当前位置:文档之家› 永磁同步电机损耗分离方法研究

永磁同步电机损耗分离方法研究

永磁同步电机损耗分离方法研究
永磁同步电机损耗分离方法研究

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机学习笔记

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电

流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导

永磁同步电机基础的知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势, 忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相

静止坐标系的变换,如下式所示。 cos sin 22 cos()sin() 33 22 cos()sin() 33 a d b q c u u u u u θθ θπθπ θπθπ ?? ? - ??? ?? ?? =--- ? ?? ?? ?? ?? ? +-+ ?? (2)d/q轴磁链方程: d d d f q q q L i L i ψψ ψ =+ ?? ? = ?? 其中,ψf为永磁体产生的磁链,为常数,0 f r e ω ψ=,而c r p ω ω=是机械角速度,p为同步电机的极对数,ωc为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 3 2 e d q q d T p i i ψψ ?? =- ?? 把它带入上式可得: 3 () 2 33 () 22 e f q d q d q f q d q d q T p i L L i i p i p L L i i ψ ψ ?? =+- ?? =+- 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq,则不存在磁阻转矩,此时,转矩方程为: 3 2 e f q t q T p i k i ψ == 这里, t k为转矩常数, 3 2 t f k pψ =。

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机永磁体涡流损耗计算与研究解读

密级:内部高速电主轴永磁同步电机永 磁体涡流损耗计算研究 The calculation and analysis of high-speed spindle permanent magnet motor eddy current losses in the permanent magnet 学院:电气工程学院 专业班级:电气工程及其自动化0903班 学号: 学生姓名: 指导教师:(副教授) 2013 年 6 月

摘要 永磁同步电机是由永磁体建立励磁磁场的同步电机,电机结构较为简单,降低了加工和装配费用,提高了电机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电机的效率和功率密度。当外磁场发生变化时,永磁体就会产生涡流导致发热。因此,很有必要对转子永磁体内的涡流进行计算和分析,并采取相应的解决办法。 本文主要运用了有限元软件对高速电主轴永磁电机永磁体的涡流损耗进行分析,以得到永磁体涡流损耗的大小和分布规律,并研究永磁体涡流损耗的影响因素,从而为减小永磁体涡流损耗提供依据。 首先建立高速电主轴永磁电机有限元模型,对模型进行激励源加载和剖分,为涡流损耗的分析奠定基础;然后采用上述模型,计算得到永磁体内涡流损耗的大小和分布;分析正弦波供电和变频器供电下永磁体涡流损耗的特点;最后着重研究不同极槽数、转子磁路结构对永磁体涡流损耗的影响,提出减小涡流损耗的措施,为提高电机性能奠定基础。 针对永磁同步电机自身的特点,通过二维电磁场有限元方法分别求解了空载时和负载时电机永磁体内的涡流。采用了瞬态分析,根据瞬态计算出的数据绘出了涡流损耗波形,并得出永磁体内的涡流损耗分布图。最后通过分析波形得出了影响永磁体内涡流的因素以及应采取的措施。 关键词:永磁同步电机;永磁体;涡流损耗;有限元法 I

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

空调压缩机中永磁同步电机的损耗分析

空调压缩机中永磁同步电机的损耗分析 陈东锁 卢素华 陈 彬 (国家节能环保制冷设备工程技术研究中心 珠海 519070) 摘要:在空调系统中,电能主要用于压缩机运转,因此提高效率对于开发高效压缩机非常关键。为了提高永磁电机的效率,需要减少各种形式的电机损耗。永磁同步电动机其运行频率经常发生变化,致使电机内部的损耗随之改变。本文分析了影响永磁电机损耗的主要因素及其变化规律,得到一些对电机参考设计具有指导意义的结论。 关键词:永磁同步电机;有限元;铁耗;铜耗 Abstract:In the air-condition system, most of the electricity is consumed for operating the compressor. Therefore, developing a high efficiency compressor is necessary to increase the energy efficiency. To increase the efficiency of the PM motor, a reduced multiform loss is needed. The operation frequency of permanent magnet synchronous motor (PMSM) varies frequently, and its losses change correspondingly. In this paper, the main factor which affects losses and its variation were investigated, some conclusions which have guiding significance for the reference design of the motor were obtained. Key words:permanent magnet synchronous motors;finite element;iron loss;copper loss 引言 电机作为空调压缩机的核心部分,其效率的高低直接影响压缩机COP大小,所以提高电机的效率成为提高压缩机能效的主要途径。永磁同步电机具有体积小、效率高、输出转矩大等特点,应全球节能要求,永磁同步电机逐渐取代异步电机广泛应用于空调压缩机中。 为提高电机效率,首先需要分析电机损耗。电机损耗主要包括铜损、铁损、机械损及杂散损耗,如果能在设计电机结构时合理分配各损耗,则能使电机效率达到最优。 1永磁电机中的损耗 电机损耗直接影响电机效率,同时也是电机温升的来源。电机损耗可分为铜耗、铁耗、杂散损耗和机械损耗。其中铜耗即电机绕组上产生的损耗;铁耗指铁心中磁场变化而引起的损耗,包括磁滞损耗、涡流损耗和附加损耗;杂散损耗是指其他损耗的统称,主要来源于电机内的漏磁场和谐波磁场;机械损耗是指轴承摩擦损耗、转子旋转时引起转子表面与冷却气体之间的摩擦损耗等。 1.1 铜耗 根据焦耳定律,电机的铜耗与电机绕组阻值和绕组内的电流有关,其计算公式如下: P I R 3 Cu 2 =(1)式中I为绕组相电流;R 为绕组相电阻,其中: (2)式中:ρ——铜线电阻率;L av——半匝线圈长 N——每相绕组串联匝数; N t——并绕根数 a——并联支路数 d——铜线直径 永磁电机中由T=K t I可知, P W R W d NL Cu av 22222 U U d d U U (3) ——气隙磁通 ——绕组因数 根据上述可知降低铜损的方法有:增加导线截面积、缩短绕组端部长度,工艺上提高绕组因数和槽满率,合理选用和设计磁钢,以保证足够大的气隙磁场。

永磁同步伺服电机(PMSM)驱动器原理

永磁同步伺服电机(PMSM)驱动器原理 来源:开关柜无线测温 https://www.doczj.com/doc/6f2216334.html, 摘要:永磁交流伺服系统以其卓越的性能越来越广泛地应用到机器人、数控等领域,本文对其驱动器的功能实现 做了简单的描述,其中包括整流部分的整流过程、逆 变部分的脉宽调制(PWM)技术的实现、控制单元相应 的算法等三个部分。 关键词: DSP 整流逆变 PWM 矢量控制 1 引言 随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着长足的发展。永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁

同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。 图1 交流永磁同步伺服驱动器结构 伺服驱动器大体可以划分为功能比较独立的功率板和控制板两个模块。如图2所示功率板(驱动板)是强电部,分其中包括两个单元,一是功率驱动单元IPM用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源。 控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心控制算法的运行载体。控制板通过相应的算法输出PWM信号,

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM的控制信

永磁同步电机的原理及结构

第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后 就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机学习笔记

永磁同步电机学习笔记 1.功率因数角:外施相电压与定子相电流的夹角。 2.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 3.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 4.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 5.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,

给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢

永磁同步电机的原理和结构

第一章永磁同步电机的原理及结构 永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩、由转子磁路不对称而引起的磁阻转矩和单轴转矩等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,只有异步转矩是驱动性质的转矩,电动机就是以这转矩来得以加速的,其他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钻永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机

永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转子的转速总是小于旋转磁场(由定子绕组电流产生)的转速。因此,转子看起来与定子绕组的电流频率总是“不一致”,这也是其为什么叫异步电机的原因。 相比于永磁同步电机,异步电机的优点是成本低,工艺简单;当然其缺点就是其功率密度与转矩密度要低于永磁同步电机。而特斯拉Models为何选用异步电机而不是永磁同步电机,除了控制成本这个主要原因之外,较大的Models车体能够有足够空间放的下相对大一点的异步电机,也是一个很重要的因素。 永磁同步电动机怎样产生动力? 在交流异步电动机中,转子磁场的形成要分两步走:第一步是定子旋转磁场先在转子绕组中感应出电流;第二步是感应电流再产生转子磁场。在楞次定律的作用下,转子跟随定子旋转磁场转动,但又“永远追不上”,因此才称其为异步电动机。如果转子绕组中的电流不是由定子旋转磁场感应的,而是自己产生的,则转子磁场与定子旋转磁场无关,而且其磁极方向是固定的,那么根据同性相斥、异性相吸的原理,定子的旋转磁场就会拉动转子旋转,并且使转子磁场及转子与定子旋转磁场“同步”旋转。这就是同步电动机的工作原理。 根据转子自生磁场产生方式的不同,又可以将同步电动机分为两种: 一是将转子绕组通上外接直流电(励磁电流),然后由励磁电流产生转子磁场,进而使转子与 定子磁场同步旋转。这种由励磁电流产生转子磁场的同步电动机称为励磁同步电动机。 二是干脆在转子上嵌上永久磁体,直接产生磁场,省去了励磁电流或感应电流的环节。这种由永久磁体产生转子磁场的同步电动机,就称为永磁同步电动机。

高速永磁同步电动机绕组交流损耗计算

? 80 ? ELECTRONICS WORLD ?探索与观察 针对高速永磁同步电动机绕组高频损耗严重,计算较困难的问题,本文利用Ansoft有限元分析软件建立了考虑趋肤效应和邻近效应的有限元模型,对不同供电频率、不同并绕根数以及通风槽口高度对交流损耗的影响进行了详细的分析:电流频率的增大会导致绕组交流损耗增大;多根并绕可以减小导体的集肤效应,但同时也增加了导体的临近效应,选择并绕根数是应综合考虑这两方面因素;适当的增大槽口高度可以有效的减小绕组的交流损耗。 1 引言 高速永磁同步电动机具有效率高,功率密度大,体积小、重量轻等优点,在电驱动领域和运动控制等方面有着广泛的应用前景。在电机绕组中,由于集肤效应和邻近效应的作用,使得导体内部电流密度分布不均,产生附加铜耗。但由于高速永磁同步电动机工作频率高,电机绕组中电流的集肤效应和邻近效应非常严重,造成电机绕组铜耗增大,给体积小,原本散热就较困难的高速电机增加了散热负担。故在电机设计及优化时,有必要准确的预测电机定子绕组中的交流损耗(Xi Nan,Charles R.Sullivan.An improved calculation of proximity-effect loss in high-frequency windings of round conductors.PESC,2003;江善林,高速永磁同步电机的损耗分析与温度场计算:哈尔滨工业大学,2010;P.B.Reddy,Z.Q.Zhu,Seok-Hee Han,T.M.Jahns.Strand-Level proximity losses in PM ma-chines designed for high-speed operation(C).Proceedings of the IEEE on electrical machines,2008;倪光正,工程电磁场原理:高等教育出版社,2002)。 本文重点研究了高速永磁同步电机定子绕组在高频时趋肤效应和邻近效应影响下的交流损耗,利用Ansoft有限元分析软件建立了考虑趋肤效应和邻近效应的二维有限元模型,建立了每根导体的模型,研究了不同供电频率、不同绕组并联根数以及不同槽内通风道高度对电机绕组高频下的交流损耗的影响,分析了如何在设计电机的过程中尽可能的减小电机绕组的交流损耗。 2 绕组电流频率对交流损耗的影响 本文基于一台1MW,20000r/min的高速永磁电机,在该电机的设计中,采用成型线圈和双层短距绕组,每个定子槽中有56根导体组成,本文采用4极转子结构,因此电机的额定频率高达634Hz,而在高频下,由于绕组中存在明显的趋肤效应和邻近效应,绕组的高频损耗会显著增加。为了考虑该效率的影响,本文采用有限元软件,建立了每根导体的有限元模型,如图1所示。图1中的槽口位置为通风道高度,每根导线通以如图2所示的三相对称电流。 不同频率下的绕组电流密度分布如图3所示。当电流的初始角度为30度时,B相绕组的电流为0A,但由于高频时邻近效应的存在,B相中的电流密度不为0,仍然存在涡流,且随着频率的增加,电流密度逐渐增大。此外,由于高频时趋肤效应和邻近效应的影响,槽内不同导体位置的电流密度不同,存在不均匀的电流分布,且靠近槽口位置处的导体的电流密度最大。 当高频时考虑趋附效应和邻近效应时的损耗为交流损耗(Pac),当绕组中通入直流电源,频率为0时,此时的绕组损耗为直流损耗(Pdc)。交流损耗与直流损耗的比值可以反映出趋附效应和邻近效应对损耗的影响程度。图4显示了交流损耗与直流损 耗的比值与供电频率的关系。从图中可以看出,当供电频率低于500Hz时,交流损耗与直流损耗的比值小于2,但随着供电频率的增加,当供电频率为1000Hz时,交流损耗与直流损耗的比值将会增加 到4倍,随着供电频率继续增加到2000Hz时,交流损耗与直流损耗的比值将接近10倍,由此可以看出,随着供电频率的增加,绕组交流损耗会急剧增加,会使绕组损耗增加几倍甚至几十倍,将会大幅的增加绕组的温升,使其温度过高,影响电机寿命和温度运行。因 此,在高速永磁电机设计时,不能像传统电机那样,仅仅只考虑绕 组的直流损耗,高频下的趋肤效应和邻近效应必须予以准确预测。 图1 绕组有限元模型 图2 导体三相电流 图3 不同电流频率时绕组电流密度分布(Phase=30deg)

永磁同步电机综合保护器工作原理

永磁同步电机工作原理 同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 一、发电机获得励磁电流的几种方式 1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。 2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100200HZ的中频发电机,而交流副励磁机则采用400500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。 3、无励磁机的励磁方式: 在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。 二、发电机与励磁电流的有关特性 1、电压的调节 自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端

永磁同步电机的工作原理

永磁同步电机的工作原理 永磁同步电机的工作原理与同步电机的工作原理是相同的。永磁同步电机在现在应用及其广泛。和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间又不变得关系n=ns=60f/p,ns成为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。异步电动机按照转子结构分为两种形式:有鼠笼式〔鼠笼式异步电机〕绕线式异步电动机。 永磁同步电机的工作原理如下: 永磁同步电机主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 永磁同步电机的载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 永磁同步电机的切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 永磁同步电机交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 永磁同步电机的交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 下一篇:限压式变量叶片泵的特性曲线

相关主题
文本预览
相关文档 最新文档