-然后定义了简化决策表的差别矩阵(简称为简化差别矩阵,和基于简化差别矩阵的核-同时证明了该核就是基于信息熵的核1由于计算简化差别矩阵时-首先要计算C E B -故以基数排序的思想设计了一个新的求 C E B 的算法-其时间复杂度被降为@(A B A A C A ,1在此基础上-我们设计了一个新的求核算法-其时间复杂度降为347F @(A B A A C E B A " ,-@(A B A A C A ,G 1最后用一个实例说明了新求核算法的高效性1E 相关定义及定理 定义<=&-"> 1设五元组+F (C -B -t -G -},是一个决策表-其中C F F # &-#"-H -#{G 表示对象的非空有限集-称为论域/B 表示条件属性的非空有限集/t 表示决策属性的非空有限集且B I t FJ /G F K w A B K t G w -其中G w 是属性w 的值域/}!C L B 万方数据

数据流聚类算法D-Stream

Density-Based Clustering for Real-Time Stream Data 基于密度的实时数据流聚类(D-Stream) 翻译by muyefei E-mail: muyefei@https://www.doczj.com/doc/5614122266.html, 注释:版权归作者所有,文档仅用于交流学习,可以用大纲视图查看文档结构 摘要:现有的聚类算法比如CluStream是基于k-means算法的。这些算法不能够发现任意形状的簇以及不能处理离群点。而且,它需要预先知道k值和用户指定的时间窗口。为了解决上述问题,本文提出了D-Stream算法,它是基于密度的算法。这个算法用一个在线部分将数据映射到一个网格,在离线部分计算网格的密度然后基于密度形成簇。算法采用了密度衰减技术来捕获数据流的动态变化。为了探索衰减因子、数据密度以及簇结构之间的关系,我们的算法能够有效的并且有效率地实时调整簇。而且,我们用理论证明了移除那些属于离群点的稀疏网格是合理的,从而提高了系统的时间和空间效率。该技术能聚类高速的数据流而不损失聚类质量。实验结果表明我们的算法在聚类质量和效率是有独特的优势,并且能够发现任意形状的簇,以及能准确地识别实时数据流的演化行为。 关键词 流数据挖掘基于密度的聚类D-Stream 分散的网格 1 介绍 实时聚类高维数据流是困难的但很重要。因为它在各个领域应用到。比如... 聚类是一项关键的数据挖掘任务。挖掘数据流有几项关键的挑战: (1)单遍扫描 (2)将数据流视为数据一个很长的向量在很多应用中捉襟见肘,用户更加关注簇的演化行为。 近来,出现了许多数据流聚类方法。比如STREAM、CluStream以及扩展(在多数据流,分布式数据流,并行数据流上的扩展)等。 CluStream以及扩展的算法有以下一些缺陷: 1、只能发现球形簇,不能发现任意形状的簇。 2、不能够识别噪声和离群点。 3、基于k-means的算法需要多次扫描数据(其实CluStream利用两阶段方法和微簇解决了该问题)。 基于密度的聚类算法介绍。基于密度的方法可以发现任意形状的簇,可以处理噪声,对原始数据集只需一次扫描。而且,它不需要像k-means算法那样预先设定k值。 文本提出了D-Stream,一种基于密度的数据流聚类框架。它不是简单用基于密度的算法替代k-means的数据流算法。它有两项主要的技术挑战: 首先,我们不大愿意将数据流视为静态数据很长的一个序列,因为我们对数据流演化的时间特征更加感兴趣。为了捕获簇的动态变化,我们提出了一个新颖的方案,它可以将衰减

1基于网格的数据流聚类算法

3)国家自然科学基金(60172012)。刘青宝 博士生,副教授,主要研究方向为数据仓库技术和数据挖掘;戴超凡 博士,副教授,主要研究方向为数据仓库技术和数据挖掘;邓 苏 博士,教授,主要研究方向指挥自动化、信息综合处理与辅助决策;张维明 博士生导师,教授,主要研究方向为军事信息系统、信息综合处理与辅助决策。 计算机科学2007Vol 134№13   基于网格的数据流聚类算法3) 刘青宝 戴超凡 邓 苏 张维明 (国防科学技术大学信息系统与管理学院 长沙410073)   摘 要 本文提出的基于网格的数据流聚类算法,克服了算法CluStream 对非球形的聚类效果不好等缺陷,不仅能在 噪声干扰下发现任意形状的类,而且有效地解决了聚类算法参数敏感和聚类结果无法区分密度差异等问题。关键词 聚类,数据流,聚类参数,相对密度  G rid 2based Data Stream Clustering Algorithm L IU Qing 2Bao DA I Chao 2Fan DEN G Su ZHAN G Wei 2Ming (College of Information System and Management ,National University of Defense Technology ,Changsha 410073)   Abstract With strong ability for discovering arbitrary shape clusters and handling noise ,grid 2based data stream cluste 2ring algorithm efficiently resolves these problem of being very sensitive to the user 2defined parameters and difficult to distinguish the density distinction of clusters.K eyw ords Clustering ,Data stream ,Clustering parameter ,Relative density 随着计算机和传感器技术的发展和应用,数据流挖掘技术在国内外得到广泛研究。它在网络监控、证券交易分析、电信记录分析等方面有着巨大的应用前景。特别在军事应用中,为了获得及时的战场态势信息,大量使用了各种传感器,对这些传感器数据流的分析处理已显得极为重要。针对数据流数据持续到达,且速度快、规模大等特点,数据流挖掘技术的研究重点是设计高效的单遍数据集扫描算法[12]。数据流聚类问题一直是吸引许多研究者关注的热点问题,已提出多种一次性扫描的方法和算法,如文[1~4]等等,但它们的聚类结果通常是球形的,不能支持对任意形状类的聚类[5]。 本文提出的基于网格的数据流聚类算法,在有限内存条件下,以单遍扫描方式,不仅能在噪声干扰下发现任意形状的类,而且有效地解决了基于绝对密度聚类算法所存在的高密度聚类结果被包含在相连的低密度聚类结果中的问题。 本文第1节简要介绍数据流聚类相关研究,并引出基于网格的数据流聚类算法的思路及其与相关研究的异同;第2节给出基于网格的数据流聚类算法所使用到的基本概念;第3节给出一个完整的基于网格的数据流聚类算法,详细解析算法的执行过程;第4节进行算法性能分析对比;最后总结本文的主要工作和贡献,并指出需要进一步研究和改进的工作。 1 相关研究 在有限内存约束下,一般方法很难对数据流进行任意形状的聚类。第一个增量式聚类挖掘方法是文[6]提出的In 2crementalDBSCAN 算法,它是一个用于数据仓库环境(相对稳定的数据流)的有效聚类算法,可以在有噪声的数据集中发现任意形状的类。但是,它为了形成任意形状的类,必须用类中的所有点来表示,要求获得整个数据流的全局信息,这在内存有限情况下是难以做到的。而且,它采用全局一致的绝对 密度作参数,使得聚类结果对参数值非常敏感,设置的细微不同即可能导致差别很大的聚类结果。 Aggarwal 在2003年提出的一个解决数据流聚类问题的框架CluStream [1]。它使用了两个过程来处理数据流聚类问题:首先,使用一个在线的micro 2cluster 过程对数据流进行初级聚类,并按一定的时间跨度将micro 2cluster 的结果按一种称为pyramid time f rame 的结构储存下来。同时,使用另一个离线的macro 2cluster 过程,根据用户的具体要求对micro 2cluster 聚类的结果进行再分析。但它采用距离作为度量参数,聚类结果通常是球形的,不能支持对任意形状类的聚类。而且,它维护的是micro 2cluster 的聚类特征向量(CF 2x ;CF 1x ;CF 2t ;CF 1t ;n ),这在噪声情况下,会产生干扰误差。 2006年,Feng Cao 等人在文[5]中提出了针对动态进化数据流的DenStream 算法。它相对CluStream 有很大的改进,继承了IncrementalDBSCAN 基于密度的优点,能够支持对有噪声的动态进化(非稳定)的数据流进行任意形状的聚类。但由于采用全局一致的绝对密度作参数,使得聚类结果对参数值非常敏感。同时,与CluStream 算法相比,它只能提供对当前数据流的一种描述,不能反映用户指定时间窗内的流数据的变化情况。 朱蔚恒等在文[13]中提出的基于密度与空间的ACluS 2tream 聚类算法,通过引入有严格空间的意义聚类块,在对数据流进行初步聚类的同时,尽量保留数据的空间特性,有效克服了CluStream 算法不能支持对任意形状聚类的缺陷。但它在处理不属于已有聚类块的新数据点时,使用一种类似“抛硬币”的方法来猜测是否为该点创建一个新的聚类块,误差较大。而且它以绝对密度做参考,所以在聚类结果中无法区分密度等级不同的簇[7]。 本文提出的基于网格的数据流聚类算法GClustream

CLOPE-快速有效的聚类算法

CLOPE:针对交易的数据快速有效聚类算法 摘要 本文研究分类数据的聚类问题,特别针对多维和大型的交易数据。从增加聚簇直方图的高宽比的方法得到启发,我们开发了一种新的算法---CLOPE,这是一种非常快速、可伸缩,同时又非常有效的算法。我们展示了算法对两个现实数据集聚类的性能,并将CLOPE与现有的聚类算法进行了比较。 关键词 数据挖掘,聚类,分类数据,可伸缩性 1.简介 聚类是一种非常重要的数据挖掘技术,它的目的是将相似的交易[12, 14, 4, 1]分组在一起。最近,越来越多的注意力已经放到了分类数据[10,8,6,5,7,13]的聚类上,分类数据是由非数值项构成的数据。交易数据,例如购物篮数据和网络日志数据,可以被认为是一种特殊的拥有布尔型值的分类数据,它们将所有可能的项作为项。快速而精确地对交易数据进行聚类的技术在零售行业,电子商务智能化等方面有着很大的应用潜力。 但是,快速而有效聚类交易数据是非常困难的,因为这类的数据通常有着高维,稀疏和大容量的特征。基于距离的算法例如k-means[11]和CLARANS[12]都是对低维的数值型数据有效。但是对于高维分类数据的处理效果却通常不那么令人满意[7]。像ROCK这类的分层聚类算法在分类数据聚类中表现的非常有效,但是他们在处理大型数据库时表现出先天的无效。 LargeItem[13]算法通过迭代优化一个全局评估函数对分类数据进行聚类。这个评估函数是基于大项概念的,大项是在一个聚簇内出现概率比一个用户自定义的参数——最小支持度大的项。计算全局评估函数要远比计算局部评估函数快得多,局部评估函数是根据成对相似性定义的。这种全局方法使得LargeItem算法非常适合于聚类大型的分类数据库。 在这篇文章中,我们提出了一种新的全局评估函数,它试图通过增加聚簇直方图的高度与宽度之比来增加交易项在聚簇内的重叠性。此外,我们通过引用一个参数来控制聚簇紧密性的方法来泛化我们的想法,通过修改这个参数可以得到

一种利用信息熵的群体智能聚类算法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 一种利用信息熵的群体智能聚类算法 !#$%计算机工程与应用前言数据挖掘是一个多学科交叉的研究领域,涉及数据库技术、人工智能、机器学习、统计学、知识获取、生物计算等学科。 这些学科的发展为数据挖掘的研究提供了新的机遇与挑战。 聚类是数据挖掘的重要任务之一,目前主要的聚类算法可以划分为如下几类(): 划分方法,层次方法,基于密度的方法,基于网格的方法和基于模型的方法等。 这些方法大多数需要一些参数限制,设定聚的数目,而且聚类结果对初始状态及参数非常敏感。 近年来,一些学者开始应用群体智能(*+,-. /01233452062)(!)的思想研究聚类问题。 因为群体智能源于对简单个体组成的群落社会系统的模拟,如蚁群、蜂群,在没有任何先验知识和无统一指挥的分布环境下,它们具有自我组织、合作、通信等特点。 在文献(%)中,720289:8-5 等首次模拟幼蚁自动分类(即较小的幼虫在中心,较大的幼虫在外围)及蚁尸聚积现象,提出了聚类基本模型。 随后 ;8.2- 和 ,421, 在文献(#)中改进了 720289:8-5的基本模型,提出了 ; 算法并应用于数据分析中。 1 / 12

虽然以上方法可以获得较好的聚类结果,但是需较长的计算时间,还需设置较多的参数。 文献(,=)采用群体智能与均值算法相结合的方法加快聚类速度。 论文在 ; 算法中利用信息熵来控制蚂蚁拾起和放下对象动作,既可以减少参数的个数,又可以加快聚类的进程。 !蚁群聚类的基本模型和 ; 算法在自然界中,一些蚂蚁可以将蚁尸聚成公墓,也可将幼虫按大小分类。 720289:8-5 等根据这两种现象提出了两种模型(%),两者的原理是一致的,即一群蚂蚁在一个二维区域内任意移动,允许按规则拾起和放下物体。 一个任意移动的未载物体的蚂蚁拾起一个物体的可能性 !按公式()计算;一个任意移动的载有物体的蚂蚁放下一个物体的可能性 !#按公式(!)计算,其中 $是蚂蚁周围物体的个数,%和 %!均为常数。 !?%%@$!()#?$%!@$!!(!);8.2- 和 ,421, 在文献(#)中,基于 720289:8-5 的基本模型,提出了以下算法: A B/0414,34C,14:0 B A:- 2D2-E 412. F:G3,62 -,0F:.3E :0 5-4FH0F :-:- ,33 ,5201I F:G3,62 ,5201 ,1 -,0F:.3E I232612F I412H0F :-A B J,40 3::G B A:- (? 1: (.,K F::- ,33 ,5201I F:/L ((,5201 803,F20),0F (I412 :668G42F 9E 412. ))1M20N:.G812 $ (),0F ()7-,+ -,0F:. -2,3 08.92- ) 921+220 ,0F /L ()!

实验一-信息熵与图像熵计算-正确

实验一信息熵与图像熵计算(2 学时) 一、实验目的 1.复习MATLAB的基本命令,熟悉MATLAB下的基本函数; 2.复习信息熵基本定义,能够自学图像熵定义和基本概念。 二、实验内容 1.能够写出MATLAB源代码,求信源的信息熵; 2.根据图像熵基本知识,综合设计出MATLAB程序,求出给定图像的图像熵。 三、实验仪器、设备 1.计算机-系统最低配置256M内存、P4 CPU; 2.MATLAB编程软件。 四实验流程图 五实验数据及结果分析

四、实验原理 1.MATLAB中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: 1( ) 1 ( ) [log ] ( ) log ( ) i n i i p a i H E p a p a X 信息熵的意义:信源的信息熵H是从整个信源的统计特性来考虑的。它是从平均意

义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 3.学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令Pi表示图像中灰度值为i的像素所占的比例,则定义灰度图像的一元灰度熵为: 2550 log i i i p p H 图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。选择图像的邻域灰度均值作为灰度2

一种基于粒子群算法的聚类算法

第35卷第1期2009年3月延边大学学报(自然科学版) Journal of Yanbian University (Natural Science )Vol.35No.1Mar.2009 收稿日期:2008-10-18 作者简介:姜浩(1981— ),男,硕士研究生,研究方向为粒子群算法.文章编号:100424353(2009)0120064204 一种基于粒子群算法的聚类算法 姜浩, 崔荣一 (延边大学工学院计算机科学与技术系智能信息处理研究室,吉林延吉133002) 摘要:提出一种基于粒子群算法的聚类算法,该算法利用粒子群算法随机搜索解空间的能力找到最优解.首先,将样本所属类号的组合作为粒子,构成种群,同时引入极小化误差平方和来指导种群进化的方向.其次,通过对全局极值的调整,搜索到全局最优值.最后,通过仿真实验的对比,验证了该算法在有效性和稳定性上要好于K 2means 算法. 关键词:粒子群;聚类;极小化误差平方和中图分类号:TP301.6 文献标识码:A A Method of Clustering B ased on the P article Sw arm Optimization J IAN G Hao , CU I Rong 2yi (I ntelli gent I nf ormation Processing L ab.,De partment of Com puter Science and Technolog y , College of Engineering ,Yanbian Universit y ,Yanj i 133002,China ) Abstract :A clustering method based on the particle swarm optimization is provided ,using the ability of PSO algorithm which can search all of the solution space to find the optimum solution.Firstly ,the combination of the cluster number of the samples was taken as particles to consist a swarm.Meanwhile ,the evolution trend was used to modulate with the theory of the L MS error criterion.Secondly ,according to the modulating for global best ,the algorithm researched the global optimum.Finally ,the simulation results show that the new algorithm of proposed algorithm is more efficient and stable than K 2means algorithm.K ey w ords :particle swarm optimization ;clustering ;L MS error criterion 0 引言 聚类分析研究具有很长的历史,其重要性及 与其他研究方向的交叉特性得到人们的肯定[1].聚类是数据挖掘、模式识别等研究方向的重要研究内容之一,在识别数据的内在结构方面具有极其重要的作用.聚类技术广泛应用于语音识别、字符识别、图像分割、机器视觉、数据压缩和文献信息检索等领域.聚类的另一主要应用是数据挖据(多关系数据挖掘)、时空数据库应用(GIS 等)、序列和一类数据分析等.此外,聚类还应用于统计科学.值得一提的是,聚类分析对生物学、心理学、考 古学、地质学、地理学以及市场营销等研究也都有重要应用. 粒子群优化(Particle Swarm Optimization ,PSO )算法是由Eberhart 和Kennedy [2]于1995年提出的一类基于群智能的随机优化算法.该算法模拟鸟群飞行觅食的行为,通过个体之间的集体协作和竞争来实现全局搜索,是一种基于群智能的演化计算技术.同遗传算法相比,虽然同是基于迭代的进化算法,但没有交叉和变异算子,群体在解空间中根据自身经历的最好位置,以及群体最优解来进行搜索.由于PSO 算法有着参数少,

一种基于密度的快速聚类算法

第37卷第11期 2000年11月计算机研究与发展JOU RNAL O F COM PU T ER R ESEA RCH &D EV ELO PM EN T V o l 137,N o 111N ov .2000 原稿收到日期:1999209220;修改稿收到日期:1999212209.本课题得到国家自然科学基金项目(项目编号69743001)和国家教委博士点教育基金的资助.周水庚,男,1966年生,博士研究生,高级工程师,主要从事数据库、数据仓库和数据挖掘以及信息检索等的研究.周傲英,男,1965年生,教授,博士生导师,主要从事数据库、数据挖掘和W eb 信息管理等研究.曹晶,女,1976年生,硕士研究生,主要从事数据库、数据挖掘等研究.胡运发,男,1940年生,教授,博士生导师,主要从事知识工程、数字图书馆、信息检索等研究. 一种基于密度的快速聚类算法 周水庚 周傲英 曹 晶 胡运发 (复旦大学计算机科学系 上海 200433) 摘 要 聚类是数据挖掘领域中的一个重要研究方向.聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用.迄今为止人们提出了许多用于大规模数据库的聚类算法.基于密度的聚类算法DBSCAN 就是一个典型代表.以DBSCAN 为基础,提出了一种基于密度的快速聚类算法.新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类,从而减少区域查询次数,降低I O 开销,实现快速聚类.对二维空间数据测试表明:快速算法能够有效地对大规模数据库进行聚类,速度上数倍于已有DBSCAN 算法. 关键词 空间数据库,数据挖掘,聚类,密度,快速算法,代表对象 中图法分类号 T P 311.13;T P 391 A FAST D ENSIT Y -BASED CL USTER ING AL G OR ITH M ZHOU Shu i 2Geng ,ZHOU A o 2Y ing ,CAO J ing ,and HU Yun 2Fa (D ep a rt m en t of Co mp u ter S cience ,F ud an U n iversity ,S hang ha i 200433) Abstract C lu stering is a p rom ising app licati on area fo r m any fields including data m in ing ,statistical data analysis ,p attern recogn iti on ,i m age p rocessing ,etc .In th is paper ,a fast den sity 2based clu stering algo rithm is developed ,w h ich con siderab ly speeds up the o riginal DB SCAN algo rithm .U n like DB SCAN ,the new DB SCAN u ses on ly a s m all num ber of rep resen tative ob jects in a co re ob ject’s neighbo rhood as seeds to exp and the clu ster so that the execu ti on frequency of regi on query can be decreased ,and con sequen tly the I O co st is reduced .Experi m en tal resu lts show that the new algo rithm is effective and efficien t in clu stering large 2scale databases ,and it is faster than the o riginal DB SCAN by several ti m es . Key words spatial database ,data m in ing ,clu stering ,den sity ,fast algo rithm ,rep resen tative ob jects 1 概 述 近10多年来,数据挖掘逐渐成为数据库研究领域的一个热点[1].其中,聚类分析就是广为研究的问题之一.所谓聚类,就是将数据库中的数据进行分组,使得每一组内的数据尽可能相似而不同组内的数据尽可能不同.聚类技术在统计数据分析、模式识别、图像处理等领域都有广泛的应用前景.迄今为止,人们已经提出了许多聚类算法[2~7].所有这些算法都试图解决大规模数据的聚类问题.以基于密度的聚类算法DB SCAN [4]为基础,本文提出一种基于密度的快速聚类算法.通过选用核心对象附近区域包含的所有对象的代表对象作为种子对象来扩展类,快速算法减少了区域查询的次数,从而减低了聚类时间和I O 开销 .本文内容安排如下:首先在第2节中介绍基于密度的聚类算法DB SCAN 的基本思想,并分析它的局限

中文公众事件信息熵计算方法

中文信息处理报告 课题名称搜索引擎中的关键技术及解决学院(系)电子信息与工程学院 专业计算机科学与技术 学号072337 学生姓名张志佳 完成时间2009年1月 3 日

目前,国内的每个行业,领域都在飞速发展,这中间产生了大量的中文信息资源,为了能够及时准确的获取最新的信息,中文搜索引擎应运而生。中文搜索引擎与西文搜索引擎在实现的机制和原理上大致相同,但由于汉语本身的特点,必须引入对于中文语言的处理技术,而汉语自动分词技术就是其中很关键的部分,也是进行后续语义或者是语法分析的基础。汉语自动分词到底对搜索引擎有多大影响?对于搜索引擎来说,最重要的并不是找到所有结果,最重要的是把最相关的结果排在最前面,这也称为相关度排序。中文分词的准确与否,常常直接影响到对搜索结果的相关度排序。分词准确性对搜索引擎来说十分重要,但如果分词速度太慢,即使准确性再高,对于搜索引擎来说也是不可用的,在Internet上有上百亿可用的公共Web页面,如果分词耗用的时间过长,会严重影响搜索引擎内容更新的速度。因此对于搜索引擎来说,分词的准确性和速度,都需要达到很高的要求。 更具体的说,现在的搜索引擎要达到下面的三要求,才能适应当今这样一个信息爆炸的时代,分别是:数据量达到亿,单次查询毫秒级,每日查询总数能支持千万级。撇开搜索引擎要用到的数量庞大的服务器硬件和速度巨快的网络环境不提,就单单说说搜索引擎中软件部分的三大核心技术。我个人以为:一个优秀的搜索引擎,它必需在下面三个方面的技术必须是优秀的:中文分词,网络机器人(Spider)和后台索引结构。而这三方面又是紧密相关的,想要解决中文分词问题,就要解决搜索时间和搜索准确率两方面的难题。而搜索时间上便是通过网络机器人(Spider)和后台索引结构的改进实现的,搜索准确率则是通过分词本身算法的求精来实现的。下面的文章将从这两个大的方面来解决这两方面的问题。 为了能够更清楚的来说明现在的搜索引擎是如何解决这几个难题的,首先对搜索引擎的组成及工作原理在这里简要的说明一下。 搜索引擎的工作,可以看做三步:从互联网上抓取网页,建立索引数据库,在索引数据库中搜索排序。从互联网上抓取网页利用能够从互联网上自动收集网页的Spider系统程序,自动访问互联网,并沿着任何网页中的所有URL爬到其它网页,重复这过程,并把爬过的所有网页收集回来。下面是搜索引擎的工作原理图:Array 搜索引擎工作原理图1

一种基于K-Means局部最优性的高效聚类算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.doczj.com/doc/5614122266.html, Journal of Software, Vol.19, No.7, July 2008, pp.1683?1692 https://www.doczj.com/doc/5614122266.html, DOI: 10.3724/SP.J.1001.2008.01683 Tel/Fax: +86-10-62562563 ? 2008 by Journal of Software. All rights reserved. ? 一种基于K-Means局部最优性的高效聚类算法 雷小锋1,2+, 谢昆青1, 林帆1, 夏征义3 1(北京大学信息科学技术学院智能科学系/视觉与听觉国家重点实验室,北京 100871) 2(中国矿业大学计算机学院,江苏徐州 221116) 3(中国人民解放军总后勤部后勤科学研究所,北京 100071) An Efficient Clustering Algorithm Based on Local Optimality of K-Means LEI Xiao-Feng1,2+, XIE Kun-Qing1, LIN Fan1, XIA Zheng-Yi3 1(Department of Intelligence Science/National Laboratory on Machine Perception, Peking University, Beijing 100871, China) 2(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China) 3(Logistics Science and Technology Institute, P.L.A. Chief Logistics Department, Beijing 100071, China) + Corresponding author: E-mail: leiyunhui@https://www.doczj.com/doc/5614122266.html, Lei XF, Xie KQ, Lin F, Xia ZY. An efficient clustering algorithm based on local optimality of K-Means. Journal of Software, 2008,19(7):1683?1692. https://www.doczj.com/doc/5614122266.html,/1000-9825/19/1683.htm Abstract: K-Means is the most popular clustering algorithm with the convergence to one of numerous local minima, which results in much sensitivity to initial representatives. Many researches are made to overcome the sensitivity of K-Means algorithm. However, this paper proposes a novel clustering algorithm called K-MeanSCAN by means of the local optimality and sensitivity of K-Means. The core idea is to build the connectivity between sub-clusters based on the multiple clustering results of K-Means, where these clustering results are distinct because of local optimality and sensitivity of K-Means. Then a weighted connected graph of the sub-clusters is constructed using the connectivity, and the sub-clusters are merged by the graph search algorithm. Theoretic analysis and experimental demonstrations show that K-MeanSCAN outperforms existing algorithms in clustering quality and efficiency. Key words: K-MeanSCAN; density-based; K-Means; clustering; connectivity 摘要: K-Means聚类算法只能保证收敛到局部最优,从而导致聚类结果对初始代表点的选择非常敏感.许多研究 工作都着力于降低这种敏感性.然而,K-Means的局部最优和结果敏感性却构成了K-MeanSCAN聚类算法的基 础.K-MeanSCAN算法对数据集进行多次采样和K-Means预聚类以产生多组不同的聚类结果,来自不同聚类结果的 子簇之间必然会存在交集.算法的核心思想是,利用这些交集构造出关于子簇的加权连通图,并根据连通性合并子 簇.理论和实验证明,K-MeanScan算法可以在很大程度上提高聚类结果的质量和算法的效率. 关键词: K-MeanSCAN;基于密度;K-Means;聚类;连通性 中图法分类号: TP18文献标识码: A ? Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA12Z217 (国家高技术研究发 展计划(863)); the Foundation of China University of Mining and Technology under Grant No.OD080313 (中国矿业大学科技基金) Received 2006-10-09; Accepted 2007-07-17

相关主题
文本预览
相关文档 最新文档