当前位置:文档之家› 高速永磁同步电动机绕组交流损耗计算

高速永磁同步电动机绕组交流损耗计算

高速永磁同步电动机绕组交流损耗计算
高速永磁同步电动机绕组交流损耗计算

? 80

?

ELECTRONICS WORLD ?探索与观察

针对高速永磁同步电动机绕组高频损耗严重,计算较困难的问题,本文利用Ansoft有限元分析软件建立了考虑趋肤效应和邻近效应的有限元模型,对不同供电频率、不同并绕根数以及通风槽口高度对交流损耗的影响进行了详细的分析:电流频率的增大会导致绕组交流损耗增大;多根并绕可以减小导体的集肤效应,但同时也增加了导体的临近效应,选择并绕根数是应综合考虑这两方面因素;适当的增大槽口高度可以有效的减小绕组的交流损耗。

1 引言

高速永磁同步电动机具有效率高,功率密度大,体积小、重量轻等优点,在电驱动领域和运动控制等方面有着广泛的应用前景。在电机绕组中,由于集肤效应和邻近效应的作用,使得导体内部电流密度分布不均,产生附加铜耗。但由于高速永磁同步电动机工作频率高,电机绕组中电流的集肤效应和邻近效应非常严重,造成电机绕组铜耗增大,给体积小,原本散热就较困难的高速电机增加了散热负担。故在电机设计及优化时,有必要准确的预测电机定子绕组中的交流损耗(Xi Nan,Charles R.Sullivan.An improved calculation of proximity-effect loss in high-frequency windings of round conductors.PESC,2003;江善林,高速永磁同步电机的损耗分析与温度场计算:哈尔滨工业大学,2010;P.B.Reddy,Z.Q.Zhu,Seok-Hee Han,T.M.Jahns.Strand-Level proximity losses in PM ma-chines designed for high-speed operation(C).Proceedings of the IEEE on electrical machines,2008;倪光正,工程电磁场原理:高等教育出版社,2002)。

本文重点研究了高速永磁同步电机定子绕组在高频时趋肤效应和邻近效应影响下的交流损耗,利用Ansoft有限元分析软件建立了考虑趋肤效应和邻近效应的二维有限元模型,建立了每根导体的模型,研究了不同供电频率、不同绕组并联根数以及不同槽内通风道高度对电机绕组高频下的交流损耗的影响,分析了如何在设计电机的过程中尽可能的减小电机绕组的交流损耗。

2 绕组电流频率对交流损耗的影响

本文基于一台1MW,20000r/min的高速永磁电机,在该电机的设计中,采用成型线圈和双层短距绕组,每个定子槽中有56根导体组成,本文采用4极转子结构,因此电机的额定频率高达634Hz,而在高频下,由于绕组中存在明显的趋肤效应和邻近效应,绕组的高频损耗会显著增加。为了考虑该效率的影响,本文采用有限元软件,建立了每根导体的有限元模型,如图1所示。图1中的槽口位置为通风道高度,每根导线通以如图2所示的三相对称电流。

不同频率下的绕组电流密度分布如图3所示。当电流的初始角度为30度时,B相绕组的电流为0A,但由于高频时邻近效应的存在,B相中的电流密度不为0,仍然存在涡流,且随着频率的增加,电流密度逐渐增大。此外,由于高频时趋肤效应和邻近效应的影响,槽内不同导体位置的电流密度不同,存在不均匀的电流分布,且靠近槽口位置处的导体的电流密度最大。

当高频时考虑趋附效应和邻近效应时的损耗为交流损耗(Pac),当绕组中通入直流电源,频率为0时,此时的绕组损耗为直流损耗(Pdc)。交流损耗与直流损耗的比值可以反映出趋附效应和邻近效应对损耗的影响程度。图4显示了交流损耗与直流损

耗的比值与供电频率的关系。从图中可以看出,当供电频率低于500Hz时,交流损耗与直流损耗的比值小于2,但随着供电频率的增加,当供电频率为1000Hz时,交流损耗与直流损耗的比值将会增加

到4倍,随着供电频率继续增加到2000Hz时,交流损耗与直流损耗的比值将接近10倍,由此可以看出,随着供电频率的增加,绕组交流损耗会急剧增加,会使绕组损耗增加几倍甚至几十倍,将会大幅的增加绕组的温升,使其温度过高,影响电机寿命和温度运行。因

此,在高速永磁电机设计时,不能像传统电机那样,仅仅只考虑绕

组的直流损耗,高频下的趋肤效应和邻近效应必须予以准确预测。

图1 绕组有限元模型

图2 导体三相电流

图3 不同电流频率时绕组电流密度分布(Phase=30deg)

电缆损耗计算公式

电缆损耗计算公式 如果从材料上计算,那需要的数据比较多,那不好算,而且理论与实际差别较大。嗯,是比较正常的。常规电缆是5-8%的损耗。一般常用计算损耗的方法,就是通过几个电表的示数加减计算的。因为理论与实际的误差是比较大的,线路老化,会造成线路电阻变大,损耗增大。7%的损耗,是正常的。还需要你再给出一些数据…如电阻率等… 185的铜线,长度200米,电 缆损耗是多少。 电缆线路损耗计算一条500米长的240铜电缆线路损耗怎么计。 首先要知道电阻: 截面1平方毫米长度1米的铜芯线在20摄氏度时电阻为0.018 欧,R=P*L/S(P电阻系数.L长度米.S截面平方毫米) 240平方毫米铜线、长度500米、电阻:0.0375欧姆假定电流100安培,导线两端的电压:稀有金属3.75伏。耗功率:37.5瓦。 急求电缆线电损耗的计算公式? 线路电能损耗计算方法A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗 电量计算为:ΔA=3 Rt×10-3 (kW·h) (Al-1)Ijf = (A) (Al-2)式中ΔA——代表日损耗电量,kW·h;t——运行时间(对于代表日t=24),h;Ijf——均方根电流,A;R——线路电 阻,n;It——各正点时通过元件的负荷电流,A。当负荷曲线以三相有功功率、无功功率表示时:Ijf= = (A) (Al-3)式中Pt ——t时刻通过元件的三相有功功率,kW;Qt——t时刻通过 元件的三相无功功率,kvar;Ut——t时刻同端电压,kV。A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流 Ipj(代表日负荷电流平均值)的等效关系。 3*150+1*70电缆300米线路损耗如何计算 300*0.01=3米也就是说300米的主材消耗量是3米.如果工作量是300米的工程,那么造价时的主材应申请303米.但如果是300米的距离敷设电缆时,需考虑波形弯度,弛度和交叉的附加长度,那么就应该是(水平长度+垂直长度)*1.025+预留长度,算完得数后再乘以1.01就是主材的最后消耗量。 一般电缆的损耗怎样计算 理论上只能取个适当的系数,如金属1.01~1.02,非金属1.04~1.05。要确切的得称重收集数据并总结归纳可得。 电缆线用电损耗如何计算?如现用YJV22-3*150+1*70 电缆线。 电缆电阻的计算: 1、铜导线的电阻率为:0.0175hexun1 Ω·m, 根据公式:R=P*L/S(P电阻系数.L长度米.S截面平方毫米),电缆的电阻为:R=0.0175*260/70=0.065Ω; 2、根据用公式P=I2R计算功率损耗。

电线电缆材料消耗计算标准

本文件规定了电线电缆结构重量的常用计算方法。 本文件适用于本公司裸线、电力电缆、控制电缆、通信电缆、电气装备电线电缆的结构重量计算。 2 参考资料 电线电缆手册。 3导电线芯 3.1 单根导电线芯 3.1.1 圆单线的重量 2 W d kg/km 4 式中:d —圆单线直径,mm ; 3 p —材料密度, g/cm 。 3.1.2 镀锡圆铜单线重量 2 W -^― d kg/km 式中:d —镀锡铜线外径,mm p —铜密度, g/cm 3。 3.1.3 锡层重量 W= W fe ? k kg/km 式中:W 铜一镀锡铜单线重量 kg/km ; k —镀锡重量系数,见表 1所示。 3.2.1 铝绞线重量 2 W —d C kg/km 式中:d —铝单线直径,mm p —铝的密度,g/cm 3; C —绞合常数,其值见表 2。 2 2 W W1 W2 —a c d 2 2C 2 4 4 式中:W 、W —分别为钢芯重量和铝线重量, kg/km ; d 1、d 2 —分别为单根钢丝直径和单根铝线直径, mm p 1、p 2—分别为钢丝和铝的密度, g/cm 3; C 、C 2—分别为钢芯和铝线绞合常数,其值见表 3。 kg/km

3.2.3 扩径绞线重量 323.1 扩径钢芯铝绞线的重量 式中:Z o 、乙、Z 2…乙一分别为中心层及其它各层的单线根数; k o 、k i 、k 2…k n —分别为中心层及其它各层的绞入系数。 3.3.2 k i 的计算步骤(i=0、1、2…n ) 3.3.2.1 根据第一到第n 层的单线总根数 Z i ,查表4得到对应于Z i 的D/D '直。 3.3.2.2 根据已知的实际节径比 M 值,由M '= M X D/D'计算出M ' 3.3.2.3 根据M '查表5得到对应于 M '的k i 值。 3.3.3 实际节径比M 的取值规定 3.3.3.1 产品标准或工艺文件中对第 i 层的节径比若规定有上、 下限则取中间值作为 M 值。 3.3.2.2 产品标准或工艺文件中, 对第i 层的节径比若只有上限值,则按上限值减去 4作为M 值。 表4绞线的单线总根数与 D/D '的关系 3.3.4 普通绞线重量 —Z 0d K m 钢 4 2 2 Z 〔d [ Z 2 d 2 2 Z n d n K m 铝铝 kg/km 式中:Z 。一钢线根数; d o —钢丝直径,mm 乙、Z 2…Z n —分别为第一层、第二层 d i 、d 2…d n —分别为第一层、第二层 …最外层铝单线根数; …最外层铝单线直mm k m 钢、k m 铝一分别为钢线部分及铝线部分的平均绞入系数。 P 钢、p 铝一分别为钢及铝的密度, g/cm 3。 3.2.3.2 空心扩径绞线的重量 W=V 支+W fe +W fe kg/km 式中:W 支一中心支撑物重量, kg/km W s —铝线重量,w 铝 W i —钢线重量,w 钢 3.3 普通绞线重量 3.3.1 绞线的平均绞入系数 2 d 铝 Z 铝K mq 铝铝kg/km 4 2 d 钢Z 钢K m 钢 钢 kg/km 4 k m Z o k o 乙k i Z 2k 2 ... Z n k n Z o Z i Z 2 ... Z n

永磁同步电机在高速电主轴系统中的应用

永磁同步电主轴技术与应用 摘要: 伴随着高速高效高精加工技术的飞速发展,高端数控机床针对电主轴的技术需求深度和广度都不断拓展。特别是近几年来,基于永磁同步电机的电主轴技术与产品得到了快速的发展和广泛的应用。本文结合笔者在电主轴技术研究和产品开发过程中所涉及的关键技术问题,尤其是永磁同步电机在高速电主轴系统中的应用问题进行了广泛深入的探讨,希望以此对国内永磁同步电主轴产品技术开发与推广应用有所促进。 一、引言 高速高精高效加工,是数控机床永恒的追求目标和发展趋势。高效率需要高速度,在航空零件加工中尤为突出。飞机机身结构件的典型零件有梁、筋、肋板、框、壁板、接头、滑轨等类零件。且以扁平件、细长件、多腔件和超薄壁隔框结构件为主。毛坯为板材、锻件和铝合金挤压型材,90%以上为铝合金件。材料利用率仅为5%-10%左右,原材料去除量非常大大(1)。材料去除量大,在粗加工阶段,需要主轴具备足够的转矩输出能力,满足大吃刀切削。整理结构,多腔超博,又需要用小刀具清根,修光。小刀具则需要主轴有足够高的转速,以满足刀具的切削速度需求。因此,航空铝合金零件的加工就需要机床主轴不但具备低速大转矩输出,同时又能在小刀具加工时具备足够高(20000rpm以上)的工作转速。 在磨具加工行业,近年来大量使用的高速雕铣机,在高速电主轴的助推下,利用小刀具的微刀痕特点,大大提高了各种材质模具制造的精度和速度。随着雕铣机床的进一步发展,雕铣机也逐渐进入零件加工领域,因此对主轴的低速输出转矩也提出较高的要求。 平板电脑、苹果手机等高端电子消费品的快速发展,是当今时代最大的亮点之一。这类日用电子消费品,更新速度之快,不但让人眼花缭乱,而且使数控钻攻中心机得以急速发展。这类机床除了具备现代数控机床的基本特征外,必须具备在6000rpm以上高速刚性攻丝的能力。 综合上述三个典型的行业需求,需要数控机床电主轴同时具备三种特点,低速大转矩输出、20000rpm以上的工作转速、可以高速刚性攻丝。永磁同步电主轴则是同时具备这三个特征的最佳电主轴产品。本文就是通过对永磁同步电主轴基本结构,关键技术,以及在不同机床领域里的应用介绍,希望大家对永磁同步电主轴能有比较全面的认识和借鉴。 二、永磁同步电主轴的基本结构及其特点 永磁同步电主轴与传统电主轴的最大区别是采用了稀土永磁同步电机作为主轴的驱动动力源,除此之外,基本结构与异步电机驱动的电主轴结构基本相同。图1为典型的雕铣机用异步电主轴结构,图2为典型的雕铣机用永磁同步电主轴结构。两者结构上最大的区别是图1中的9为感应式鼠笼转子,图2中的16为稀土永磁转子。另外,图2中的20为编码器,是为了较高的速度控制精度而增加的速度和位置反馈元件。

交流永磁同步电机结构与工作原理

交流永磁同步电机结构与工作原理 2。1。1交流永磁同步电机得结构 永磁同步电机得种类繁多,按照定子绕组感应电动势得波形得不同,可以分为正 弦波永磁同步电机(PMSM)与梯形波永磁同步电机(BLDC)【261.正弦波永磁同步电机 定子由三相绕组以及铁芯构成,电枢绕组常以Y型连接,采用短距分布绕组;气隙场 设计为正弦波,以产生正弦波反电动势;转子采用永磁体代替电励磁,根据永磁体在 转子上得安装位置不同,正弦波永磁同步电机又分为三类:凸装式、嵌入式与内埋式。 本文中采用得电机为凸装式正弦波永磁同步电机,结构如图2一l所示,定子绕组一 般制成多相,转子由永久磁钢按一定对数组成,本系统得电机转子磁极对数为两对, 则电机转速为n=60f/p,f为电流频率,P为极对数。

图2一l凸装式正弦波永磁同步电机结构图 目前,三相同步电机现在主要有两种控制方式,一种就是她控式(又称为频率开环 控制);另一种就是自控式(又称为频率闭环控制)[27】。她控式方式主要就是通过独立控 N#l-部电源频率得方式来调节转子得转速不需要知道转子得位置信息,经常采用恒压 频比得开环控制方案。自控式永磁同步电机也就是通过改变外部电源得频率来调节转子 得转速,与她控式不同,外部电源频率得改变就是与转子得位置信息就是有关联得,转子

转速越高,定子通电频率就越高,转子得转速就是通过改变定子绕组外加电压(或电流) 频率得大小来调节得。由于自控式同步电机不存在她控式同步电机得失步与振荡问 题,并且永磁同步电机永磁体做转子也不存在电刷与换向器,降低了转子得体积与质 量,提高了系统得响应速度与调速范围,且具有直流电动机得性能,所以本文采用了 自控式交流永磁同步电机.当把三相对称电源加到三相对称绕组上后,自然会产生同 步速得旋转得定子磁场,同步电机转子得转速就是与外部电源频率保持严格得同步,且 与负载大小没关系. 2。1.2交流永磁同步电机得工作原理 本系统采用得就是自控式交直交电压型电机控制方式,由整流桥、三相逆变电路、 控制电路、三相交流永磁电机与位置传感器构成,其结构原理图如图2-2所示.在 图2-2中,50HZ得市电经整流后,由三相逆变器给电机得三相绕组供电,三相对称 电流合成得旋转磁场与转子永久磁钢所产生得磁场相互作用产生转矩,拖动转子同步

IEC61439.1《低压成套开关设备和控制设备》关于铜导线、裸铜母线的工作电流和功率损耗的计算

【摘自IEC61439.1-2011附录H(资料性附录)】 铜导线的工作电流和功率损耗 表H.1提供了理想状态下,成套设备内导体的工作电流和功率损耗的指导性数值。确定这些值的计算方法可被用来计算其他工作环境下的数值。 表1 允许导体温度70℃的单芯铜电缆的工作电流和功率损耗 max301 2 v max20c 式中: k1 外壳内导体周围空气温度的降容系数(IEC60364-5-52-2009 表B.52.14)k1=0.61导体温度70℃周围环境温度55℃。 在其他空气温度时的k1值,见表H.2。 k2 多于一条电路组合的降容系数(IEC60364-5-52-2009 表B.52.17)

α电阻温度系数。α=0.004K-1 T c导体温度 表2电缆在导体允许温度为70℃时的降容系数k1 (引自IEC60364-5-52-2009 表B.52.14) 注:如果表1中的工作电流使用降容系数k1转换成其他的空气温度,则相应的功率损耗也应用上面的公式重新计算。

【摘自IEC61439.1-2011附录N(规范性附录)】 裸铜母排的工作电流和功率损耗 以下表格提供了成套设备内的导体在理想条件下的工作电流和功率消耗值。此附录不适用于试验验证用的导体。 给出用以建立这些值的计算方法,以便在其他条件下进行值得计算。 表N.1矩形截面裸铜排的工作电流和功率损耗,水平走向,最大面垂直排列, P v=I2хk3 [1+α(T c-20℃)] ?хA 式中: P v 每米的功率损耗;I工作电流; k3电流位移系数;

?铜的传导率,?=56m/Ωхmm2 A母线的截面积; α电阻的温度系数,α=0.004K-1 T c 导体温度 成套设备内不同的环境空气温度和/或导体温度为90℃时,工作电流可以通过表N.1中的数值乘以表N.2中的相应系数K4变换。则功率消耗也应用上面给出的公式计算。 表N.2成套设备内不同空气温度和/或不同导体温度的系数K4 可以认为,根据成套设备的设计,可能出现完全不同的环境和导体温度,尤其在较大的工作电流时。 在这些环境条件下,验证实际温升应该通过试验。功率损耗可以使用与用于表N.2相同的方法来计算。 注:在大电流条件下,附加的涡流损耗也许是重要的,但表N.1中的值并未考虑此种情况。

永磁同步电动机的应用前景

一、概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有:1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改

(整理)永磁同步电动机的应用.

一、 概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有: 1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改进提高,这些缺点大多已经克服,现钕铁硼永磁材料最高的工作温度已可达180℃,一般也可达150℃,已足以满足绝大多数电机的使用要求。表1是各种永磁材料性能比较。 表1各种永磁材料的性能比较 永磁材料剩磁(T)Br(T) 矫顽力HcB(KA/m) 内禀矫顽力Hcj(KA/m) 最大磁能积(BH)m(KJ/m3)剩磁可逆温度系数αB(%C) 居里温度Tc8(C) 中等水平钕铁硼`` 1.26 967 955 310 -0.12 350 较高水平的钐钴1.00 746 766 210 -0.03 850

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

旋转变压器在高速永磁同步电动机中的应用 看完

摘要:介绍一种用于高速永磁同步电动机控制的转子位置检测方法,该方法采用旋转变压器/数字转换器AU6802N1,将旋转变压器输出的模拟信号转化为数字位置信号。设计了AU6802N1与旋转变压器和TMS320F2812之间的接口电路,并提出了一种具有较强容错性的位置信号数字处理方法,试验表明,该方案能够准确地实现电机位置和速度的检测。 关键词:旋转变压器,AU6802N1,接口电路,数字信号处理器 在采用磁场定向控制的永磁同步电动机调速系统中,需要实时地检测电机转子位置及转速,以实现转矩、速度的闭环控制。通常的检测方法是使用光电编码器,而常用的正交光电编码器起动时需要一段时间进行转轴定位,而且抗冲击震动性差,因此在需要快速响应的高速运行且对抗震要求较高的场合,往往使用旋转变压器。旋转变压器的输出是含位置信息的模拟信号,需要将其转换为数字信号才可输入到单片机或DSP等控制芯片。本文采用多摩川公司的旋转变压器数字转换器AU6802N1将模拟位置信号转换成12位数字位置信号, 同时采用TMS320F2812作主控CPU,可满足系统对转子位置与速度信号实时快速检测和处理的要求。实验表明该方案确实可行,并具有较高的控制精度。 1 旋转变压器的原理 本系统选用的无刷旋转变压器如图1所示。经过无刷化设计,旋转变压器初级励磁绕组(R1-R2)和二相正交的次级感应绕组(S1-S3,S2-S4)同在定子侧,转子侧是与初级绕组和次级绕组磁通耦合的特殊结构的线圈绕组。 图1旋转变压器原理图

当旋转变压器转子随电机同步旋转、初级励磁绕组外加交流励磁电压后,次级两输出绕组中便会产生感应电势,大小为励磁与转子旋转角的正、余弦值的乘积。旋转变压器输入输出关系如下: ER1-R2=E0sinωt ES1-S3=KER1-R2sinθ ES2-S4=KER1-R2cosθ 式中: E0——励磁最大幅值; ω——励磁角频率; K——旋转变压器变比; θ——转子旋转角度。 2 基于AU6802N1的接口电路 2.1 旋转变压器与AU6802N1的接口电路 AU6802N1提供给旋转变压器的交流励磁电压由RSO-COM口输出,频率由引脚FSEL1和FSEL2设置,在图2的电路中励磁电压信号的频率设置为10kHz。励磁电压的有效值通过双电源Booster放大电路进行调节。该励磁电压信号又反馈回R1E -R2E端口,用于实现内部相位同步检测和断相检测。旋转变压器产生的cos和sin 信号经过调理后分别由S3-S1和S4-S2端口进入解码芯片。参数选择:V=15V, Ri=22kΩ, Rf=100kΩ, R1=R2=313kΩ, R3 =R4=4.7Ω, Rext=12Ω, RR1=RR2=313k Ω, RI1=20kΩ, RI2=200kΩ, RBH=68kΩ, RBL=20kΩ,Ci=0.1μF, Cf=200pF, Cn=100pF, Cc=1000pF。

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

交流永磁同步电动机伺服系统

交流永磁同步电动机伺服系统 1 伺服系统的基本概念 1.1 名词 “伺服”—词源于希腊语“奴隶”的意思。人们想把“伺服机构”当个得心应手的驯服工具,服从控制信号的要求而动作。在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。由于它的“伺服”性能,因此而得名—伺服系统。 1.2 定义 伺服系统—是使物体的位置、方位、状态等输出被控量能够跟随输入目标值(或给定值)的任意变化的自动控制系统。 伺服的主要任务是按控制命令的要求,对功率进行放大、变换与调控等处理,使驱动装置输出的力距、速度和位置控制得非常灵活方便。 1.3 伺服系统的组成 伺服系统如图1所示,是具有反馈的闭环自动控制系统。它由位置检测部分、误差放大部分、执行部分及被控对象组成。 1.4 伺服系统的性能要求 伺服系统必须具备可控性好,稳定性高和速应性强等基本性能。说明一下,可控性好是指讯号消失以后,能立即自行停转;稳定性高是指转速随转距的增加而均匀下降;速应性强是指反应快、灵敏、响态品质好。 1.5 伺服系统的种类 通常根据伺服驱动机的种类来分类,有电气式、油压式或电气—油压式三种。 伺服系统若按功能来分,则有计量伺服和功率伺服系统;模拟伺服和功率伺服系统;位置伺服和加速度伺服系统等。 电气式伺服系统根据电气信号可分为dc直流伺服系统和ac交流伺服系统二大类。ac交流伺服系统又有异步电机伺服系统和同步电机伺服系统两种。 这里只讨论电气式伺服系统中的一种—交流永磁同步电机伺服系统。 2 交流永磁同步电机伺服系统 伺服驱动系统能够忠实地跟随控制命令而动作,例如数控机床和工业机人,伺服驱动技术对产品的性能有重要影响,甚至起关键作用。故需进一步认识伺服驱动系统在其中的地位和作用。 2.1 ac伺服系统 电气伺服技术应用最广,主要原因是控制方便,灵活,容易获得驱动能源,没有公害污染,维护也比较容易。特别是随着电子技术和计算机软件技术的发展,它为电气伺服技术的发展提供了广阔的前景。 早在70年代,小惯量的伺服直流电动机已经实用化了。到了70年代末期交流伺服系统开始发展,逐步实用化,ac伺服电动机的应用越来越广,并且还有取代dc伺服系统的趋势成为电气伺服系统的主流。 在ac伺服系统中,可分为同步和异步型ac伺服系统两种。 ac伺服系统—→异步型—-→两相异步机; →三相异步机(力距电机)。 →同步型→磁阻式(开关式); →磁滞式(反应式); →永磁式。 永磁转子的同步伺服电动机由于永磁材料不断提高,价格不断下降,控制又比异步电机

电机功率算电缆的例子电压损失百分数计算公式

电机功率算电缆的例子电压损失百分数计算公式 185千瓦的电动机,距电源200米,请问需要多大的铜芯电缆?具体的公式计算?用什么样的启动方式为好? 1--------简化公式:每个kw两个电流 185*2大约等于370A的电流 2---------查电工手册中的电缆载流量表选择240平方毫米的铜芯电缆3---------也可用以下选线口诀选择电缆截面。 铝芯绝缘线载流量与截面的倍数关系 10下五100上二, 25、35,四、三界, 70、95,两倍半, 穿管、温度,八、九折。 裸线加一半, 铜线升级算。 4----------启动方式看要求定,要求高的话就采用变频启动,要求低的话可采用星三角启动。 5---------- 低压供电范围是400m以内,应该不用考虑压降问题,压降范围400v以下+5% ,-7%。 6-----------如果电压低可以考虑电压补偿

电压损失百分数计算公式 己知P=185KW L=200m △U=5 求S=? △U=PL/CS S=PL/C△U=185X200/77X5=37000/385=96.1mm2 分析,如果供应这台电动机的变压器容量足够大,800KVA及以上,高低压配电系统线路的质量好,任何时候电压都不低于额定电压,可以用95mm2铜芯电缆。 如果供应这台电动机的变压器容量不大,800KVA以下,高低压配电系统线路的质量不怎么好,电压有可能低于额定电压,应该选用120mm2铜芯电缆。 功率185kw的额定电流 I=P/1.732UcosΦ=185/1.732/0.38/0.8=185/0.53=350安 电压损失百分数△U=5 的意思,就是100V电压通过导线下降5V,380V电压通过导线下降19V. 国家标准规定:380V动力用户电压损失不能超过额定电压的±7%,考虑其它电压损失,电动机的电缆取△U=5 较为合适。 电压损失百分数计算公式 △U=PL/CS △U——电压损失百分数 P——输送的有功功率(Kw) L——输送的距离(m)

永磁同步电动机控制策略

永磁同步电动机控制策略综述 1 引言 近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此,这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。 2 永磁同步电动机的数学模型 当永磁同步电动机的定子通入三相交流电时, 三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势; 另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通, 并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组,从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数[2-3]: ② 忽略电动机的铁心饱和; ②不计电机中的涡流和磁滞损耗; ③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。 在分析同步电动机的数学模型时,常采用两相同步旋转(d ,q )坐标系和两相静止(α,β)坐标系。图1 给出永磁同步电动机在(d ,q )旋转坐标系下的数学模型[4]。 (1) 定子电压方程为: d d d q f u p ri ψψω=+- (1) q q q d f u p ri ψψω=++ (2) 式中:r 为定子绕组电阻;p 为微分算子,p=d/dt ;d i ,q i 为定子电流;d u ,q u 为定子电压;d ψ,q ψ分别为磁链在d ,q 轴上的分量;f ω为转子角速度(ω=f ω p n );p n 为电动机极对数。 (2)定子磁链方程为: d d d f L i ψψ=+ (3) q q q L i ψ= (4) 式中:f ψ为转子磁链。 (3)电磁转矩为: ()[()]em p q d d q p f q d q d q T n i i n i L L i i ψψψ=-=+- (5) (4)电动机的运动方程为: em L p p J d T T n n ω?=- (6)

电力电缆常用计算公式

?电线电缆载流量计算 交流电阻计算 绝缘介质损耗计算 电线电缆金属套和屏蔽的损耗计算 铠装损耗计算 热阻计算 载流量计算 ?电线电缆允许短路电流计算 ?电线电缆短时过负荷电缆载流量计算?电力电缆相序阻抗计算 ?电线电缆导体和金属屏蔽热稳定计算

电线电缆载流量计算 一、交流电阻计算 1. 集肤和邻近效应对应的Ks 和Kp 系数的经验值: 导体不干澡浸渍: 0.1=s k 0.1=p k 导体干燥浸渍: 0.1=s k 8.0=p k 2. 工作温度下导体直流电阻: )]20(1[200-+?='θαR R 0R —20oC 时导体直流电阻 OHM/M 20α—20oC 时导体电阻温度系数 3. 集肤效应系数: 1.一般情况: s S R f X κπ72108-?' = 4 4 8.0192s s s X X Y += 2. 穿钢管时: s S R f X κπ72108-?' = 5.18.01924 4 ?+=s s s X X Y f —电源频率Hz 4. 邻近效应系数: a. 二芯或二根单芯电缆邻近效应因数: p p R f X κπ72108-?' = 一般情况: 9.2)(8.01922 4 4?+=s d X X Y c p p

穿钢管时: 5.19.2)(8.01922 4 4??+=s d X X Y c p p p dc:导体直径 mm s :各导体轴心间距 mm b. 三芯或三根单芯电缆邻近效应因数: p p R f X κπ72108-?' = (1) 圆形导体电缆 一般情况: ]27 .08.019218.1)(312.0[)(8.0192442 24 4 +++?+=p p c c p p p X X s d s d X X Y dc:导体直径 mm s :各导体轴心间距 mm 穿钢管时: 5.1]27 .08.019218.1)(312.0[)(8.0192442 24 4 ?+++?+=p p c c p p p X X s d s d X X Y dc:导体直径 mm s :各导体轴心间距 mm (2) 成型导体电缆 一般情况: ]}27 .08.019218.1)(312.0[)(8.0192{3244 2 24 4++++?++=p p x X x X p p p X X t d d t d d X X Y 穿钢管时: 5.1]}27 .08.019218.1)(312.0[)(8.0192{3244 2 24 4?++++?++=p p x X x X p p p X X t d d t d d X X Y

永磁同步电动机及控制策略综述

永磁同步电动机及控制策略综述 点击数:401 王毅兰,徐艳平 西安理工大学自动化学院电气工程系,陕西西安710048 摘要综述了永磁同步电动机的发展,阐释了永磁同步电动机的控制策略,提出了最新进展与研究热点,展望了永磁同步电机的应用前景。 关键字永磁同步电动机;控制策略;综述 Overviews of Permanent Magnet Synchronous Motor and Its Control Strategies WANG Yilan,XU Yanping Xi’an University of Technology,Xi'an Shaanxi 710048 China Abstract The development of permanent magnet synchronous is overviewed,the control strategies of permanent magnet synchronous is introduced,the applied foreground of permanent magnet synchronous is prospected. Keywords permanent magnet synchronous motor(PMSM);control strategies;overviews

材料技术的发展,特别是稀土永磁材料,磁性复合材料的出现,加之我国拥有—铁—硼)的储量,使得永磁电机活跃在各个工业生产中。永磁同步电机(PM 的电机,具有转子转动惯量小、效率高、功率密度大、可靠性高的优点,因此例如在数控机床等场合,永磁同步电动机正在逐步取代直流电机和感应电机。,明显地减小了体积,减轻了重量,降低了损耗,避免了电机发热,从而提高效果。 MSM 运动控制系统中,它比异步电动机更便于实现磁场定向控制,可以获得特性,使控制系统具有十分优良的动、静态特性。 机的种类和基本结构 ,永磁同步电机分凸装式、嵌入式和内埋式三种基本形式,如图1 所示,前两种阻与交轴磁阻相等,因此交、直轴电感相等,即Ld=Lq,表现为隐极性质;另,因此Ld

2002电缆安装损耗率计算说明

说明 一、电缆敷设定额适用于lOkV以下的电力电缆和控制电缆敷设。定额按平原地区和厂内电缆工程的施工条件考虑,未考虑在积水区、水底、井下等特殊条件下的电缆敷设,厂外电缆(包括进厂部份)敷设工程按本册第十章有关定额另计工地运输。 二、电缆在一般山地、丘陵地区敷设时,其定额人工乘以系数1.3。该地段所需的施工材料如固定桩、夹具等按实另计。 三、电缆敷设定额未考虑因波形敷设增加长度、弛度增加长度、电缆绕梁(柱)增加长度以及电缆与设备连接、电缆接头等必要的预留长度,该增加长度应计人工程量之内(详见本章工程量计算规则)。 四、电力电缆头定额按铝芯电缆考虑,未编列铜芯电力电缆头定额的项目按同截面电缆头定额乘以系数1.2,双屏蔽电缆头制作安装人工乘以系数1.05。 五、电力电缆敷设定额均按三芯(包括三芯连地)考虑,5芯电力电缆敷设定额乘以系数1.3,6芯电力电缆乘以系数1.6,每增加一芯定额增加30%,以此类推。单芯电力电缆敷设按同截面电缆定额乘以0.67。截面400mm2以上至800mm2的单芯电力电缆敷设按400mm2电力电缆定额执行;截面800mm2-1000mm2的单芯电力电缆敷设按400mm2电力电缆乘以系数1.25执行。240mm2以上的电缆头的接线端子为异型端子,需要单独加工,应按实际加工价计算。 六、电缆沟与电气管道沟的挖填方执行本册第十章有关定额。 七、桥架安装: 1.桥架安装包括运输、组对、吊装、固定,弯通或三、四通修改、制作组对,切割口防腐,桥架开孔,上管件、隔板安装、盖板安装、接地、附件安装等工作内容。 2.桥架支撑架定额适用于立柱、托臂及其他各种支撑架的安装。本定额已综合考虑了采用螺栓、焊接和膨胀螺栓三种固定方式,实际施工中,不论采用何种固定方式,定额均不作调整。3.玻璃钢梯式桥架和铝合金梯式桥架定额均按不带盖考虑,如这两种桥架带盖,则分别执行玻璃钢槽式桥架定额和铝合金槽式桥架定额。 4.钢制桥架主结构设计厚度大于3mm时,定额人工、机械乘以系数1.2。 5.不锈钢桥架按本章钢制桥架定额乘以系数1.1执行。 八、电缆敷设系综合定额,已将裸包电缆、铠装电缆、屏蔽电缆等因素考虑在内,因此凡10kV 以下魄电力电缆和控制电缆均不分结构形式和型号,一律按相应的电缆截面和芯数执行定额。 九、直径中100以下的电缆保护管敷设执行本册配管配线章有关定额。 十、本定额未包括下列工作内容: 1.隔热层、保护层的制作、安装。 2.电缆冬季施工的加温工作和在其他特殊施工条件下的施工措施费和施工降效增加费。 十一、吊电缆的钢索及拉紧装置,应按本册相应定额另行计算。 十二、钢索的计算长度以两端固定点的距离为准,不扣除拉紧装置的长度。 工程量计算规则 一、直埋电缆的挖、填土(石)方,除特殊要求外,按表1计算土方工程量。 表1 直埋电缆的挖、填土{石)方量 项目 电缆根数 1—2 每增一根 每米沟长挖方量(m3) 0.45 0.153 注:①两根以内的电缆沟,系按上口宽度600mm、下口宽度400mm,深度900mm计算的常规土方量(深度按规范的最低标准)

相关主题
文本预览
相关文档 最新文档