当前位置:文档之家› 空调压缩机中永磁同步电机的损耗分析

空调压缩机中永磁同步电机的损耗分析

空调压缩机中永磁同步电机的损耗分析
空调压缩机中永磁同步电机的损耗分析

空调压缩机中永磁同步电机的损耗分析

陈东锁 卢素华 陈 彬

(国家节能环保制冷设备工程技术研究中心 珠海 519070)

摘要:在空调系统中,电能主要用于压缩机运转,因此提高效率对于开发高效压缩机非常关键。为了提高永磁电机的效率,需要减少各种形式的电机损耗。永磁同步电动机其运行频率经常发生变化,致使电机内部的损耗随之改变。本文分析了影响永磁电机损耗的主要因素及其变化规律,得到一些对电机参考设计具有指导意义的结论。

关键词:永磁同步电机;有限元;铁耗;铜耗

Abstract:In the air-condition system, most of the electricity is consumed for operating the compressor.

Therefore, developing a high efficiency compressor is necessary to increase the energy efficiency. To increase the efficiency of the PM motor, a reduced multiform loss is needed. The operation frequency of permanent magnet synchronous motor (PMSM) varies frequently, and its losses change correspondingly. In this paper, the main factor which affects losses and its variation were investigated, some conclusions which have guiding significance for the reference design of the motor were obtained.

Key words:permanent magnet synchronous motors;finite element;iron loss;copper loss

引言

电机作为空调压缩机的核心部分,其效率的高低直接影响压缩机COP大小,所以提高电机的效率成为提高压缩机能效的主要途径。永磁同步电机具有体积小、效率高、输出转矩大等特点,应全球节能要求,永磁同步电机逐渐取代异步电机广泛应用于空调压缩机中。

为提高电机效率,首先需要分析电机损耗。电机损耗主要包括铜损、铁损、机械损及杂散损耗,如果能在设计电机结构时合理分配各损耗,则能使电机效率达到最优。

1永磁电机中的损耗

电机损耗直接影响电机效率,同时也是电机温升的来源。电机损耗可分为铜耗、铁耗、杂散损耗和机械损耗。其中铜耗即电机绕组上产生的损耗;铁耗指铁心中磁场变化而引起的损耗,包括磁滞损耗、涡流损耗和附加损耗;杂散损耗是指其他损耗的统称,主要来源于电机内的漏磁场和谐波磁场;机械损耗是指轴承摩擦损耗、转子旋转时引起转子表面与冷却气体之间的摩擦损耗等。

1.1 铜耗

根据焦耳定律,电机的铜耗与电机绕组阻值和绕组内的电流有关,其计算公式如下:

P I R

3

Cu

2

=(1)式中I为绕组相电流;R

为绕组相电阻,其中:

(2)式中:ρ——铜线电阻率;L av——半匝线圈长

N——每相绕组串联匝数; N t——并绕根数

a——并联支路数 d——铜线直径

永磁电机中由T=K t I可知,

P

W

R

W d

NL

Cu

av

22222

U U

d d

U U

(3) ——气隙磁通 ——绕组因数

根据上述可知降低铜损的方法有:增加导线截面积、缩短绕组端部长度,工艺上提高绕组因数和槽满率,合理选用和设计磁钢,以保证足够大的气隙磁场。

1.2 铁耗

铁耗是永磁同步电机的另一主要损耗,铁心损耗来源于电机内电磁场的变化。变频电机中,随着转速的增加,电机铁心损耗逐渐增加,且增加的速度越来越快,在高频时铁心损耗逐渐成为电机内部的主要损耗。

较为精确的铁心损耗计算方法是以电机电磁场计算为基础的分立铁耗计算模型,将铁耗分为涡流损耗 p e 、磁滞损耗 p h 和附加损耗 p exc ,分别进行计算。

p p p p Fe h e exc =++ (4) 式中 p Fe ——铁芯损耗;p h ——磁滞损耗p e ——涡流损耗;p exc ——附加损耗其中:

()P K fK B B h h m m a

= (5)

()P K f d dB d 2e e 2

22r i i i =r

#

(6)()P K f d dB d 2..exc exc 150215

r i i i =r #

(7) 其中、为磁滞损耗系数,

为交变磁场波的频率,为磁场波的幅值,,

为硅钢片的磁通密度波,

为经典涡流损耗系数,

为附加损耗系数。

从式(4)(5)(6)(7)得知铁损主要与铁芯中的磁通密度、材料厚度及特性有关,在电机设计上,选用高性能的硅钢片、降低齿轭部的磁密、合理设计扣点位置、数量大小等都是降低铁损的途径。

1.3 杂散损耗

杂散损耗又称附加损耗,是由定子电流和转子永磁体产生的漏磁场及高次谐波磁场,以及由气隙磁场变化而引起的损耗。永磁同步电机气隙磁密中含有丰富的谐波分量,减小杂散损耗必须从削弱谐波入手。

为了减小杂散损耗,具体的方法从下面四个方面着手:(1) 采用合适的极槽配合,提高基波绕组因数;

(2) 适当增加气隙长度,随着气隙的增大,气隙磁场基波磁密和谐波磁密均相对减小;

(3) 利用不均匀气隙改善空载气隙磁密波形,降低气隙中磁场谐波;

(4) 通过选择合适的绕组型式和节距,如采用短距绕组,削弱相带中的谐波分量,减小绕组中谐波电流的含量。

2 电机效率优化研究

电机优化设计是通过选择合理电机尺寸,从而获得较优电机性能,如提高转矩、提高效率、降低转矩波动、降低温升等。

本文针利用有限元软件MAXWELL 仿真不同电机叠高、不同永磁体尺寸的电机效率趋势。通过对比分析,找到了电机叠高和永磁提尺寸对电机效率的影响规律,从而为永磁电机的设计及进一步优化提供理论依据。本文中采用的电机模型如图1,主要参数见表1。

2.1 电机铁芯叠高对效率的影响

不同的叠高可以平衡铁耗和铜耗的分布,最优的叠高不仅要满足能效的要求,同时也要兼顾成本。假设样机反电动势、槽满率相同,铁芯冲片结构不变。

随着叠高增加,铁耗几何增加,同时由于电阻减少,电机的铜耗降低,在一定叠高范围内,铜耗的降低幅度要大于铁耗增大幅度,电机的效率上升。但叠高增加到一定程度,电机效率趋于不变,甚至降低,即存在一个最佳的叠高。

从图2中可以看出,损耗随叠高的增大逐渐减小,但减小的趋势越来越小。本例中,叠高大于46mm 后,损耗降低不再明显。出于成本和性能的综合考虑,本例叠高选择为46mm。

2.2 永磁体尺寸对效率的影响

图1 电机二维模型极槽数

4/6定子内径61mm 定子外径112mm 气隙长度0.6mm 额定转矩 2.05中间转矩

1.775

表1 样机主要参数

永磁体尺寸是影响电机性能的重要参数。由于永磁体高度

一般同电机叠高,所以本文主要研究永磁体的厚度和宽度对电机效率的影响。

增大永磁体厚度,提高了永磁体工作点,抗去磁能力增强,

气隙磁密B

δ

增加。图3为磁钢工作点的示意图,线1为外磁路的 曲线,随着磁路的饱和,磁阻增大,磁通趋向于饱和。2、2'、2''为磁钢的去磁曲线,从图中可以看出,磁钢厚度的减小,2曲线转化成2'',磁钢厚度增大,2曲线转化为2'。相应的工作点也由P转化为P2、P1。但随着磁路的饱和,磁钢厚度的增加对永磁体工作点的提高作用越来越小,即气隙磁密的增大也是越来越小,见图4。

随着磁钢的厚度增大,铁耗增大,同时电机的铜耗降低,在一定厚度范围内,铜耗的降低幅度要大于铁耗增大幅度,电机的效率上升。但永磁体厚度增加到一定程度,电机效率趋于不变,甚至降低,即存在一个最佳的永磁体厚度选择。图4表示当永磁体宽度一定时,效率随永磁体厚度变化的曲线。

增大永磁体宽度,永磁体提供磁通的截面积增加,气隙磁

图2 不同叠高时电机损耗的变化图5 效率随永磁体厚度的变化

图4 磁钢厚度对气隙磁密的影响曲线

图6 效率随永磁体宽度的变化

图3 为磁钢工作点的示意图

密B

δ

提高,导致铁耗增加,同时电负荷减小,电机的铜耗降低,在一定的宽度范围内,铜耗的降低幅度要大于铁耗增大幅度,电机的效率上升。但永磁体宽度增加到一定程度,电机效率趋于不变,甚至降低,即存在一个最佳的永磁体宽度选择。图3表示当永磁体厚度一定时时,效率随永磁体宽度变化的曲线。

(下转第37页)

图9 前馈补偿后配管振动位移测试结果

补偿前配管振动位移测试结果如图8所示。前馈补偿后配管振动位移测试结果如图9所示。

6 结论

本文从单转子压缩机电磁转矩和负载转矩入手,首先分析了单转子压缩机电磁转矩和q轴电流的关系,以及空调器在不同工况下压缩机负载转矩的特点和变化规律。根据负载转矩的变换规律,设计q轴电流的补偿模型,并设计自适应动态寻优控制器,实现动态寻优和自动控制。实验结果也表明,基于本控制系统稳定可靠,鲁棒性好,而且各项指标改善明显:(1)单周期内运行平稳,压缩机半周期和吸气半周期时间近似相等;(2)配管振动明显减小。满足单转子压缩机控制的需要。本文成功解决了单转子压缩机空调系统的压缩机低频振动问题,为降低单转子压缩机在低频状态下转矩补偿提供了新的方法和思路。

参考文献

[1] 唐丽禅,齐亮.永磁同步电机的应用现状与发展趋势[J].装备机械,

2011,01:7-12.

[2] Kwa-Yuhl Cho.Sensorless Cotrol for a PM Sychronous Motor

in a Single Piston Rotary Compressor[J]. Journal of Power

Electronnics,2006,6(1):29-37

[3] 卓森庆,李文灿. PMSM低频控制策略研究[J]. 制冷与空调, 2010

,10:217-224.

[4] 黄辉,马颖江,张有林,米雪涛,郭清风.减小变频空调单转子压缩机低

频转速波动的方法[J].电机与控制学报,2011,15(3):98-102.

[5] 王成元,夏加宽,杨俊友,孙宜标.电机现代控制技术[M].北京:机械

工业出版社,2006.

[6] 李国强,赵伟丽,贾小军,刘文江.自适应动态寻优控制系统仿真研究[J].

现代电子技术,2009,2:76-78.

3结论

对压缩机永磁同步电机中的损耗进行了分析,并通过参数计算和分析比较,完成4极6槽集中卷永磁电机优化设计工作,得出如下结论:

在一定的叠高范围内,永磁同步电机的效率随着叠高增加而增加,达到某一叠高后,效率出现降低,电机存在最佳叠高。

增大永磁体宽度,电机的效率上升,但永磁体宽度增加到一定程度,电机效率趋于不变,甚至降低,即存在一个最佳的永磁体宽度选择。

增大永磁体厚度,电机的效率上升,但永磁体厚度增加到一定程度,电机效率趋于不变,甚至降低,即存在一个最佳的永磁体厚度选择。

参考文献

[1] 唐任远. 现代永磁电机理论与设计. 北京:机械工业出版社,2010.

[2] 王秀和. 永磁电机.北京:中国电力出版社,2008.

(上接第52页)

永磁同步电机与异步电机性能比较

永磁同步电机与异步电机性能比较 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素 异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/P n)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。 (a) η--( P2/P n) (b) ? cos--( P2/P n) 图1 永磁同步电动机与异步电动机的效率和功率因数 1. 异步起动永磁同步电动机 2.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率

4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%. 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升 由于异步电机工作时,转子绕组有电流流动,而这个电流完全以热能的形式消耗掉,所以在转子绕组中将产生大量的热量,使电机的沮度升高,影响了电机的使用寿命。 由于永磁电机效率高,转子绕组中不存在电阻损耗,定子绕组中较少有或几乎不存在无功电流,使电机温升低,延长了电机的使用寿命。 4.对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网、翰变电设备及发电设备中有大量无功电流,进而使电网的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。 在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数,使电网中不再需安装补偿器。同时,因永磁电机的高效率,也节约了电能。

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机学习笔记

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电

流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导

极槽配合对永磁同步电机性能的影响_新(技术相关)

极槽配合对永磁同步电机性能的影响 摘要:永磁同步电机由于具有结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠等特点,在家用电器、医疗器械和汽车中得到广泛使用。永磁同步电机的齿槽转矩会引起输出转矩的脉动和噪声,不平衡径向电磁力则是电机的主要噪声源。本文着重研究极槽配合对永磁同步电机性能的影响,主要包括齿槽转矩和径向电磁力两个方面。详细介绍了齿槽转矩和径向电磁力的相关原理,并通过仿真对8极9槽和8极12槽两种极槽配合的电机进行分析比较,验证了相关的理论的正确性,最后得出电机设计中应综合考虑齿槽转矩、径向电磁力等相关因素合理选择极槽配合。 关键词:极槽配合;齿槽转矩;永磁同步电机;径向力 Influence of Pole-Slot Combination on The Performance of Permanent Magnet Synchronous Motor Abstract: Permanent magnet synchronous motor has simple structure, small volume, high efficiency, high power factor, small moment of inertia, strong overload capacity, reliable operation, widely used in household appliances, medical equipment and vehicles. Cogging torque will cause output torque ripple and noise of PMSM ,And unbalanced radial electromagnetic force is the main reason of noise of motor. In this paper,we focuses on the research of pole-slot combination effects on the performance of PMSM, including two aspects:the cogging torque and radial electromagnetic force. The relevant principles of the cogging torque and radial electromagnetic force were introduced in detail, and through the simulation of 8 poles 9 slots and 8 poles 12 slots motors,the two kinds of pole-slot combination motor were analyzed and compared, verified the related theory.Finally, we conclude that the cogging torque and radial electric force and so on related factors should be considered into the motor design when selecting reasonable pole-slot combination. Key words: pole-slot combination; cogging torque;PMSM; radial force 1引言 永磁同步电机结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠,且其

永磁同步电机基础的知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势, 忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相

静止坐标系的变换,如下式所示。 cos sin 22 cos()sin() 33 22 cos()sin() 33 a d b q c u u u u u θθ θπθπ θπθπ ?? ? - ??? ?? ?? =--- ? ?? ?? ?? ?? ? +-+ ?? (2)d/q轴磁链方程: d d d f q q q L i L i ψψ ψ =+ ?? ? = ?? 其中,ψf为永磁体产生的磁链,为常数,0 f r e ω ψ=,而c r p ω ω=是机械角速度,p为同步电机的极对数,ωc为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 3 2 e d q q d T p i i ψψ ?? =- ?? 把它带入上式可得: 3 () 2 33 () 22 e f q d q d q f q d q d q T p i L L i i p i p L L i i ψ ψ ?? =+- ?? =+- 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq,则不存在磁阻转矩,此时,转矩方程为: 3 2 e f q t q T p i k i ψ == 这里, t k为转矩常数, 3 2 t f k pψ =。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

永磁同步电机永磁体涡流损耗计算与研究解读

密级:内部高速电主轴永磁同步电机永 磁体涡流损耗计算研究 The calculation and analysis of high-speed spindle permanent magnet motor eddy current losses in the permanent magnet 学院:电气工程学院 专业班级:电气工程及其自动化0903班 学号: 学生姓名: 指导教师:(副教授) 2013 年 6 月

摘要 永磁同步电机是由永磁体建立励磁磁场的同步电机,电机结构较为简单,降低了加工和装配费用,提高了电机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电机的效率和功率密度。当外磁场发生变化时,永磁体就会产生涡流导致发热。因此,很有必要对转子永磁体内的涡流进行计算和分析,并采取相应的解决办法。 本文主要运用了有限元软件对高速电主轴永磁电机永磁体的涡流损耗进行分析,以得到永磁体涡流损耗的大小和分布规律,并研究永磁体涡流损耗的影响因素,从而为减小永磁体涡流损耗提供依据。 首先建立高速电主轴永磁电机有限元模型,对模型进行激励源加载和剖分,为涡流损耗的分析奠定基础;然后采用上述模型,计算得到永磁体内涡流损耗的大小和分布;分析正弦波供电和变频器供电下永磁体涡流损耗的特点;最后着重研究不同极槽数、转子磁路结构对永磁体涡流损耗的影响,提出减小涡流损耗的措施,为提高电机性能奠定基础。 针对永磁同步电机自身的特点,通过二维电磁场有限元方法分别求解了空载时和负载时电机永磁体内的涡流。采用了瞬态分析,根据瞬态计算出的数据绘出了涡流损耗波形,并得出永磁体内的涡流损耗分布图。最后通过分析波形得出了影响永磁体内涡流的因素以及应采取的措施。 关键词:永磁同步电机;永磁体;涡流损耗;有限元法 I

永磁同步电机特点

永磁同步电动机的分类和特点 一,永磁同步电动机的特点 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。 二,永磁同步电动机的分类 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法

上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能有所不同。 三无刷直流电动机(BLDCM) 1,BLDCM研究现状 永磁无刷直流电动机与传统有刷直流电动机相比, 是用电子换向取代 原直流电动机的机械换向, 并将原有刷直流电动机的定转子颠倒(转子采用永磁体)从而省去了机械换向器和电刷,其定子电流为方波, 而且控制较简单, 但在低速运行时性能较差, 主要是受转矩脉动的影响。 引起转矩脉动的因素很多, 主要有以下原因: (1)电枢反应引起的转矩脉动 减弱或克服这种原因造成转矩脉动采用的方法是适当增大气隙, 设计 磁路时使电机在空载时达到足够饱和, 以及电机选择瓦形或环形永磁 体径向励磁结构等。 (2)电流换相引起的转矩脉动

空调压缩机中永磁同步电机的损耗分析

空调压缩机中永磁同步电机的损耗分析 陈东锁 卢素华 陈 彬 (国家节能环保制冷设备工程技术研究中心 珠海 519070) 摘要:在空调系统中,电能主要用于压缩机运转,因此提高效率对于开发高效压缩机非常关键。为了提高永磁电机的效率,需要减少各种形式的电机损耗。永磁同步电动机其运行频率经常发生变化,致使电机内部的损耗随之改变。本文分析了影响永磁电机损耗的主要因素及其变化规律,得到一些对电机参考设计具有指导意义的结论。 关键词:永磁同步电机;有限元;铁耗;铜耗 Abstract:In the air-condition system, most of the electricity is consumed for operating the compressor. Therefore, developing a high efficiency compressor is necessary to increase the energy efficiency. To increase the efficiency of the PM motor, a reduced multiform loss is needed. The operation frequency of permanent magnet synchronous motor (PMSM) varies frequently, and its losses change correspondingly. In this paper, the main factor which affects losses and its variation were investigated, some conclusions which have guiding significance for the reference design of the motor were obtained. Key words:permanent magnet synchronous motors;finite element;iron loss;copper loss 引言 电机作为空调压缩机的核心部分,其效率的高低直接影响压缩机COP大小,所以提高电机的效率成为提高压缩机能效的主要途径。永磁同步电机具有体积小、效率高、输出转矩大等特点,应全球节能要求,永磁同步电机逐渐取代异步电机广泛应用于空调压缩机中。 为提高电机效率,首先需要分析电机损耗。电机损耗主要包括铜损、铁损、机械损及杂散损耗,如果能在设计电机结构时合理分配各损耗,则能使电机效率达到最优。 1永磁电机中的损耗 电机损耗直接影响电机效率,同时也是电机温升的来源。电机损耗可分为铜耗、铁耗、杂散损耗和机械损耗。其中铜耗即电机绕组上产生的损耗;铁耗指铁心中磁场变化而引起的损耗,包括磁滞损耗、涡流损耗和附加损耗;杂散损耗是指其他损耗的统称,主要来源于电机内的漏磁场和谐波磁场;机械损耗是指轴承摩擦损耗、转子旋转时引起转子表面与冷却气体之间的摩擦损耗等。 1.1 铜耗 根据焦耳定律,电机的铜耗与电机绕组阻值和绕组内的电流有关,其计算公式如下: P I R 3 Cu 2 =(1)式中I为绕组相电流;R 为绕组相电阻,其中: (2)式中:ρ——铜线电阻率;L av——半匝线圈长 N——每相绕组串联匝数; N t——并绕根数 a——并联支路数 d——铜线直径 永磁电机中由T=K t I可知, P W R W d NL Cu av 22222 U U d d U U (3) ——气隙磁通 ——绕组因数 根据上述可知降低铜损的方法有:增加导线截面积、缩短绕组端部长度,工艺上提高绕组因数和槽满率,合理选用和设计磁钢,以保证足够大的气隙磁场。

永磁同步异步电机的性能,你知道多少

永磁同步/异步电机的性能,你知道多少? 时间:2017-03-18 06:25:32 来源:空压机网性质:转载作者:空压机网【推荐给朋友】 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素

异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/Pn)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。

图为永磁同步电动机与异步电动机的效率和功率因数 a. 异步起动永磁同步电动机 b.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载 率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%。 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

永磁同步电机学习笔记

永磁同步电机学习笔记 1.功率因数角:外施相电压与定子相电流的夹角。 2.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 3.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 4.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 5.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,

给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

永磁同步电机失磁故障的对策分析

永磁同步电机失磁故障的对策分析 1.引言 永磁同步电机由于其结构简单、运行可靠、损耗少、功率密度高、电机的形状和尺寸可以灵活多样等显著优点,应用范围极为广泛,遍及航空航天、国防、工农业和产和日常生活的各个领域。目前,永磁电机的应用领域仍在不断的拓展,风力发电、电动汽车等新能源领域也在大量使用永磁电机。因此,为了确保像电动汽车这样的应用系统以及其它对可靠性要求更高的应用领域的安全性,必须重视永磁同步电动机运行的可靠性和稳定性。 嵌入电机内的永磁体是永磁同步电机重要的结构部件,它的磁性能直接影响永磁同步电机的效率、性能和可靠性。在温度、电枢反应及机械振动等因素影响下,嵌入电机内的永磁体可能会产生不可逆失磁,使电机性能急剧下降,甚至有可能导致电机停转,对于像电动汽车这样的应用系统,永磁电机的突然失磁是非常危险的。因此,分析永磁同步电机的永磁体磁性能及失磁故障,对电机安全高效运行具有十分重要的意义[1][2]。 2.国内外研究现状 近年来,国内外对永磁材料的失磁机理和永磁同步电机的失磁故障进行了广泛的研究。文献[3]对稀土永磁材料的交流失磁现象进行研究,总结出稀土永磁材料表面磁感应强度在不同频率的交变磁场作用下随时间的变化规律。文献[4]针对稀土永磁同步电机在运行一段时间后性能下降这一现象,分析了引起电机失磁的原因,提出了在检修和运行中避免失磁的一些有效方法。文献[5]提出了一种基于卡尔曼滤波器的永磁同步电机永磁体磁场状况在线监测方法。文献[6][7]中通过建立参数模型或有限元模型来研究电机的失磁故障,提出了一些对永磁同步电机失磁故障的监测方法。文献[10]对失磁故障原因进行了全面的分析,提出了离线和在线检测方法。基于永磁体磁场状况的动态监测,可防止永磁电机失磁状况的恶化,降低不可逆失磁程度。文献[13]提出一种改进的反电势法,可用于永磁体磁链估计。 3.永磁同步电机失磁的发生 任何磁性材料都存在材料自身的磁性能稳定问题。永磁材料也具有失磁特

永磁同步电机与异步电机性能比较

永磁同步电机与异步电 机性能比较 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

永磁同步电机与异步电机性能比较 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显着,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素 异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效 率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P 2/P n )<50% 时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济 区内运行,即负载率在75%-100%之间。 (a) η--( P2/P n) (b) ? cos--( P2/P n) 图1 永磁同步电动机与异步电动机的效率和功率因数 1. 异步起动永磁同步电动机 2.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子 电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无 感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.

从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%. 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升 由于异步电机工作时,转子绕组有电流流动,而这个电流完全以热能的形式消耗掉,所以在转子绕组中将产生大量的热量,使电机的沮度升高,影响了电机的使用寿命。 由于永磁电机效率高,转子绕组中不存在电阻损耗,定子绕组中较少有或几乎不存在无功电流,使电机温升低,延长了电机的使用寿命。4.对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网、翰变电设备及发电设备中有大量无功电流,进而使电网

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钻永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机

永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转子的转速总是小于旋转磁场(由定子绕组电流产生)的转速。因此,转子看起来与定子绕组的电流频率总是“不一致”,这也是其为什么叫异步电机的原因。 相比于永磁同步电机,异步电机的优点是成本低,工艺简单;当然其缺点就是其功率密度与转矩密度要低于永磁同步电机。而特斯拉Models为何选用异步电机而不是永磁同步电机,除了控制成本这个主要原因之外,较大的Models车体能够有足够空间放的下相对大一点的异步电机,也是一个很重要的因素。 永磁同步电动机怎样产生动力? 在交流异步电动机中,转子磁场的形成要分两步走:第一步是定子旋转磁场先在转子绕组中感应出电流;第二步是感应电流再产生转子磁场。在楞次定律的作用下,转子跟随定子旋转磁场转动,但又“永远追不上”,因此才称其为异步电动机。如果转子绕组中的电流不是由定子旋转磁场感应的,而是自己产生的,则转子磁场与定子旋转磁场无关,而且其磁极方向是固定的,那么根据同性相斥、异性相吸的原理,定子的旋转磁场就会拉动转子旋转,并且使转子磁场及转子与定子旋转磁场“同步”旋转。这就是同步电动机的工作原理。 根据转子自生磁场产生方式的不同,又可以将同步电动机分为两种: 一是将转子绕组通上外接直流电(励磁电流),然后由励磁电流产生转子磁场,进而使转子与 定子磁场同步旋转。这种由励磁电流产生转子磁场的同步电动机称为励磁同步电动机。 二是干脆在转子上嵌上永久磁体,直接产生磁场,省去了励磁电流或感应电流的环节。这种由永久磁体产生转子磁场的同步电动机,就称为永磁同步电动机。

相关主题
文本预览
相关文档 最新文档