当前位置:文档之家› 船舶减摇装置

船舶减摇装置

船舶减摇装置
船舶减摇装置

船舶减摇技术现状及发展趋势

SHIP ENGINEERING 船舶工程 V ol.34 Supplement 2 2012 总第34卷,2012年增刊2船舶减摇技术现状及发展趋势 洪超1,陈莹霞2 (1.中国船舶重工集团公司第704研究所,上海 200031;2.上海船舶设计研究院,上海 201203) 摘 要:传统的船舶减摇装置包括减摇鳍、减摇水舱、舵减摇、减摇陀螺、减摇重块等,本文介绍了这些传统的减摇装置的发展现状及近年来出现的新型减摇装置,包括零航速减摇鳍、舵鳍联合减摇、舱鳍联合减摇、Magnus效应回转轴减摇、减纵摇、船舶姿态控制系统等,并对未来的新型减摇装置进行了预测。 关键词:减摇鳍;减摇水舱;舵减摇;陀螺;减摇发展 中图分类号:U664.7 文献标志码:A 文章编号:1000-6982 (2012) Z2-0236-09 Current Situation and Tendency of Development of Ship Stabilizer Technique HONG Chao1, CHEN Ying-xia2 (1. Shanghai Marine Equipment Research Institute, Shanghai 200031, China; 2. Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China) Abstract: The traditional ship stabilizer includes fin stabilizer, anti-rolling tank, rudder roll stabilizer,moved mass stabilizer etc..this paper introduces the development status of these traditional stabilizers and some new stabilizers developed in recent years, such as fin stabilizer at zero speed, rudder-fin stabilizer, tank-fin stabilizer, Magnus Effect rotor stabilizer, pitch stabilizer and ship motion control system. And the prospective ship stabilizers are forecasted at the last part of this paper. Key words: fin stabilizer; anti-rolling tank; rudder roll stabilizer; gyro roll stabilizer; development 1 概述 人类从19世纪初的帆船年代的舭龙骨开始,就已经开始了船舶减摇的努力和斗争,前后共提出了350余种不同类型的减摇装置,其中用于了实践的达20几种[1]。直到二十世纪九十年代,保留下来的船舶减摇装置主要有舭龙骨、减摇水舱、减摇鳍、减摇陀螺、舵减摇、减摇重块等少数几种。 1.1 舭龙骨 是一种装于船中两舷舭部外侧,与舭部外板垂直的长条形板材结构。在船横摇时扰动船体周围的流场,使船产生附加阻尼,通过增加横摇阻尼来达到减摇的目的。它在任何情况下都有效,减摇效果,效果大约为20%~25%。舭龙骨结构简单、造价低、效能高、没有运动部件、便于维护,被广泛的应用到各类船舶。目前几乎所有海船都毫无例外地装有舭龙骨,它已成为海船船体的一部分。所以,在一般情况下所谓减摇装置系指舭龙骨以外的减摇措施和设备。 1.2 减摇水舱 自从1911年佛拉姆成功推出被动U型水舱以来,这种减摇装置已经有100多年的发展历史,目前已经有各种减摇水舱应用到几千艘各类船舶[2]。减摇水舱最大的优点是其减摇效果跟航速没有直接关系,可以在任何航速下减摇。对被动水舱而言,还具有功率小,成本低等优点。减摇水舱也有多种,其中应用最多的是可控式U型被动减摇水舱。美国Flume Stabilization Systems公司已为超过1500条船提供了被动减摇水舱,Intering公司提供了大约600套,Rolls-Royces公司270多套,日本的STABILO公司大约为200套,日本JFE公司约130套(不包括军船)。上海船舶设备研究所研制出国内减摇水舱前年刚刚投入市场,就已经承接了数条船的订单。减摇水舱存在减摇效率相对较低、占用空间大、低频扰动下易增摇等缺点,一定程度上限制了其发展。 1.3 减摇鳍 减摇鳍出现的历史相对较晚,世界上第一套减摇鳍装置于1923年由日本三菱重工的元良信太郎博士 作者简介:洪超(1977-),男,高级工程师,主要从事船舶减摇技术研究。

减摇鳍原理

在静水中航行的船舶浮心O 垂直地位于重心G 之下,浮力F 和重力mg (相当于船舶排水量D )大小相等、方向相反。没有力矩作用于船上,船舶处于正浮状态。当船舶在波浪海面上航行时,由于波浪运动,波浪表面与水平面间出现夹角γ—波倾角。波面倾斜后使浮于波浪上的船舶的浮心从O 点移动到O ˊ点,故此绕船舶重心G 有一力矩M B =F ·a 作用在船上。此力矩称为波浪扰动力矩。正是这一力矩使船舶产生绕其自身重心的纵轴的横向摇摆运动。 如果视波浪为正弦波,如图2所示。则用波长“λ”,波高“ξω”和周期(波浪从A 点传播到C 点所需时间)“T ”表征波浪。显然,波长“λ”相同,波高越高(海情高,波浪强)波倾角γ也越大。和波高一样波倾角γ也能表征波浪的强弱。从图2可见波浪上各点的波倾角值也不同。A 、B 、C 三点最大,其值为γmax ;D 、E 两点最小,其值为零。在波浪运动的过程中波倾角做周期性变化。 从零到γmax 到零到γmax 。因波浪的波长“λ ”远较船宽大,故a ≈h ·γ,船在波面上运动,在波面的不同点所受波倾角的作用也不同。其中h —船舶初稳心高,F=D (船舶排水量),所以作用在船上的波浪扰动力矩为: 为使船舶的摇摆角尽可能减小,必须施加给船舶一个稳定力矩。该稳定力矩M CT 在数量上应尽可能与波浪扰动力矩M B 相等,在方向上与波浪扰动力矩相反(或者说在相位上相差180°角)。减摇鳍装置就是一种能给船舶产生一个稳定力矩的装置 鳍是装在船舶水线下的一块剖面形状对称的流线型板。如图3所示,当船 ??? ??πγ=t T 2Sin Dh M max B

舶以速度V 航行时,若此流线型鳍相对于速度方向偏转α角,由于偏转了的鳍的上方为低压,下方为超压,上下之压差在鳍上产生一向上的升力P ,另一舷的鳍向反 方向偏转产生一大小相等方向向下的升力P ,升力的值为: 式中:ρ—海水密度; C y —鳍的升力系数(鳍形设定后,其值仅与鳍转角α有关); S —鳍的面积; V —船舶航速; 这样在左右两舷的作用下将有一力矩作用在船上,其情形 如图4所示。 2 21SV C P y ρ=

船体结构修理工艺设计

船体结构修理工艺 一,常见的几种施工工艺 1. 结构更换:更换损坏了或蚀耗了的部件,使之恢复成原有的形式; 2. 结构部分更换:考虑到整个结构更换比换困难,涉及面广,其中有的部件的蚀耗还未到非换不可的程度,征得验船师的同意,可以进 行结构部分更换; 3. 结构矫正:在更换外板、甲板时采用,主要包括冷加工矫正和就地热矫正; 4. 结构拆下、矫正、装复:有时外板变形严重,无法就地矫正修复,则将外板拆下送到车间,利用机械设备进行矫正,待在外板原来的部 位的部骨架就地矫正结束后,再将外板原位装复,必要时亦可将骨架 一起拆下送车间矫正; 5. 结构拆除:有时船体经过改装后,有一些结构已无存在的必要,须予以拆除; 6. 焊接工艺:(1)焊接前,接缝处应批出斜坡口,以消除夹缝空档。常见的坡口按焊接的要求有V形、Y形、X形和K形;(2)焊接表面冷却后有一层灰色的焊渣,必须铲除干净,防止夹渣。焊缝要求 均匀平整,如焊坑、咬边或者烧穿钢板,均为不合格,应当刨除重焊;(3)对于旧焊缝的修理,不可直接在原有的焊缝上面加焊,应将待修的旧焊缝及其两端各延长5-8mm长度全部刨掉,批出整齐的斜坡口,然后焊接,要特别注意新、旧焊缝接合处的质量;(4)对于构件本体裂缝的焊接,必须先在裂缝的两端各钻一个止裂孔,以便使其应力在 此处向各个方向分散,然后批槽堆焊。如果焊接大尺寸的铜制构件的 裂缝,除必须钻止裂孔及批槽外,还应当预先用慢火将构件烘热,保 持在一定温度上焊补;(5)对于地环、羊角等的焊接,如带底座者,应按复板焊接的工艺要求进行焊接;如天底座者,其脚部应批成锥形 然后堆焊,不可采用仅在圆钢角部堆焊一圈的方法。 二,船体渗漏及其修理工艺 1. 产生原因:

《中国造船》54卷第2期(2013年6月)目次学术论文全航速减摇鳍鳍型

《中国造船》54卷第2期 (2013年6月) 目次 学术论文 全航速减摇鳍鳍型优化设计 ··········································宋吉广金鸿章孟令卫( 1 ) 数值水池集成软件系统概念设计研究 ··················李百齐刘晓东何术龙魏锦芳( 11 ) 基于改进运动平衡点的水下机器人自主避障方法研究 ·································································孙玉山张英浩常文田李岳明( 17 ) 温载及持久应力作用下铝合金船体结构变形研究 ···赵耀周雪莲陈南华姜开厚( 26 ) 折叠式夹层板水下爆炸防护性能数值仿真分析 ······张延昌王果周红王自力( 35 ) 泡沫夹层复合材料的初始破坏载荷与极限载荷计算 ············易雯赵耀高畅( 45 ) 船舶型线设计系统软件开发 ······························何术龙周秀红李百齐刘晓东( 55 ) 冰期船舶下水试验研究 ························张洪雨展龙陈洪利赵亮程江华( 62 ) 某散货船的EEDI试航验证评估 ·····································胡琼徐杰陈文炜( 69 ) 低噪声舰船尾管水润滑橡胶轴承材料的研究 ·········································周新聪闫志敏唐育民秦红玲赵华松田宇忠( 77 ) 船体曲面板成型中应变分布的影响参数的分析 ··················杨燕琴赵耀袁华( 85 ) 大型起重船复合压载系统的设计研究 ··················黄超何炎平张维竞吴铮铮( 97 ) 30万吨矿砂船船型设计研究··································································宋吉卫( 105 ) 偏心受压工况下自升式平台桩腿力学性能研究 ·········································张建唐文献秦文龙苏世杰高超刘仁昌( 111 ) 船体结构总体振动特性预测技术研究 ······················································史丰荣( 118 ) 边界条件对船用厚板高强钢焊接残余应力的影响研究 ·········鲁鹏赵耀袁华( 124 ) 大型组块横向滑移装船可行性分析 ·····················许南王飚杨小龙张广磊( 133 ) 论FPSO总体设计·······················································席时春袁翔郝孟江( 140 ) 海洋结构物环境和动力响应实时监测重要性分析 ·······································于毅( 145 ) 基于碳排放强度的经济型EEDI预估模式研究 ···················谭祖胜沈汉峰王晓东( 151 ) 嵌入式船舶主机遥控系统的设计与实现 ···························曹辉贾宝柱张均东( 158 ) 基于任务重要度的舰船总体任务可靠性分配法 ··················胡斌刘松林刘刚( 165 ) 无人值守海洋气象仪系统设计 ·······································庞佑军涂大斌王亦平( 171 )

船舶的摇摆控制

船舶的摇摆控制 大型集装箱船首部与尾部的形状差别很大,所以当船舶在波浪区域航行,沿船长方向出现波峰和波谷时,很容易导致船舶扶正力臂的变化,故要特别关注船舶的摇摆参数-周期和幅度,一艘船的扶正力矩是扶正力臂与总重量的乘积。船舶在顺水或逆水前进时,其横摇和纵倾是呈周期性的变化,其扶正力臂也呈周期性的变化。正是因为这种现象,导致船舶的扶正力矩也随之发生变化,从而引发了船舶的摇摆。 而这种以时间为变量参数的摇摆,如果遇上合适的海浪情况,就有可能引发船舶共振现象,这时船舶的摇摆角度加大,导致货物和集装箱的灭失,极端的情况下,可能使船体结构遭受破坏。最近几年来,集装箱船的事故,就反映出这种现象的危险性。 人们都知道一个现象,船舶在低速航行时,如果恰巧在某一时间操舵、遇到阵风或其它因素的影响时而引起船舶附近的波浪发生变化,当其频率较低时(仅为船舶自身摇摆周期的一半),有可能导致船舶摇摆的角度很大。对大型集装箱船,在一定的海况下就有可能产生周期性的摇摆,如在北太平洋和北大西洋一年中分别有9%和12%时间里存在着导致这种现象发生的海况。 实事上,如果在船舶上安装一个减摇系统,适时地给船舶外加一个恰当的阻尼,来抵消船舶扶正力矩的变化,摇摆是可以加以预防的。 德国的Interring公司生产的IPRF装置就是这种想法在实船上的应用。这套 装置采用众所周知的自控式减摇水舱技术,其核心部分是减摇水舱系统。两个水舱分别布置于船舶的左右舷,在船体上设置一个通道,将两个水舱相互连通,形成U 型水舱。 减摇水舱中充入一定量的水,注水量应根据水舱形状、船舶装载情况和航线情况来确定。 其原理是使水舱内的水的运动周期和船舶在波浪上的摇摆周期相近,保证在船舶摇摆时,两个液舱能形成一定的水位差,以便形成一个扶正力矩,以扶正力矩抵消波浪所产生的倾斜力矩,达到减小船舶的摇摆幅度。 一套典型的船舶IPRP系统应由几对液舱、一个气动的空气阀和一套控制单元

游艇减摇鳍

游艇减摇鳍 [摘要] 游艇减摇鳍是为适应游艇特点而专门设计的减摇鳍,具有尺寸较小、重量较轻、噪声较小等特点,鳍翼通常采用的是非金属材料,且批量制造。游艇减摇鳍的选型计算、布置设计以及安装都涉及到较强的专业知识,游艇厂商在选用减摇鳍时应关注设备厂商的技术实力和服务能力,应考虑可否与之建立紧密的战略合作关系。 1. 游艇减摇鳍是什么 减摇鳍是减摇效果最为明显的船舶减摇装置之一,游艇减摇鳍是为适应游艇的安装空间较小、设备重量要求较轻、噪声要求较小等特点而专门设计,且便于批量制造的产品。游艇减摇鳍的鳍面积通常较小,所以也叫超小型减摇鳍。游艇减摇鳍每套装置都是由大小相同的两只鳍翼构成,每只鳍翼都有其相应的转鳍执行机构、最大转鳍角机械限位机构、锁紧机构等部件。每套减摇鳍装置还包括液压控制系统、液压泵站(可选,也可以选用艇上其它液压源)、控制箱、操控面板等部件。游艇减摇鳍的鳍翼通常是用非金属材料(玻璃钢)采用模具压制成型的。 减摇鳍像鱼鳍一样,位于船的两侧,是用来减轻船的横摇。人们不禁要问,为什么只减横摇呢?纵摇怎么办?通常,船艇在形状上是呈瘦长形的,横摇在剧烈程度上远大于纵摇,只要把横摇减下来也就够了。至于纵摇,如果确实需要轻减,例如小水线面双体船艇,可以使用陀螺减摇器,方便且效果明显,只要将陀螺减摇器的进动轴沿船长方向布置即可,安装位置是任意的。 减摇鳍的减摇力矩来源于鳍翼产生的升力(向上或者向下)以及鳍翼与船艇舯纵剖面之间的跨度,升力越大,或跨度越大,减摇力矩越大。鳍翼之所以能产生升力,依靠的是水对鳍翼上下翼面的压力存在差值,这就需要水相对于鳍翼是流动的,一种情况是要求船以较快速度航行,另一种情况是船的航速虽低,甚至停了下来,但鳍翼在以较高转速往复扇动。这前一种情况通常叫常规减摇(鳍),后一种情况叫零航速减摇(鳍)。零航速减摇鳍通常需要配备较强的动力系统,所以,目前主要还是用在豪华游艇上。

船体结构焊接修理作业指导书

船体结构焊接修理作业指导书 4.1焊接前的准备 4.1.1构件的坡口、装配次序、定位精度及装配间隙应符合工艺要求,并应避免强制装配,以减少构件的内应力。若焊接坡口或装配间隙过大应按规定修正后再施焊。 4.1.2施焊前焊缝坡口区域的铁锈、氧化皮、油污和杂物等应予清除,并保持清洁和干燥。 4.1.3涂有底漆的钢材,如果底漆对焊缝的质量有不良的影响,则在焊前将底漆清除。 4.1.4当焊接必须在潮湿,多风或寒冷的露天场地进行时,应对焊接作业区域提供适当的遮敝和防护措施。4.2焊接工艺要点 4.2.1船体重要部位的焊接须由经船级社认可的焊工进行。 4.2.2普通结构钢在0C以下施焊时应使用低氢型焊条。当环境温度低于—5C时必须经过专门的工 艺要求采用预热或缓冷措施,以防焊件内产生冷裂缝和不良组织。 4.2.3 当母材的碳当量: C eq0.41>% 时(C eq=C +Mn/6+ (C叶Mo+V)/5+(Ni+Cu)/15 ), 应对焊件进行预热; C eq>0.45%时,焊后应对焊件进行热处理。 4.2.4所焊结构刚性过大、构件板厚较厚或焊段较短时,焊件应进行预热。 4.2.5船体结构的焊缝应按焊接程序进行,焊接时尽量地使焊接部分自由地收缩。对较长的焊缝应尽可能从焊缝中间向两端施焊,以减少结构的变形和内应力。 4.2.6必须使用经认可的适合于接头类型的焊接工艺程序和焊接材料。 4.2.7定位焊的数量应尽量减少,定位焊缝应具有足够的高度,其长度对普通结构钢应不小于3 0 mm 对高强度钢应不小于5 0 mm定位焊所用的焊接材料应与施焊所用的焊接材料相同。有缺陷的定位焊应在施焊前清除干净。 4.2.8焊缝末端收口处应填满弧坑,以防止产生弧坑裂纹。如采用自动焊,应使用引弧板和熄弧板。进行多道焊时,在下道焊接之前,应将前道焊渣清除。 4.2.9在去除临时焊缝、定位焊缝、焊缝缺陷、焊疤和清根时,均不得损伤母材。 4.3 背水焊接 4.3.1在板的另一侧有水的情况下焊接时,焊缝冷却速度会增加,对普通船用钢没有问题。但是板面上冷凝的结晶水必须清除。 4.3.2背水焊接时,必须有一辅助工烘干焊缝区域,并加热焊接缝区域。 4.3.3高强度钢不允许在背水情况下进行焊接。特殊情况时应做工艺认可试验。 4.4各类焊接形式 4.4.1板材对接接头 4.4.1.1 板材对接均应按规定要求开制坡口,确定装配间隙,见附表1。 4.4.1.2 板厚之差大于4 mm的两板对接时,厚板边缘应削斜,坡度长一般不大于4 A t。削斜后,对 接坡口按规定要求处理:

摆式陀螺原理

第二章陀螺全站仪 §2.1 陀螺仪及其基本特性(龚建) 一、陀螺仪及其分类 陀螺仪 凡是绕定点高速旋转的物体,或绕自身轴高速旋转的任意刚体,都称为陀螺。如图2-1所示,设刚体上有一等效的方向支点O。以O为原点,作固定在刚体上的动坐标系O-XYZ。刚体绕此支点转动的角速度在动坐标轴上的分量分别为ωx、ωy、ωz,若能满足以下条件: ωz>>ωx ωz>>ωy ωz≈Const (2-1) OZ 为进动运动。 转的地球,而近代物理中广义的定义是:凡是能测量物体相对惯性空间作旋转的装置都叫陀

螺仪,如激光陀螺仪。 陀螺仪的自由度 陀螺仪基本上是一个匀质的转子,其质量大部分集中在轮缘,它能围绕其质量对称轴高速旋转。将转子安置在特殊的悬挂装置上,没有外力作用,使其具有两个或三个回转轴的整个装置,称为具有两个或三个自由度的陀螺仪。 自由陀螺仪的结构如图2-2所示。转子1支撑在内平衡环2上可绕其对称轴作高速度转动,这个轴称为陀螺仪的自转轴,即陀螺主轴,或称X轴。由于转子只能围绕本身轴旋转,因此它具有一个自由度。 转子支撑在内平衡环上,内平衡环又支撑在外平衡环3上,转子和内平衡环一起可绕陀螺仪的内环轴转动,这个轴一般称为Y轴。由于转子既绕本身轴旋转,又可绕内环轴旋转,因此他具有两个自由度。 转子支撑在内平衡环上,内平衡环又支撑在外平衡环上,外平衡环又支撑在底座上,转子和内平衡环、外平衡环一起绕陀螺仪的外环轴转动,这个轴一般称为Z轴。此时由于转子既可绕本身轴旋转,又可绕内、外环轴旋转,因此它具有三个自由度。一般把由内环和外环构成的支架称为万向支架。 如果把陀螺仪的重心与陀螺仪的中心相重合,这种陀螺仪称为三自由度平衡陀螺仪。如果把三自由度陀螺仪限制Y轴或Z轴其中一个自由度,这种陀螺仪称为二自由度陀螺仪。如果把陀螺仪的外环轴下移,偏离陀螺仪的中心,这种陀螺仪称为下悬式陀螺仪或摆式陀螺仪。 摆式陀螺仪如图2-3所示,即在陀螺仪轴上加上悬重G,则重心由陀螺仪中心O下移到

船舶专业术语

a faired set of lines 经过光顺处理的一套型线 a stereo pair of photographs 一对立体投影相片 abaft 朝向船体 abandonment cost 船舶废置成本费用 accommodation 居住(舱室) accommodation ladder 舷梯 adjust valve 调节阀 adjustable-pitch 可调螺距式 admiralty 海军部 advance coefficient 进速系数 aerostatic 空气静力学的 aft peak bulkhead 艉尖舱壁 aft peak tank 艉尖舱 aileron 副鳍 air cushion vehicle 气垫船 air diffuser 空气扩散器 air intake 进气口 aircraft carrier 航空母舰 air-driven water pump 气动水泵 airfoil 气翼,翼剖面,机面,方向舵 alignment chock 组装校准用垫楔 aluminum alloy structure 铝合金结构 American Bureau of Shipping 美国船级社 amidships 舯 amphibious 两栖的 anchor arm 锚臂 anchor chain 锚链 anchor crown 锚冠 anchor fluke 锚爪 anchor mouth 锚唇 anchor recess 锚穴 anchor shackle 锚卸扣 anchor stock 锚杆 angle bar 角钢 angle of attack 攻角 angle plate 角钢 angled deck 斜角甲板 anticipated loads encountered at sea 在波浪中遭遇到的预期载荷anti-pitching fins 减纵摇鳍 antiroll fins 减摇鳍 anti-rolling tank 减摇水舱 appendage 附体 artisan 技工 assembly line 装配流水线

【CN109850760A】基于弹簧阻尼器的吊重系统减摇索张紧装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910281301.9 (22)申请日 2019.04.09 (71)申请人 大连海事大学 地址 116026 辽宁省大连市高新园区凌海 路1号 (72)发明人 王生海 王虎 陈海泉 孙玉清  韩晓双 马来好  (74)专利代理机构 大连东方专利代理有限责任 公司 21212 代理人 唐楠 李洪福 (51)Int.Cl. B66C 13/06(2006.01) F16F 15/04(2006.01) F16F 15/023(2006.01) (54)发明名称基于弹簧阻尼器的吊重系统减摇索张紧装置(57)摘要本发明公开了一种基于弹簧阻尼器的吊重系统减摇索张紧装置,其特征在于,包括:弹簧阻尼器,至少三个,且沿吊重系统轴向均匀分布,所述弹簧阻尼器轴线与所述吊重系统所受提升力的方向的夹角大于0°小于90°;还包括限制所述弹簧阻尼器过度拉伸的安全锁。本发明能够根据减摇索张力的变化及时调整弹簧的长度,以保证减摇索始终处于张紧状态;能够根据吊重以及自然状况的不同灵活选用不同的弹簧阻尼器;既能达到一定的减摇效果,又能保护弹簧阻尼器不被破坏,同时能够消除吊重系统的高频振动;结构简单,拆装方便, 便于灵活使用。权利要求书1页 说明书3页 附图1页CN 109850760 A 2019.06.07 C N 109850760 A

权 利 要 求 书1/1页CN 109850760 A 1.一种基于弹簧阻尼器的吊重系统减摇索张紧装置,其特征在于,包括: 弹簧阻尼器,至少三个,且沿吊重系统轴向均匀分布,所述弹簧阻尼器轴线与所述吊重系统所受提升力的方向的夹角大于0°小于90°; 还包括限制所述弹簧阻尼器过度拉伸的安全锁。 2.根据权利要求1所述的基于弹簧阻尼器的吊重系统减摇索张紧装置,其特征在于,所述吊重系统包括周向均匀分布有所述弹簧阻尼器的吊盘以及产生所述吊重系统所受提升力的起吊绳; 所述起吊绳,至少两个,且一端与起重机吊臂连接,另一端从连接在所述吊盘上的滑轮下端绕出与所述起重机吊臂连接。 3.根据权利要求2所述的基于弹簧阻尼器的吊重系统减摇索张紧装置,其特征在于,所述弹簧阻尼器包括: 阻尼器壳体,具有与所述弹簧阻尼器同轴的活塞腔,且其一端与减摇索连接,所述减摇索另一端与起重机减摇臂连接; 活塞,其位于所述活塞腔内且可沿所述弹簧阻尼器轴线方向滑动; 连杆,其位于所述弹簧阻尼器轴线上,且一端与所述活塞连接,另一端从所述阻尼器壳体另一端穿出与所述吊盘铰接; 弹簧,其位于所述活塞腔内且环绕于所述连杆外侧; 所述活塞腔内壁还具有限制所述弹簧阻尼器过度拉伸的所述安全锁。 2

减摇鳍原理及系统

轮机工程学院 内容摘要 摘要:本文主要介绍了“育鲲”轮减摇鳍装置液压系统的工作原理,包括液压系统的各部件的结构和工作原理;以及液压系统各工作油路的工作过程,如减摇鳍叶片收放油路,减摇鳍叶片倾斜油路和减摇鳍的伺服油路。在文章的最后也介绍了“育鲲”轮减摇鳍装置的日常管理要点。 关键词:液压系统叶片收放油路叶片倾斜油路伺服油路日常管理要点ABSTRACT: This thesis explains the working principle of the hydraulic system of the stabilizing system in “YUKUN”, which includes the construction and working principle of the components; the working process of hydraulic lines in the system, such as fin housing and extending, fin tilting and service hydraulic lines. This thesis also summarizes some services and managements of stabilizing system. KEY WORDS: hydraulic system house and extend hydraulic line fin tilt hydraulic line service line

目录 1 前言 (1) 2 减摇鳍装置的执行机构 (1) 2.1 减摇鳍装置的叶片回笼和延展执行机构 (1) 2.2 减摇鳍装置的叶片倾斜执行机构 (2) 3 减摇鳍装置液压系统工作原理 (3) 3.1 减摇鳍装置的液压系统组成 (3) 3.1.1 供油罐 (3) 3.1.2 主泵和发动机设备组 (3) 3.1.3 油路板/集油管板 (4) 3.2 减摇鳍装置叶片收放油路的工作原理 (6) 3.2.1 减摇鳍装置叶片收放油路的重要部件介绍 (6) 3.2.2 减摇鳍装置叶片收放油路的工作过程 (6) 3.3 减摇鳍装置叶片倾斜油路的工作原理 (7) 3.3.1 减摇鳍装置叶片倾斜油路的重要部件介绍 (7) 3.3.2 减摇鳍装置叶片倾斜油路的工作过程 (8) 3.4 减摇鳍装置伺服油路的工作原理 (8) 3.4.1 控制比例阀的伺服油路 (8) 3.4.2 负载感应器和插装补偿阀的伺服油路 (9) 4 减摇鳍装置液压系统的日常管理要点 (9) 4.1 常规检查项目 (9) 4.2 定期保养项目 (10) 5 结束语 (10) 6 参考文献 (10)

船体修造工艺

船体修造工艺 (课后习题选集) 第一章P14 2.船体修造工艺的主要任务有哪些?P1 一方面根据现有技术条件,为修造船生产制定合理的工艺措施;另一方面则是研究和发展新工艺、新技术,不断提高船舶修造的工艺水平。 3.船体修造工艺的特点是什么?P2 a)实践性强 b)综合性强 c)空间概念强 d)灵活性大 4.目前钢制船舶焊接船体的常规建造工艺程序包括哪些内容?P3 a)船体放样 b)船体钢材预处理和号料 c)船体构建加工 d)船舶装配 e)船舶焊接 f)火工矫正 g)密性实验 h)船舶舾装 i)船舶涂装 j)船舶下水 k)船舶试验 l)交船与验收 第二章P48 1.名词解释: 投影一致性P18 船体理论表面上某一确定的点到某一基本投影面的距离,在各视图上所反映出来的长度(或宽度或高度)量值应该吻合。称为投影的一致性。 实尺放样P19 按1:1的比例在放样间地板上绘出光顺的型线图,进而绘出包括结构线在内的肋骨型线图,在此基础上进行各种船体构建的展开,并钉制样板和绘制草图等;为后续工序提供放样资料,以便船体车间号料、加工、装配、焊接、检验时使用。 12.(画图)P49

14.船体型线放样需体现哪三性?型线修正原则是什么?怎样检验型线P16/P34/P34 a)光顺性、每对型值的一致性和每组型线间距离的协调性。 b)设计水线以下各点的修正量应以小于图纸上的比例尺寸的分母值为原则。 c)在横剖面上作出斜剖线接近垂直相交,以斜剖面与纵中剖面相交点为准,在纵剖线图(或水线图)的格子线上画出斜剖线的真实形状。若斜剖线很光顺,说明船体型线符合技术要求。反之,说明横剖型线不协调,需要修正斜剖线,并返回到到横剖线图上对应处。此外,斜剖线还能对不与纵剖线和水线相交的尾端最终几个负站曲线起到校正光顺的作用。 20.怎样进行外板接缝线的排列?为什么?(P44) 外板缝线的排列主要是参照设计时提供的肋骨型线图和外板展开图来进行的。在进行板缝排列时,必须充分掌握以下情况: a)钢板规格。钢板的长度、宽度和厚度是板缝线排列的主要依据,尤其是宽度大小将 决定外板纵向接缝线的位臵,故对造船钢板的规格必须掌握清楚。 b)掌握船体外板的装配方法和步骤,以便确定外板余量的加放位臵及大小。 c)掌握外板的弯曲形式、展开方法以及展开后的形状,以确定其加工方法及其对板缝 线排列的要求。 d)熟悉船厂加工设备的能力和焊接设备的性能以及他们的使用方法。 外板缝的布臵顺序是:先排纵向接焊线,后排横向接缝线。 此外,板缝线排列时,还必须注意以下几点: a)板缝线的排列应能充分利用原材料。 b)板缝线的排列应使外板结构便于加工。 c)若外板缝线之间或外板纵缝线与内部纵向构建结构线之间呈小角度相交,特别是交 叉面积过大,则会使焊缝和热影区过分集中,影响焊接质量,降低焊区强度。为此,必须调整纵缝位臵,使两者夹角至少大于30°,最后呈垂直相交或阶梯形。 d)纵缝线的排列应便于装配和焊接。 e)纵缝线的排列应讲究美观。 第三章P90 1.名词解释: 船体型表面P71 船体外板的内表面和甲板的下表面所组成的空间曲面为船体的理论表面,又称型表面。 肋骨弯度P77 在首、尾部分,由于圆柱外板的母线与船体中心线不平行,因此外板法面与肋骨剖面斜交,展开图上的肋骨线为一曲线。这种展开后的肋骨曲线与相应法面展开线间的最大拱度,称为肋骨弯度。 测地线P78 所谓测地线,就是连接曲面上两定点的最短曲线,如果这个曲面是可展的,则在其展开

船舶减摇鳍的稳定控制

船舶减摇鳍的稳定控制 摘要:对于船舶稳定系统,主动鳍控制是最有效的减摇方法。然而, 在随机模型波或风的影响下,准确的全船非线性动态系统是很难获得的。在这篇文章中, 用于开发船舶稳定系统的一个守卫启发式遗传算法鳍控制器(GHGAFC)包括一个启发式遗传算法鳍控制器(HGAFC) 和一个守卫鳍控制器(GFC)。在HGAFC设计中, 将梯度下降训练嵌入到传统的遗传算法(GA)中构建一个主控制器,来搜索在不确定性下可能出现的的最佳鳍控制角。为了确保系统的状态在规定的范围内, 将守卫鳍控制器(GFC)用于调整控制角。在稳定系统中,陀螺仪和加速度计将检测摇曳的条件和收集的数据发送到嵌入式单片机计算命令中。仿真将大海表面建模为一维线性自由面来验证鳍控制器的有效性。在相同条件下, 比较GHGAFC与GA-fuzzy、GA-PID 和常规监督GA控制方案的性能。 一、介绍 船舶减摇是用来对抗船舶横摇运动的,导致横摇有很多不确定性因素:如外部波、风、非线性横摇阻尼和参数变化等的影响,这是一个重要的、严格的、复杂的问题。船舶海军架构稳定的技术已经讨论了数百年。与被动形式的系统相比,主动稳定系统拥有更强大和有效的特点。这些优点使许多船只在实践中得到应用。主动稳定系统是通过泵的形式输入能量的液压活塞或电动执行机构。因此,许多研究已经开发各种方法,例如:减摇水舱[1 - 3],陀螺稳定器[4],舵稳定器[5、6]或减摇鳍装置[7 –11],等。减摇水舱取决于周围的泵送液体来抵消船的运动。减摇水舱的主要缺点是,泵操作大量的流体传送到水槽时有一个时间滞后。这限制了即时减摇的稳定。另一方面,陀螺稳定器需要大型陀螺仪来减少减摇运动。更严重的是需要大质量横向移动来实现恢复力矩。此外,陀螺稳定器需要相当大的力而且响应时间缓慢;另外,它在船内的重要部位占据了一个相当大的体积。而在舵减摇装置中是通过舵偏转减少轧辊,因此舵辊稳定器的性能在较低速时大大降低。在减摇鳍装置中,鳍在船体水线以下,并根据船的跟角改变它们的攻角。嵌入式控制器是用来计算攻角的,电动液压机制是激活减摇鳍的。在这些方法中,主动式鳍装置似乎是最有效和最广泛采用的。 有些防倾主动鳍控制器的论文, 主要是利用传统的比例—积分-微分(PID)控制技术。然而,由于船内高度非线性和不确定性的辊运动特征,PID控制器很难适当的评估所要控制跟踪期望的轨迹。2008年,佩雷斯和古德温[8]提出了模型预测控制方法来防止非线性影响;然而,这很难预测严重时波或风的影响。一旦系统动力学在滑模控制(SMC)下,滑模控制技术是一种有效的非线性鲁棒控制方法,因为它提供了系统动力学与不变性的不确定性[12]。然而,控制系统不敏感的不确定性只存在于滑动模式,但不是在实现阶段。因此,系统动态在到达阶段仍受到不确定性的影响。从实用的角度来看,这些方法可能在显著变化的操作点反应不是很好。另一方面,神经网络、模糊方法,如神经PID,模糊, 递归模糊神经网络,强健的小波神经网络滑模控制, 自调谐模糊滑模控制方案[13]等提出了电流体静力学执行机构、电伺服驱动系统或动态系统。然而,一些补偿组件是必要的,因此,结构复杂。遗传算法(GA)是一种最新的技术用来搜索最优解决方案。1962年Goldberg在荷兰首次发布遗传算法的基本原理和常见形式 [14]。基本上,遗传算法是一种基于自然选择和自然遗传机制的随机搜索技术。在过去的几年里,遗传算法提供了一种优化参数的PID或SMC[15]。另一方面,遗传算法也被广泛应用于优化设计的FC[16]或神经模糊控制器(NFC)。GA可以在一定程度上通过模仿自然基因的机制来消除复杂的力学设计步骤。例如实际应用者吴邦国,将GA用于一群智能水下机器人,为了重新审视一个区域根据已知的先验路径点和障碍寻找经济和安全路线[17]。防止人口聚集, 提出了一种基于线性矩阵不等式的GA控制系统的次优解决方案。[18]上述研究的

2、某轮船体结构损坏案例

某轮船体结构损坏案例 一、 船舶基本信息 LOA×LBP×B×D:114.00×137.5×20.42×11.75 (m) 总吨位:9182 净吨位:6152 船型:普通干货船 二、 事故简要经过 标题轮在2005年8月于国外某港装货时,由于船舶配载不当,导致NO.2&4货舱二甲板上的货物重量超出二层甲板的允许负荷,从而引起NO.2 & 4货舱二层甲板损坏和船体结构的变形。 由于当时船舶所在港口的条件所限(修理价格昂贵、修理能力有限以及当地办事效率低下),以及船舶运输的货物价值大,船东恳请我社在临时修理的情况下,同意船舶载货至卸货港,然后至中国进行永久性修理。 三、 损坏情况 1.右舷主甲板下第2和3列外板,在#117-119肋位之间和#123-136肋位之间连续挠曲变形,最大处约100毫米。左舷主甲板下第2和3列外 板,在#117-119肋位之间向外鼓出,最大处约300毫米。左舷主甲板 下第2和3列外板,在#123-134肋位之间连续挠曲变形,最大处约100 毫米。见图1。

图 1 2.二层甲板和二层甲板舱口纵桁严重变形,见图2。 图 2

图 3 4.货舱肋骨在上部1/3范围内显著弯曲变形。见图4。 图 4

图 5 6.前后舱口端横梁变形,舱口端横梁左后端断裂,见图6。 图 6

四、 损坏原因分析 本次船舶损坏是货物超载所致,分析如下: A.原货物积载图的货物分布如下: a.NO.1下货舱准备装载1500 MT; b.NO.2二层甲板装载1500 MT, NO.2下货舱装载2700 MT; c.NO.3下货舱装载1700 MT; d.NO.4二层甲板装载 1100 MT;NO.4下货舱装载2000 MT; e.NO.5 货舱装载 1500 MT。 B.从大副提交的资料获悉,船舶装载的货物名称:FERRO SILICO MANGANESE, 查阅BC CODE, 硅锰合金应为 SILICO MANGANESE,但从货主的传真中获悉,货物的密度是3-3.46 t/m3。 C.查阅船舶的有关图纸获悉,内底板的负荷最多只能承受3米高的该密度货 物,二层甲板最多只能承受1米高的该货物。而当时NO.2货舱的二层甲板上已载货物最高达3米高的货物。 D.由于码头装货没有用抓斗平舱,故货物堆积成锥形。造成局部货物重量远 远超出结构允许负荷。 综上所述,货物重量远远超过结构的允许负荷,从而导致NO.2货舱的二层甲板和二层甲板上舱口盖严重下凹变形,以及相邻舷侧肋骨、横梁等构件等变形。 五、 船舶临时修理方案 本次临时性修理方案的制定,主要从以下几个方面考虑: 1.总纵强度: A.本船图纸资料匮乏,无法开展定量的强度计算; B.根据标题轮2004年3月的测厚和总纵强度校核报告,在总纵强度方面, 经估算二甲板纵桁失效后,总纵强度富裕量只有0.8%,还没有考虑二甲 板及其纵向构件的失效,因此,该船当时的实际剩余总强度是不可能满 足规范要求的。 C.损坏部位接近中和轴,对总强度影响较小,故同意采取临时性修理。 D.另外,2004年总纵强度计算仅包括了规范要求的船中基本剖面W0的校核,

舵减摇装置的发展

舵减摇装置的发展 舵减摇是基于正确利用下述两条规律发展起来的: 在操舵时,舵除产生一个使舰船转向的艏摇力矩以外,还产生一个横摇力矩; 一般舰船的艏摇响应周期大约是横摇固有周期的一倍左右。 舵减摇装置可以在控制操舵系统完成保持航向功能的同时,还能进行更高频率(舰船横摇固有频率附近)的操舵,使舵产生横摇力矩而不影响舰船的正常航行。 与鳍减摇装置相比,舵减摇装置具有造价低、所占船内空间小、使用和维修方便,以及便于对原来没有配备减摇控制装置的现役舰船进行加装改造等优点。 早在1972年,就有人探讨了用舵作为稳定装置的可能性,并在一艘商船上试验成功。 早期美国舰船一般都不采用减摇鳍。后来为了提高舰船在风浪中的特殊作业功能(例如直升机的起降作业,保持拖曳线列阵有尽可能多的时间正常工作,以及补给作业等),设法寻找提高舰船耐波性的途径才考虑安装减摇装置。利用原有的舵机作为执行机构,加上相应的控制器达到减小横摇的目的,无疑是一个极好的可行的方案。1974年美国泰勒舰船研究发展中心(DTNSRDC)开始研究在军舰上安装减摇装置的可能性,并研制了两台样机。主要设计思想是: 供舰船作业期间短期使用(半小时左右)。 将舵减摇系统和自动驾驶仪分成两个独立的系统,简化舵减摇装置的设计与制造。 在使用舵减摇时,用人工操舵保持航向,一旦舵减摇装置发生故障,便可转换到自动舵。控制原理是采用了有自适应性的角速度模拟控制。这两台样机分别安装在两艘115米长、30 00吨的哈密尔顿级巡逻舰上,于1976年和1979年进行了海上试验。在横浪中,当有义波高为2.14~2.44米,航速为14节时,横摇角有义值从4.83度减小到2.45度,减摇效果达49.3%,此外横荡加速度也有所减小。 早期的舵减摇装置都是采用控制规律简单的模拟系统,鉴于当时技术水平,不可能实现更为复杂的控制规律,加之舰船原有舵机性能的限制,因此减摇效果不总是那么理想。1986年至1987年美国泰勒舰船研究发展中心和海军科技部又相继推出第一代和第二代数控舵减摇装置,第一代是利用原有舵机加上数字控制器使减摇性能又有提高。第二代不仅采用了数字控制器而且配上了为舵减摇而专门研制的新舵机,使减摇效果大幅度提高,甚至达到70%的减摇水平。由于原来的舵机操舵角速度只能在4度/秒以下,为了增大减摇力矩,如果舵机允许操舵角速度大于8度/秒,则舵减摇装置的性能将会有明显提高。另外,新研制的舵机将满足功率、结构载荷以及对磨损等新的要求。美国已经在斯普鲁恩斯级上进行了成功的试验,并研制了在航母上采用的舵减摇装置。 在美国获得试验成功的鼓舞下,80年代荷兰、瑞典等国也开展了舵减摇装置的研究。1984年瑞典哥德堡船模试验水池(SSPA)着首研制型号为ROLL-NIX的舵减摇装置。1987年在瑞典皇家海军两艘舰艇上进行了试验。一艘为巡逻艇(艇长35米,排水量170吨,航速27节),一艘为布雷舰(舰长105米,排水量3300吨,航速16节)。舵机速度都是8度/秒,在蒲氏风级4~6级的横浪和尾斜浪中减摇效果达40~60%。ROLL-NIX采用了基于现代控制理论的自适应滤波器和调节器,可适应海况和航速的变化。它的硬件有摩托罗拉MC 68000微机、角速度陀螺、自动舵控制、ROLL-NIX控制和电源控制器。共组成两个部件:主设备和控制单元。主设备约重12千克,体积约为0.5×0.2×0.3立方米。控制单元重约13千克,体积约为0.2×0.1×0.1立方米。可将它用于对现役舰船的原操舵装置进行改装,也可用于新船建造,只要1到2天就可以完成安装和调试。该装置利用微机对信号进行数字滤波,提高了控制质量。它也兼有航向自适应操舵仪的功能,在启用舵减摇时可任意选择用手舵和自动舵保持航向。当要求改变航向时,减摇控制会自动脱开。待进入指定方位后马上又

减摇控制技术综述

船舶减摇控制技术现状与展望 0 前言 船舶在海上航行时,由于受到海浪、海风及海流等海洋环境的扰动作用,不可避免的要产生六个自由度的摇荡运动,即横摇、纵摇、艏摇、横荡、纵荡和垂荡,其中以横摇最为显著,对船舶影响也最大。因为船舶的横摇运动阻尼很小,所以船舶在风浪中会产生剧烈的横摇。横摇运动过大不但影响船舶的航行,而且还会对船上的装备造成不良影响,给船上的货物和人员带来不安全因素;对于军舰来说,横摇还会影响武备的使用,使舰载机不能正常起飞和降落。为了减小船舶横摇,船舶设计师和控制工程师付出了不少的努力,成功地设计了各种各样的减摇装置来减小船舶的横摇运动【1】。 横摇减摇作为一门学科已经有一百多年的历史。据统计,在这期间先后出现了约三百五十个各种类型的减摇装置,实际上只有少数几种得到大量的推广和应用,目前使用的横摇减摇装置主要是减摇鳍和减摇水舱【2】。尽管自20世纪80年代以来,许多研究表明利用舵减摇具有很好的发展前景【3】,但最常用且成功的主动式减摇装置仍然是减摇鳍。 随着减摇鳍和减摇水舱等单一减摇装置的日益发展成熟,加上大型船舶的 出现以及对船舶航行安全性和舒适性要求的提高,人们开始研究减摇鳍-减摇水舱综合减摇系统。这种装置综合考虑了减摇鳍和减摇水舱这两种减摇装置的功能,使之达到各种装置的协调组合,资源的合理配置,最大限度的平衡船舶。 1 减摇装置简介 1.1减摇鳍 减摇鳍装置是目前世界各国装船最多的一种减摇装置。它是一种主动式减摇装置,减摇效果高,可达80%~90%,因而使用广泛。减摇鳍的最早专利是在1889年由约翰·桑尼克罗夫特获得的。1923年日本的元良信太郎设计了第一套减摇鳍,经装船试验得到了良好的减摇效果。1935年英国的布朗兄弟公司设计 的减摇鳍成功地应用到一艘2200吨的海峡渡轮,从此减摇鳍得到了广泛的应用。目前许多国家的海军的中高速舰船、许多商船和其他船只都装有减摇鳍【1】。我国对减摇鳍的研究从60年代开始,上海船舶设备研究所和哈尔滨工程大学进行了大量的研究设计工作,并在各类船舶上得到成功使用。 减摇鳍的工作原理是:在船舶水下部分两侧,装有一对或多对机翼形鳍。船舶航行时,鳍在横摇参数控制下快速转过一个角度,鳍上产生“升力”,对船舶形成抵抗波浪力矩的减摇力矩,从而减小横摇角【4】。减摇鳍一般可分为固定式和收放式两种。固定式减摇鳍,安装于鳍轴上的鳍只能绕鳍轴旋转,不能收进船体。这种减摇鳍结构简单、重量轻、制造成本较低,几乎适用于各种大型船舶,但该鳍较收放式鳍的升力系数小,减摇能力受到限制,当船舶在静水中航行时增加了阻力,由于鳍一直伸出在舷外,故容易损坏。收放式减摇鳍的鳍不但可以绕鳍轴转动,而且不用时可以收进船体,静水航行时不产生附加阻力,鳍的升力系数较大,减摇效果较好。但是收放式减摇鳍的重量大,机械结构复杂,占用船内空间大。因此该型减摇鳍主要装在客船、车客渡船、滚装船等较“胖”船型的船舶上。

相关主题
文本预览
相关文档 最新文档