当前位置:文档之家› MIMO信道容量计算公式资料

MIMO信道容量计算公式资料

MIMO信道容量计算公式资料
MIMO信道容量计算公式资料

MIMO系统容量的计算方法

上网时间:2007年11月06日打印版

推荐给同仁

发送查询

用于多输入多输出结构的天线单元会影响无线通信系统的容量并能对抗多径效应。提高性能的一个关键是为系统方案寻找MIMO

优化设计,使得无需增加天线单元,只优化现有天线就能达到目的。

Thaysen等人描述了互方向、位置以及互耦对在无限大地平面上两个相同天线间包络互相关性的影响,为确定包络相关与固定方向上距离的关系以及互耦合同固定距离时天线方向旋转的关系,他们还研究了使用两个彼此靠近,在同一地平面的相同PIFA时的对称和非对称耦合的情况,其结果(使用IE3D仿真软件仿真)阐明了如何确定天线指向与位置来使包络相关最小。研究了两种不同情形:一种是使用平行PIFA,另一种是天线间具有垂直关系,如图1所示(水平距离d的定义使得图1a的情形中,d为正值。)对于平行情况(图1a),天线间距为10毫米,这时包络相关系数是ρe=0.8,把其中一副天线简单地旋转180度,包络相关系数就降低到ρe=0.4。类似结果对于垂直天线结构(图1b)也能观察到,这时包络相关系数从ρe=0.5下降到ρe=0.25。在垂直结构中,当开路端与馈线垂直时包络相关系数最大。

研究者们发现在平行天线情况下中心频率偏移(|S11|最小)受影响最大,每副天线在相同端都有馈入点,可观察到12%的频偏变化。与单副PIFA

单元相比,另一种情形(两副天线互相垂直情况)变化量低于2%。平行结构的最大包络相关系数是ρe=0.8,当天线彼此交叠垂直时,馈线均在同一端的情况下包络相关系数取得最大值。

此外,可发现互耦与包络相关系数几乎呈指数关系。研究发现,互耦极限为-10dB,在该极限以下,包络相关系数几乎为恒定值,达到ρe=0.15,因此,降低互耦的努力将受限于这个水平。

把天线置于有限平面会影响其性能。图2给出的设计,是按照平面倒F天线(PIFA)的输入阻抗和带宽来优化天线(即改变馈入点跟到地点间的距离,这取决于PIFA在地平面的位置)。对一些性能参数(相关性和带宽)组合优化可选出最佳天线结构。不过,移动电话的外盖、人手、和头部的邻近效应也应包括进分析当中。这样,当把外盖、手、头的影响考虑进来时,最优结构的结果就可能稍有不同。

在MIMO应用中,低包络相关是必要的,天线位置和方向不仅要根据包络相关性,还要根据带宽来优化。已发现对于二元天线结构,优化的位置和方向对于MIMO性能,即带宽和天线间的包络相关,并不是获得最低包络相关性的必要因素。某种带宽也是必需的。把包络相关性和带宽同时考虑进来,就会发现B4结构形式能给出最佳性能。这里频带以1.79GHz为中心,其宽度为为中心频率的12.2%;包络相关系数低于0.1,最强互耦为-7.7dB。

从Thaysen等人研究的十五种不同双天线结构来看,包络相关性与互耦之间的关系显示出低互耦会带来低包络相关性。不过,低包络相关性却并非必然因为低互耦,还有,可观察到低互耦会导致低带宽,这主要是这些结构中天线的阻抗匹配不好引起(高反射系数)。产生高互耦的那些结构也会带来高带宽。Thaysen等人断定高耦合会降低对优化结构的自由选择范围。

考虑到增加的复杂性,相对于添加额外天线单元,则对给定数目的天线单元进行细致优化有可能列为首选。在参考文献6里,对MIMO系统的评估完全基于天线性能,如包络相关性、互耦、谐振频率、带宽和天线辐射效率,其中包络相关性和带宽特别受关注。然而,MIMO真正的优势应当是提高容量,因此,该对容量做出评估。为得到全部好处,也应该评估多径环境下的容量。

计算MIMO系统的容量需要知晓传播环境和天线结构的信息。对MIMO天线结构的现实评价要求在MIMO天线结构下进行多单元传播测量。得到多单元传播测量的一种方法是表征出真实散射环境下的实际原型。然而这是一个非常耗时的过程。此外,整个测量都必须针对所有天线方案反复进行。

Thaysen等人提出基于MIMO天线性能评估的测量方法。给出的结果融合了采用MIMO耦合矩阵测试时的天线复杂辐射模式。MIMO耦合矩阵代表在赫尔辛基市区测得的一个小型宏单元MIMO环境(例如,见参考文献39的地图)。MIMO耦合矩阵由赫尔辛基技术大学Vainikainen博士领导的小组测量得到。

通过这些多单元传播测量方法可以得到天线单元辐射模式下测得的传播路径组合。不过,这要求提取全双向传播信道参数。测量建立了一个线性发射天线阵和球形接收天线阵,构成信道探测器用来测量无线信道的空间和时间特征,天线阵均采用双极化转接天线。

发射天线阵由八个定向双极化天线单元组成,它们彼此相距半个波长(0.5λ),对测量数据进行后处理时要从天线阵选出不同数目的单元。天线发射功率被限制到+26dBm。球形接收天线阵由32个单元组成,每个单元都跟发射天线阵的天线单元相似。位于球面的单元被用于接收端移动站。一个双极化单元由两个正交的通道组成,即与极化馈接。入射角测量的均方根(RMS)误差大致为1度。该测量系统最初是为SIMO系统开发的,但被扩展到MIMO测量。

基站信号与接收端移动台信号通过矩阵H相关联,矩阵H代表多径环境中在某个时刻以及天线空间位置的传输关系,表示为:

这里y(t)是基站传输信号,可表示为:

s(t)则是移动台接收信号:

矩阵H从下式得到:

这里αi,j是从天线i到天线j的复传输系数。

这些结果仅限于频率扁平衰落信道,因此相应的输入输出关系可被简化成B=H(t)A,这里H是窄带矩阵,它描述了多径环境中在给定时间t和天线空间位置的MIMO天线系统从第m个发射天线到第n个接收天线的复杂信道。联合测量得到的天线辐射模式和测量得到的MIMO信道,可以计算出MIMO系统容量。为计算容量,测量值必须是单个天线单元的辐射模式,这时仍需考虑其它所有单元的存在(但需要端接表示其端口电源阻抗的负载)。文献8中,复杂辐射模式在屏蔽室测量得到。分别在自由空间和更接近实际情况的环境下进行各种测量,更接近实际情况的环境即指天线贴近假手和头部来确定近似的效果。为了使MIMO评估获得尽量真实的结果,结果包括测量的宏单元MIMO环境,并结合了所研究的MIMO系统天线的辐射模式。

在SISO系统中,只有一个发射通道,用作数据传输的传统信道的香农容量是:

这里,SNR是信号噪声比。在未知信道特征的条件下,分配发射功率的最好办法是把功率平均分配给所有的发射天线单元。在信道未知和均匀分配功率的条件下,这样一个MIMO系统的容量定义为:

这里I是单位矩阵、(*)表示共轭转置、H是MIMO系统信道矩阵。

已经证明,当m=min(M, N)时等式6中的容量会线性增长,而不是像分集情况那样呈对数增长。

容量公式在窄带假定下有效,即假定为频率扁平衰落MIMO信道。如果信道是频率选择性的,矩阵H依赖于频率,这种情形下,应当在整个传输带宽内作积分来计算此种情况的容量。

假定发射信道已知,信号传输按照优化信道容量的方式被分配到所有传输天线。总发射功率分配让那些有更高增益的信道获得更多的功率,而有较小增益的信道获得较少功率甚至没有功率。这种技术被称作注水法。

对于已知MIMO全部特征的发射机,最大可得容量与注水法相当。实际当中,由于信道的时间选择性,延迟或缺少来自接收机的反馈,可得到的特征可能只有一部分。不过,即便利用这些不完全特征,同没有任何先验知识的信道比起来,也可以得到明显改善。比起在低信噪比时均匀分配功率的方案,注水法有着明显的优势。信噪比低时,注水技术搜索H矩阵的最大特征值,并通过一种单一模式(信道)发送全部功率。当信噪比为中间值时,较功率均匀分配方案注水法仍然可以改善容量。不过,这种优势会随着信噪比增加而下降。在SNR为中间值时,注水技术使用L形天线阵,这里1

文献8给出了三种简单但合乎实际的二元和三元天线结构(图3)的容量和分集增益。信道数据在赫尔辛基市区的小宏单元环境下测试得到。这些结果对自由空间辐射模式和说话位置(即假手和假头一旁)辐射模式都适合。文献8中,发射机对信道未知,因此采用等功率分配法计算容量,即利用等式6。

用自由空间辐射模式计算,在(2, 2)系统中,所提出的二元天线结构(见图3a)会产生50%的减量信道容量C0.5,其值为5.0b/s/Hz。可以观察到,在假手和假头一旁的说话位置,此辐射模式下容量有0.1b/s/Hz的轻微下降。这种差异来自天线1和天线2总效率峰值之比,跟自由空间的结果相比,该比值要略低。两种情形下,平均接收SNR都选择为10dB。

使用多于一付天线获得的增益是经过最大比率结合(MRC)之后的功率与更强分支功率(Br1与天线1有关,Br2与天线2有关)之差,更强分支功率该结果受分支功率差影响严重。如图4b所示,MRC为4.8dB高于Br1。在50%的概率水平p,Br1与Br2之间的差(ΔBr2-Br1)是2.8dB。当考虑测量得到的总效率时,天线1的分支功率最大的事实看起来很合理,因为天线1有着最高的总效率。

三元天线结构,即(3, 3)MIMO系统,使用自由空间辐射模式,其50%减量信道容量C0.5是7.1b/s/Hz(图3b)。即使天线2的分支功率低于MRC16.8dB,同(2, 2)MIMO结构相比,其对容量的改善也有1.5b/s/Hz。通过设计多天线系统使得不同天线的效率在一定程度上可比较,能够使容量进一步得到优化。当把这些天线安装到移动电话中后(图3c),可以观察到相同的趋势。当把天线整合到一部手机中时,测量的自由空间辐射效率大致低于20%,该事实并不影响自由空间容量,仍然保持为7.1b/s/Hz。这是因为,在自由空间测得的峰值总效率之间的比值也保持不变。

当三副天线被整合到一部电话里时,把天线放到假手和假头附近,在1.7~1.9GHz的范围内测得的辐射效率在4%到14%之间。平均之,这比安装在地平面的三元天线结构的效率要低。但由于天线2非常低的辐射效率(低于2%),天线单元之间的效率比也减少了,这样容量达到0.5b/s/Hz,高于三元天线结构,该结构没有安装到手机中。

容量与天线单元数量之间在理论上的线性关系得到Thaysen等人的实验验证,这种关系在早期关于MIMO的研究工作中也得到推测,容量随信噪比增加而增加(图5)。在低信噪比时(即低于5dB),使用三元天线的容量跟使用二元天线的容量差异很小;当SNR=0dB时,差异为0.5b/s/Hz;说话位置模式下的容量为1.6b/s/Hz,这是最低值。用SNR为50dB时额外天线获得的增益达到说话位置模式

43b/s/Hz的容量,这比二元天线结构下可获得的容量高出14b/s/Hz。SNR为50dB时,SISO系统容量的香农极限为16.6b/s/Hz,这大约是(2, 2)系统一半的容量,是(3, 3)MIMO系统容量的三分之一。类似关系可以在文献3,5,9中找到。

MIMO系统基于两个或更多子信道以相同带宽同时传输数据。Thaysen等人针对这里采用的三种不同结构,讨论了增加传输单元对平均容量的影响。在发射天线结构中简单地增加更多单元,容量会得到增加。对于Thaysen等提出的二元天线结构,说话位置模式的容量从简单分集结构时的4.1b/s/Hz增加到完整(2, 2)MIMO系统时的4.9b/s/Hz。对三个发射单元,两个接收单元(3, 2)的情况,容量达到5.2b/s/Hz,这意味着额外的发射天线会带来额外0.3b/s/Hz容量的增长。对于安装在手机内部的三元天线结构,当发射天线数量从1增加到7时,说话位置模式的容量从4.7b/s/Hz增加到8.2b/s/Hz。超过4个发射天线,总容量的增加会小于每副天线所带来的增长之和,这跟发射单元数小于3时不同。从一副发射天线到四副发射天线,说话位置模式的容量从4.7增加到7.4b/s/Hz,相当于最后三副天线每一副带来0.8b/s/Hz的增加。最明显的改善是从一副天线增加到两副,即从(1, 3)改变到(2, 3)MIMO系统。应当记住,m=min(M, N)时容量呈线性增长,而在分集情况下则是呈对数增加,这跟理论是一致的。Sulonen等人曾得出类似的关系。

最近,Molisch等人演示了一种考虑简单分集的MIMO系统,即在链路一端或双端进行分集的情况。这种结构使用源自(N,N)MIMO系统的L形天线单元,该方法产生出一种简化的MIMO系统,其复杂度相对于完整(N, N)MIMO系统也得到简化。其中,Vaughan指出发射或者接收分集可改善链路质量。

Lebrun等建议用两种办法降低复杂度,其中一种基于SNR,另外一种基于信号强度。Lebrun等人给出的结果基于采用注水法的已知信道。在文献8里,容量是在发射端对信道未知的假定下计算得到的,而且假定功率均匀分配到各天线。增加额外天线会增加容量,不过,这会使天线单元性能下降,因为天线单元间的距离减少了。这样一来,跟理论上容量提高相比,额外天线单元带来的好处可能会减少,所以,当增加天线单元时,在容量和MIMO系统复杂度之间要有一个折中。考虑复杂度降低,相对于增加天线单元,则首选细致优化给定数量的天线单元。图6显示了二元天线与三元天线结构中发射单元数目不同时的容量。

Thaysen等人还研究了接收方与发射方天线数量不同时简化MIMO系统的影响。他们推断,从容量的角度来看,比较(1, 3)发射分集系统(C0.5为4.7b/s/Hz)而言,最好采用完整(2,2)MIMO系统(C0.5为4.9b/s/Hz)。他们认识到,比起增加额外发射天线(3, 2),最好采用额外接收天线,即(Tx, Rx)=(2, 3)。接收分集设置具有5.8b/s/Hz的容量,这比发射分集结构高出0.6b/s/Hz。该结论跟Foschini 等人给出的结果是一致的。3对于已知信道,接收分集结构会给出与发射分集结构相同的容量。须牢记,MIMO系统的硬件复杂度随着天线数量的增加而增加。天线选择可以用作一种简单方法来增加MIMO天线结构的容量,而使硬件复杂度提高最少。

致谢

本研究受到丹麦诺基亚公司的赞助。作者要感谢丹麦技术大学的Elna S rensen校阅本文;还要感谢赫尔辛基诺基亚研究中心的Kimmo Kalliola,赫尔辛基技术大学的Pasi Suvikunnen和Petri Vainikainen博士,奥尔堡大学的J'rgen Bach Andersen博士,以及丹麦技术大学的Erik Bruun博士诸位对本文所作颇有价值的评论。

参考资料

参考资料1~36见https://www.doczj.com/doc/6e1871322.html,/Articles/Index.cfm?ArticleID=15565&pg =3

37. Internet: https://www.doczj.com/doc/6e1871322.html,.

38. A.F. Molisch and M.Z. Win, "MIMO systems with antenna selection," Microwave Magazine, IEEE, Vol. 5, No. 1, pp. 46-56, 2004.

39. K. Sulonen, P. Suvikunnas, J. Kivinen, L. Vuokko, and P. Vainikainen, "Study of different mechanisms providing gain in MIMO systems," Proceedings of the IEEE 58th Vehicular Technology Conference, 2003.

40. P. Suvikunnas, K. Sulonen, J. Villanen, C. Icheln, J. Ollikainen, and P. Vainikainen, "Evaluation of p erformance of

multi-antenna terminals using two approaches," Proc. IEEE Instrumentation and Measurement Technology, IMTC 2004, pp. 6, Italy, 2004.

41. K. Kalliola, H. Laitinen, K. Sulonen, L. Vuokko, and P. Vainikainen, "Directional Radio Channel Measurem ents as Mobile Station in Different Radio Environments at 2.15 GHz," 4th European Personal Mobile Communications 2001 -Conference, Austria, 2001.

42. J. Kivinen, P. Suvikunnas, D. Perez, C. Herrero, K. Kalliola, and P. Vainikainen, "Characterization syste m for MIMO channels," Proceedings of the 4th International Symposium on Wireless Personal Multimedia Communications, 2001, pp. 159-162.

43. K. Kalliola, H. Laitinen, L. Vaskelainen, and P. Vainikainen, "Real-time 3-D spatial-temporal dualpolarised measurement of wideband radio channel at mobile station," IEEE Transactions on Instruments and Measurements, Vol. 49, pp. 439-448, 2000.

44. K. Sulonen, P. Suvikunnas, L. Vuokko, J. Kivinen, and P. Vainikainen, "Comparison of MIMO antenna configurations in picoc ell and microcell environments," IEEE Journal on Selected Areas in Communications, Special issue on MIMO systems and Applications, Vol. 21, No. 5, pp. 703712, 2003.

45. K. Kalliola, H. Laitinen, L. Vaskelainen, and P. Vainikainen, "Real-time 3-D spatial-temporal dual-polarized measurement of wideband radio channel at mobile channel," IEEE Transactions on Instruments and Measurements, Vol. 49, pp. 439-446, April 2000.

46. J. Kivinen, P. Suvikunnas, D. Perez, C. Herrero, K. Kalliola, P. Vainikainen, "Characterization system for MIMO channels," in Proceedings of the 4th International Symposium on Wireless Personal Multimedia Communications, Aalborg, Denmark, 2001, pp. 159-162.

47. C.E. Shannon, "A mathematical theory of communications: Parts I and II," Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, 1948.

48. R.G. Vaughan, "Signals in Mobile Communications: A Review," IEEE Transactions on Vehicular Technology, Vol. 35, pp.

133-145, 1986.

49. G. Lebrun; S. Spiteri, and M. Falkner, "MIMO complexity reduction through antenna selection," Proceedings of the Australian Telecommunication Cooperative Research Center, ANNAC '03, pp. 5, 2003.

作者:Kaj B. Jakobsen

副教授

Email: kbj@oersted.dtu.dk

Technical University of Denmark

安防监控硬盘容量计算公式

1080P、720P、4CIF、CIF所需要的理论带宽在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以先容。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上往,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,50米红外摄像机理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/。 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为

(完整版)样本量计算(DOC)

1.估计样本量的决定因素 1.1资料性质 计量资料如果设计均衡,误差控制得好,样本可以小于30例;计数资料即使误差控制严格,设计均衡,样本需要大一些,需要30-100例。 1.2研究事件的发生率 研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。 1.3 1.4 1.5 度为 1.6 1.7 1.8双侧检验与单侧检验 采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需 样本量就大;当研究结果仅高于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量 就小。当进行双侧检验或单侧检验时,其α或β的Ua?界值通过查标准正态分布的分位数表即可得到。

2.样本量的估算 由于对变量或资料采用的检验方法不同,具体设计方案的样本量计算方法各异,只有通过查阅资料,借鉴他人的经验或进行预实验确定估计样本量决定因素的参数,便可进行估算。 护理中的量性研究可以分为3种类型:①描述性研究:如横断面调查,目的是描述疾病的分布情况或现况调查;②分析性研究:其目的是分析比较发病的相关因素或影响因素;③实验性研究:即队列研究或干预实验。研究的类型不同,则样本量也有所不同。 2.1描述性研究 例. =0.1, 2.2 2.2.1探索有关变量的影响因素研究 有关变量影响因素研究的样本量大多是根据统计学变量分析的要求,样本数至少是变量数的5-10倍。例如,如果研究肺结核患者生存质量及影响因素,首先要考虑影响因素有几个,然后通过文献回顾,可知约有12个预测影响变量,如年龄、性别、婚姻、文化程度、家庭月收入、医疗付费方式、病程、排菌、喀血、结核中毒症状、心理健康、社会支持,那么研究的变量就可以在60-120例。这是一种较为简便的估算样本量的方法,在获得相关文献支持下,最好根据公式计算,计量

信道容量的计算

§4.2信道容量的计算 这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。而);(Y X I 是r 个变量 )}(),(),({21r x p x p x p 的多元函数。并且满足1)(1 =∑=r i i x p 。所以可用拉格朗日乘子法来 计算这个条件极值。引入一个函数:∑-=i i x p Y X I )();(λ φ解方程组 0) (] )();([) (=∑?-???i i i i x p x p Y X I x p λ φ 1)(=∑i i x p (4.2.1) 可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C 。因为 ) () (log )()();(11 i i i i i r i s j i y p x y Q x y Q x p Y X I ∑∑=== 而)()()(1 i i r i i i x y Q x p y p ∑== ,所以 e e y p y p i i i i i y p x y Q i x p i x p l o g l o g ))(ln ()(log ) ()()() (==????。 解(4.2.1)式有 0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q i i i i i r i s j i i i i s j i i (对r i ,,2,1 =都成立) 又因为 )()()(1j k k r k k y p x y Q x p =∑= r i x y Q s j i j ,,2,1,1)(1 ==∑= 所以(4.2.1)式方程组可以转化为 ),,2,1(log ) ()(log )(1r i e y p x y Q x y Q j i j s j i j =+=∑=λ 1)(1 =∑=r i i x p

样本量计算方法

样本量及其计算依据: 根据现有文献[Gerald Holtmann,Nicholas Talley,Tobias Liebregts,Birgit Adam,Christopher Parow.A placebo-controlled trial of itopride in functional dyspepsia.The New England Journal of MEDICINE 2006;(8):832-840],功能性消化不良患者接受伊托必利50mg组治疗后,其NDI改善值的均数为18.0,本研究期望针刺本经取穴组治疗功能性消化不良的NDI改善值的均数为15.0,本研究共设了6个组别,检验水准α=0.05,检验效能1-β=0.90,采用多个样本均数比较的样本含量估计公式(王家良主编《临床流行学》.上海.上海科学技术出版社,2001.P142)进行样本量的估算,公式如下: k ψ2(Εs j2/k) n= j=1 k = Ε( X j- x ) 2/(k-l) j=1 通过公式计算,每组所需样本数n=77例,按15%的脱失率计算,每个组应不少于89例,6组应不少于534例。 样本量及其计算依据: 若分为三组或三组以上,采用多个样本均数比较的样本含量估计公式(王家良主编《临床流行学》.上海.上海科学技术出版社,2001.P142)进行样本量的估算,公式如下: k ψ2(Εs j2/k) n=

k = Ε(?X j- x ) 2/(k-l) k为研究所用的组数,?X j, s i各为每组的均数与标准差的估计值,x=Ε?X j/k,ψ为界值,可通过查阅ψ值表得到。

实验三 信道容量计算

实验三信道容量计算 一、实验目的: 了解对称信道与非对称信道容量的计算方法。 二、实验原理: 信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。本实验利用信道容量的算法,使用计算机完成信道容量的计算。 实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。其所有分量P (i)均不为0。按照如下方法进行操作: 具体方法: 1、计算q(j)=∑ i j i pyx i p) ,( *)(,pyx(i,j)为信道转移概率 2、计算a(i) 先算中间变量d(i)=∑ j j q j i pyx j i pyx) ( /) ,( log( *) ,( 然后,a(i)=exp(d(i)) 3、计算中间变量U=∑ i i p i a)( *)( 4、计算IL=log2(u) 5、计算IU=log2(max(a(i)) 6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。 ①重新计算p(i)=p(i)*a(i)/U ②计算q(j),方法同1 ③计算a(i),方法同2 ④计算中间变量U=∑ i i p i a)( *)( ⑤计算IL=log2(u) ⑥计算IU=log2(max(a(i)) ⑦计次变量n=n+1

返回6判断循环条件是否满足。 四、实验内容: 假设离散无记忆二元信道如图所示,编程,完成下列信道容量的计算 2e 1. 令120.1e e p p ==和120.01e e p p ==,先计算出信道转移矩阵,分别计算该对称信道的信道容量和最佳分布,将用程序计算的结果与用对称信道容量计算公式的结果进行比较,并贴到实验报告上。 2. 令10.15e p =,20.1e p =和10.075e p =20.01e p =,分别计算该信道的信道容量和最佳分布; 四、实验要求: 在实验报告中给出源代码,写出信道对应的条件转移矩阵,计算出相应结果。并定性讨论信道容量与信道参数之间的关系。

样本量计算(DOC)

1.估计样本量的决定因素 1.1 资料性质 计量资料如果设计均衡,误差控制得好,样本可以小于30例; 计数资料即使误差控制严格,设计均衡, 样本需要大一些,需要30-100例。 1.2 研究事件的发生率 研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。 1.3 研究因素的有效率 有效率越高,即实验组和对照组比较数值差异越大,样本量就可以越小,小样本就可以达到统计学的显著性,反之就要越大。 1.4 显著性水平 即假设检验第一类(α)错误出现的概率。为假阳性错误出现的概率。α越小,所需的样本量越大,反之就要越小。α水平由研究者具情决定,通常α取0.05或0.01。 1.5 检验效能 检验效能又称把握度,为1-β,即假设检验第二类错误出现的概率,为假阴性错误出现的概率。即在特定的α水准下,若总体参数之间确实存在着差别,此时该次实验能发现此差别的概率。检验效能即避免假阴性的能力,β越小,检验效能越高,所需的样本量越大,反之就要越小。β水平由研究者具情决定,通常取β为0.2,0.1或0.05。即1-β=0.8,0.1或0.95,也就是说把握度为80%,90%或95%。 1.6 容许的误差(δ) 如果调查均数时,则先确定样本的均数( )和总体均数(m)之间最大的误差为多少。容许误差越小,需要样本量越大。一般取总体均数(1-α)可信限的一半。 1.7 总体标准差(s) 一般因未知而用样本标准差s代替。 1.8 双侧检验与单侧检验 采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需样本量就大; 当研究结果仅高于或低于效应指标的界限有意义

t检验计算公式

t 检验计算公式: 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ -= 。 如果样本是属于大样本(n >30)也可写成: X t μ -= 。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 79.273 1.63X t μ --= = = 第三步 判断 因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值 0.05(19)2.093t = ,而样本离差的t = 1.63小与临界值 2.093。所以,接受原假设, 即进步不显著。

2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过0r =。 相关样本的t 检验公式为: t = 在这里,1X ,2X 分别为两样本平均数; 1 2 X σ,2 2X σ分别为两样本方差; γ为相关样本的相关系数。 例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异? 检验步骤为: 第一步 建立原假设0H ∶1μ=2μ 第二步 计算t 值 X X t -= =3.459。 第三步 判断 根据自由度19df n =-=,查t 值表0.05(9) 2.262t =,0.01(9) 3.250t =。由于实际计算出来的t =3.495>3.250=0.01(9)t ,则0.01P <,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 由以上可以看出,对平均数差异显著性检验比较复杂,究竟使用Z 检验还是使用t 检验必须根据具体情况而定,为了便于掌握各种情况下的Z 检验或t 检验,

寻呼空口信道容量及信道容量计算

寻呼空口信道容量及FACH 信道 容量计算方法

目录 1寻呼容量计算方法 (2) 1.1现网理论容量计算 (2) 1.2实际网络环境下的容量计算 (3) 2寻呼容量扩容方案 (3) 2.1寻呼拥塞产生的原因 (3) 2.2寻呼容量预警机制 (4) 2.3现网容量评估 (4) 2.4空口寻呼扩容方案 (5) 2.4.1方案原理 (5) 2.4.2目标容量 (6) 3FACH信道容量评估 (7)

1寻呼容量计算方法 首先需要明确寻呼容量的单位是个/时间/小区,也就是说衡量一个RNC支持多大的寻呼量是以小区为标准的,比如某RNC支持的寻呼容量应为XX个/小时/小区或者XX个/秒/小区。 RNC设备支持的理论寻呼量为45万TMSI/小时/小区,实际每小区支持的寻呼容量则取决于空口的寻呼容量配置。 空口寻呼容量配置计算方法如下(以小区为参考单位): PCH寻呼能力计算公式为:Ntfs×RoundDown[(TBSize-7)/Lue]×Npch/(Nr×Tpbp) IMSI寻呼时, Ntfs×RoundDown[(TBSize-7)/72]×Npch/(Nr×Tpbp) TMSI/PTMSI寻呼时,Ntfs×RoundDown[(TBSize-7)/40]×Npch/(Nr×T pbp) 注:RoundDown为向下取整。 如果空口环境不好,存在大量重传的时候,则上面的公式需要再除以(1+Nr),寻呼容量减半,通常情况下不考虑重传。 1.1现网理论容量计算 除西安网络进行寻呼信道扩容外,现网目前各项空口寻呼信道参数配置如下表: 协议参数说明备注现网配置 Ntfs PCH传输格式中 240bit块的个数(一 个寻呼子信道承载) 传输块个数 一般配置为0、1。Ntf与PCH所在 的SCCPCH的码道数目相关。 1 Tbsize PCH传输块大小240 Npch 每个寻呼块配置的寻 呼子信道数目 协议规定Npch<=8 8 Nr 重复因子相同寻呼的重发次数 1 Tpbp PICH的寻呼周期重复周期/ Tpbp 640ms/320ms 640

样本量计算

样本量计算 调查研究中样本量的确定 在社会科学研究中,研究者常常会遇到这样得问题:“要掌握总体(population)情况,到底需要多少样本量(sample)?”,或者说“我要求调查精度达到95%,需要多少样本量?”。对此,我往往感到难以回答,因为要解决这个问题,需要考虑的因素是多方面的:研究的对象,研究的主要目的,抽样方法,调查经费…。本文将根据自己的经验,探讨在调查研究中确定调查所需样本量的一些基本方法,相信这些方法对于其他的社会调查研究也有一定的借鉴意义。 确定样本量的基本公式 在简单随机抽样的条件下,我们在统计教材中可以很容易找到确定调查样本量的公式: Z2 S2 n = ------------ (1) d2 其中: n代表所需要样本量 Z:置信水平的Z统计量,如95%置信水平的Z统计量为1.96,99%的Z为2.68。 S:总体的标准差; d :置信区间的1/2,在实际应用中就是容许误差,或者调查误差。 对于比例型变量,确定样本量的公式为: Z2 ( p ( 1-p)) n = ----------------- (2) d2 其中: n :所需样本量 z:置信水平的z统计量,如95%置信水平的Z统计量为1.96,99%的为2.68

p:目标总体的比例期望值 d:置信区间的半宽 关于调查精度 通常我们所说的调查精度可能有两种表述方法:绝对误差数与相对误差数。如对某市的居民进行收入调查,要求调查的人均收入误差上下不超过50元,这是绝对数表示法,这个绝对误差也就是公式(1)中置信区间半宽d。 而相对误差则是绝对误差与样本平均值的比值。例如我们可能要求调查收入与真实情况的误差不超过1%。假定调查城市的真实人均收入为10000元,则相对误差的绝对数是100元。 公式的应用方法 对于公式的应用,一些参数是我们可以事先确定的:Z值取决于置信水平,通常我们可以考虑95%的置信水平,那么Z=1.96;或者99%,Z=2.68。然后可以确定容许误差d(或者说精度),即我们可以根据实际情况指定置信区间的半宽度d。因此,公式应用的关键是如何确定总体的标准差S。如果我们可以估计出总体的方差(标准差),那么我们可以根据公式计算出样本量: 例如:要了解该城市的居民收入,假定我们知道该市居民收入的标准差为1500,要求的调查误差不超过100元,则在95%的置信水平下,所需的样本量为 n=1.962*15002/1002=8,643,600/10,000=864 即需要调查的样本量为864个。 最大样本量 以上公式只是理论上的,在实际调查中确定合理的样本量,必须考虑多方面的因素。 首先,由于人们通常缺乏对标准差的感性认识,因此对标准差的估计往往是最难的。总体的标准差是123,还是765?如果没有一点对样本的先验知识,那么对标准差的估计是不可能的。好在我们通常能对变量的平均值进行估计,如我们通过历史资料估计该地区目前的年人均收入大致为10,000元,那么根据统计学知识,我们引入变异系数的概念: 变异系数V=标准差S/平均值X<= 1 因此,我们知道人均收入的标准差应该小于平均值,就是说标准差应该在10000以下。当然,这对于我们确定样本量还不能起太大的作用。然而如果我们采用相对误差表述的精度,对公

信道容量实验报告

湖南大学 信息科学与工程学院 实验报告 实验名称信道容量的迭代算法课程名称信息论与编码 第1页共9页

1.实验目的 (1)进一步熟悉信道容量的迭代算法; (2)学习如何将复杂的公式转化为程序; (3)掌握C 语言数值计算程序的设计和调试技术。 2、实验方法 硬件:pc 机 开发平台:visual c++软件 编程语言:c 语言 3、实验要求 (1)已知:信源符号个数r 、信宿符号个数s 、信道转移概率矩阵P 。 (2)输入:任意的一个信道转移概率矩阵。信源符号个数、信宿符号个数和每 个具体的转移概率在运行时从键盘输入。 (3)输出:最佳信源分布P*,信道容量C 。 4.算法分析 1:procedure CHANNEL CAPACITY(r,s,(ji p )) 2:initialize:信源分布i p =1/r ,相对误差门限σ,C=—∞ 3:repeat 4: 5: 6: C 221 1 log [exp(log )] r s ji ij r j p φ==∑∑ 7:until C C σ ?≤ 8:output P*= ()i r p ,C 9:end procedure 21 21 1 exp(log ) exp(log ) s ji ij j r s ji ij r j p p φφ===∑∑∑i p 1 i ji r i ji i p p p p =∑ij φ

5.程序调试 1、头文件引入出错 f:\visualc++\channel\cpp1.cpp(4) : fatal error C1083: Cannot open include file: 'unistd.h': No such file or directory ————#include 纠错://#include f:\visualc++\channel\cpp1.cpp(5) : fatal error C1083: Cannot open include file: 'values.h': No such file or directory ————#include 纠错://#include 2、变量赋值错误 f:\visualc++\channel\cpp1.cpp(17) : error C2065: 'ij' : undeclared identifier f:\visualc++\channel\cpp1.cpp(17) : error C2440: 'initializing' : cannot convert from 'int' to 'float ** ' Conversion from integral type to pointer type requires reinterpret_cast, C-style cast or function-style cast ————float **phi_ij=ij=NULL; 纠错:float **phi_ij=NULL; 3、常量定义错误 f:\visualc++\channel\cpp1.cpp(40) : error C2143: syntax error : missing ';' before 'for' ————for(i=0;iDELTA) f:\visualc++\channel\Cpp1.cpp(84) : error C2021: expected exponent value, not ' ' ————if(fabs(p_j)>=DELTA) f:\visualc++\channel\Cpp1.cpp(100) : error C2021: expected exponent value, not ' ' ————if(fabs(phi_ij[i][j])>=DELTA) f:\visualc++\channel\Cpp1.cpp(116) : error C2021: expected exponent value, not ' ' ————while(fabs(C-C_pre)/C>DELTA); 纠错:#define DELTA 0.000001; F:\visualc++\channel\Cpp1.cpp(68) : error C2065: 'MAXFLOAT' : undeclared identifier F:\visualc++\channel\Cpp1.cpp(68) : warning C4244: '=' : conversion from 'int' to 'float', possible loss of data ————C=-MAXFLOAT; 纠错:#define MAXFLOAT 1000000; 3、引用中文逗号 f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xa1' f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xb1' f:\visualc++\channel\cpp1.cpp(60) : error C2065: 'Starting' : undeclared identifier f:\visualc++\channel\cpp1.cpp(60) : error C2059: syntax error : '.'

视频存储容量的计算

视频存储总容量的计算 视频存储容量的计算公式如下: 容量=码流/8 X视频路数X监控天数X 24小时X 3600秒 注:码流是以Mbps或Kbps为单位,码流除以8是把码流从bit转换为byte,结果相应的是MB或KB 按计算公式,以一个中小规模的例子计算: 500路监控路数,2Mbps D1格式,数据存储30天,需要的存储容量: 2Mbps/8 X 500 路X 30 天X 24 小时X 3600 秒/1024/1024 ?300TB 存储空间单位换算:1TB = 1024GB = 1024 X 1024MB = 1024 X 1024 X 1024KB = 1,073,741,824Byte 硬盘容量单位换算:1TB = 1000GB = 1000 X 1000MB = 1000 X 1000 X 1000KB = 1,000,000,000Byte

基本的算法是: 【码率】(kbps )=【文件大小(字节)】X8/【时间(秒)】/1024 码流(Data Rate )是指视频文件在单位时间内使用的数据流量,也叫码率,是 他是视频编码中画面质量控制中最重要的部分。 同样分辨率下,视频文件的码流 越大,压缩比就越小,画面质量就越高。 所以应该是一样的,只是称谓不同 分薪率耒示静的尺寸犬小(或廉素埶重)I 用于设養录蟻的囹禄尺寸?正 如前面所谬 在监^申常用的曲粹有QOF 、CIFs HD1s 2CF ,DCIF. 4CIF 和D1.720P. 1060P?几和 分莽聿是决走傥率(码率〉的主叢因靑,不同的 分笹至要采用不同的位華,它们之问的关粟如下罔所示' P>p 計 : > 10M 图棘廉里 压翳码奉 倍输希竞(平均 Q ) 录蟻文件尺寸上瞑 兆学和 小时3&) 「 512Kbps 540Kbps ^225 352&28* 384Kbps 400Kbps <169 晋通 256KDP5 280Kbps 5112 DCF 最堺 1.2Mbps ULI&pS ^540 528*384 7C0KDPS 730Kt )DS 1333 普通 512Kbps 540 Kbps ^225 D1 2Mbps 2.2Mt )p£ iQOO 704^576 1.75Mbps 1.0Mt )ps ^?ea 普通 1.5Mbps 1.7 Mbps <675 720P 最毎 10M&D3 11Mbps 1260*720 6Mbps 6.6 Mbps ^2700 晋通 2Mbps 2.2tflt )ps £900 分赫輩、咼車、帯宽及埶榻重耐昵表《囹像師至:乃帧电审柔件下) I SIJk JGfiR LL1 1 JM

正式实验报告二—信道容量的计算

一、实验目的 1.掌握离散信道的信道容量的计算方法; 2.理解不同类型信道的不同特点与不同的计算方法; 二、实验内容 1.进一步熟悉一般离散信道的信道容量计算方法; 2.进一步复习巩信道性质与实际应用; 3.学习如何将复杂的公式转化为程序。 三、实验仪器、设备 1、计算机-系统最低配置256M内存、P4 CPU; 2、MATLAB编程软件。 四、实现原理 信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。本实验利用信道容量的算法,使用计算机完成信道容量的计算。 实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。其所有分量P (i)均不为0。按照如下方法进行操作: 具体方法: 1、计算q(j)= i j i pyx i p) ,( *)(,pyx(i,j)为信道转移概率 2、计算a(i)

先算中间变量d(i)=∑ j j q j i pyx j i pyx) ( /) ,( log( *) ,( 然后,a(i)=exp(d(i)) 3、计算中间变量U=∑ i i p i a)( *)( 4、计算IL=log2(u) 5、计算IU=log2(max(a(i)) 6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。 ①重新计算p(i)=p(i)*a(i)/U ②计算q(j),方法同1 ③计算a(i),方法同2 ④计算中间变量U=∑ i i p i a)( *)( ⑤计算IL=log2(u) ⑥计算IU=log2(max(a(i)) ⑦计次变量n=n+1 返回6判断循环条件是否满足。 五、实验步骤 1、计算非对称信道的信道容量 运行程序

磁盘存储容量计算

存储系统计算总结 一.磁盘存储容量计算 磁盘容量有两种指标,一种是非格式化容量,指一个磁盘所能存储的总位数;另一种是格式化容量,指各扇区中数据区容量总和。 公式有: 记录密度(存储密度):一般用磁道密度和位密度来表示。 磁道密度:指沿磁盘半径方向,单位长度内磁道的条数。 (1)总磁道数=记录面数×磁道密度×(外直径-内直径)÷2 (2)非格式化容量=位密度×3.14×最内圈直径×总磁道数 (3)格式化容量=每道扇区数×扇区容量×总磁道数 (4)平均数据传输速率=最内圈直径×3.14×位密度×盘片转速 或: 非格式化容量=面数×(磁道数/面)×内圆周长×最大位密度 格式化容量=面数×(磁道数/面)×(扇区数/道)×(字节数/扇区) 例1:假设一个硬盘有3个盘片,共4个记录面,转速为7200r/min,盘面有效记录区域 的外直径为30cm ,内直径为10cm ,记录位密度为250b/mm ,磁道密度为8道/mm , 每磁道分16个扇区,每扇区512字节,试计算该磁盘的非格式化容量,格式化容量 和数据传输率。 答: 非格式化容量=最大位密度×最内圈周长×总磁道数 最内圈周长=100*3.1416=314.16mm 每记录面的磁道数=(150-50)×8=800道; 因此,每记录面的非格式化容量=314.16×250×800/8=7.5M 格式化容量=每道扇区数×扇区容量×总磁道数=16×512×800×4/1024/1024=25M 硬盘平均数据传输率公式: 平均数据传输率=每道扇区数×扇区容量×盘片转速=16×512×7200/60=960kb/s 二.数据线和地址线的计算: 的位数,这里算出来是11位;4是一个存储单元的位数,也就是数据线的位数,所以这个芯片的地址线11位,数据线4位。 三.存储容量(1字节=8位二进制信息)及换算: 例:CPU 地址总线为32根则可以寻址322=4G 的存储空间 1KB=102B=1024Byte 1MB=202B=1024KB 1GB=302B=1024MB 1TB=402B=1024GB 1PB=502B=1024TB 1EB=602B=1024PB 四.用存储器芯片构成半导体存储器(主存储器组成) 用现成的集成电路芯片构成一个一定容量的半导体存储器,大致要完成以下四项工作: 1、根据所需要的容量大小,确定所需芯片的数目 2、完成地址分配,设计片号信号译码器 3、实现总线(DBUS ,ABUS ,CBUS )连接 4、解决存储器与CPU 的速度匹配问题 下面通过一个简单例子,说明如何用现成芯片来构成一个存储器。 扇区 磁道

怎样确定统计量的样本容量

样本量的确定方法(2008-10-14 09:12:34) 一、样本单位数量的确定原则 一般情况下,确定样本量需要考虑调查的目的、性质和精度要求。以及实际操作的可行性、经费承受能力等。根据调查经验,市场潜力和推断等涉及量比较严格的调查需要的样本量比较大,而一般广告效果等人们差异不是很大或对样本量要求不是很严格的调查,样本量相对可以少一些。实际上确定样本量大小是比较复杂的问题,即要有定性的考虑,也要有定量的考虑;从定性的方面考虑,决策的重要性、调研的性质、数据分析的性质、资源、抽样方法等都决定样本量的大小。但是这只能原则上确定样本量大小。具体确定样本量还需要从定量的角度考虑。 从定量的方面考虑,有具体的统计学公式,不同的抽样方法有不同的公式。归纳起来,样本量的大小主要取决于: (1)研究对象的变化程度,即变异程度; (2)要求和允许的误差大小,即精度要求; (3)要求推断的置信度,一般情况下,置信度取为95%; (4)总体的大小; (5)抽样的方法。 也就是说,研究的问题越复杂,差异越大时,样本量要求越大;要求的精度越高,可推断性要求越高时,样本量也越大;同时,总体越大,样本量也相对要大,但是,增大呈现出一定对数特征,而不是线形关系;而抽样方法问题,决定设计效应的值,如果我们设定简单随机抽样设计效应的值是1;分层抽样由于抽样效率高于简单随机抽样,其设计效应的值小于1,合适恰当的分层,将使层内样本差异变小,层内差异越小,设计效应小于1的幅度越大;多阶抽样由于效率低于简单随机抽样,设计效应的值大于1,所以抽样调查方法的复杂程度决定其样本量大小。对于不同城市,如果总体不知道或很大,需要进行推断时,大城市多抽,小城市少抽,这种说法原则上是不对的。实际上,在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。 二、样本量的确定方法 如何确定样本量,基本方法很多,但是公式检验表明,当误差和置信区间一定时,不同的样本量计算公式计算出来的样本量是十分相近的,所以,我们完全可以使用简单随机抽样计算样本量的公式去近似估计其他抽样方法的样本量,这样可以更加快捷方便,然后将样本量根据一定方法分配到各个子域中去。所以,区域二相抽样不能计算样本量的说法是不科学的。

利用矩阵理论详细推导MIMO信道容量

利用矩阵理论详细推导MIMO 信道容量 摘要 多输入多输出(MIMO)技术被认为是现代通信技术中的重大突破之一,以其能极大增加系统容量与改善无线链路质量的优点而受到了越来越多的重视与关注。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO 的信道容量具有巨大的指导意义。本文把矩阵理论知识与MIMO 技术信道容量中的应用紧密结合,首先建立了MIMO 信道模型,利用信息论理论和矩阵理论详细推导出MIMO 信道容量。并得出重要结论。 关键词: MIMO ;信道容量;奇异值分解 一、 引言 MIMO Multiple Input-Multiple Output)是指在通信链路的发送端与接收端均使用多个天线元的传输系统,它能够将传统通信系统中存在的多径因素变成对用户通信性能有利的因素,从而成倍地提高业务传输速率。矩阵理论在通信,自动控制等工程领域里应用广泛,而通信的难点在于信道的处理,因此,矩阵理论与无线信道的研究是一个很好的切入点。目前,MIMO 技术的信道容量和空时编码,空时复用等技术都离不开矩阵理论的应用。 二、 利用矩阵理论详细推导MIMO 信道容量 1) MIMO 信道介绍 MIMO 是多输入多输出系统,当发送信号所占用的带宽足够小的时候,信道可以被认为是平坦的, 这样,MIMO 系统的信道用一个R T n n ?的复数矩阵H 描述,H 的子元素,j i h 表示从第(1,2,...)R j j n =根发射天线到第(1,2,...)T i i n =根接收天线之间的空间信道衰落系数[1]。如下图所示: 1112121 22212T T R T R R n n n n n n H h h h h h h h h h ??????=???? ???? (2.1) 每个符号周期内,发送信号可以用一个1T n ?的列向量12[]T T i n x x x x x =??????表示,其中i x 表示 在第i 个天线上发送的数据。同时,用一个1R n ?的列向量12[]R T i n y y y y y =??????表示,其中i y 表示在第i 个天线上发送的数据。对于高斯信道,发射信号的最佳分布也是高斯分布[1]。因此,x 的元素是零均 值独立同分布的高斯变量。发送信号的协方差可以表示为: {}H xx R E xx = (2.2) 发送信号的功率可以表示为 ()xx P tr R = (2.3) 接收信号和噪声可以分别用两个1R n ?的列向量y 和n 表示。其中信道噪声是加性噪声,服从循环对称复高斯分布,并且与发射信号x 不相关,假设n 均值为0,功率为2σ。噪声的协方差为: 2 R H nn n R E nn I σ??==?? (2.4) 通过这样一个线性模型,接收信号可以表示为 y Hx n =+ (2.5)

信道容量及其一般计算方法

实验一信道容量及其一般计算方法 1.实验目的 一般离散信道容量的迭代运算 2.实验要求 (1)理解和掌握信道容量的概念和物理意义 (2)理解一般离散信道容量的迭代算法 (3)采用Matlab编程实现迭代算法 (4)认真填写实验报告。 3.源代码 clc;clear all; //清屏 N = input('输入信源符号X的个数N='); //输入行数 M = input('输出信源符号Y的个数M='); //输入列数 p_yx=zeros(N,M); //程序设计需要信道矩阵初始化为零 fprintf('输入信道矩阵概率\n') for i=1:N //从第一行第一列开始输入 for j=1:M p_yx(i,j)=input('p_yx='); //输入信道矩阵概率 if p_yx(i)<0 //若输出概率小于0则不符合概率分布 error('不符合概率分布') end end end for i=1:N //各行概率累加求和 s(i)=0; for j=1:M s(i)=s(i)+p_yx(i,j); end end for i=1:N //判断是否符合概率分布 if (s(i)<=0.999999||s(i)>=1.000001) //若行相加小于等于0.9999999或者大于等于1.000001 Error //('不符合概率分布') end end b=input('输入迭代精度:'); //输入迭代精度 for i=1:N p(i)=1.0/N; //取初始概率为均匀分布(每行值分别为1/N,)end for j=1:M //计算q(j) q(j)=0; for i=1:N q(j)=q(j)+p(i)*p_yx(i,j); //均匀分布的值乘上矩阵值后+q(j),然后赋值给q(j)实现求和

带宽与信道容量与数据传输速率的关系

带宽与信道容量与数据传输速率的关系 2008-04-22 10:16:58| 分类:默认分类|举报|字号订阅 数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=10^3 bps 1Mbps=10^6 bps 1Gbps=10^9 bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则

与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax 与信道带宽B、信噪比S/N的关系为: Rmax=(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。

抽样调查的样本容量的确定方法

抽样调查的样本容量的确定方法 摘要:确定样本容量是抽样调查中重要的环节,影响到抽样估计的精确度和调查的成本和效益。单位标志变异程度、抽样极限误差、抽样推断的可靠度、抽样类型和方法等影响到样本容量地确定。样本容量的确定可以根据由抽样误差、抽样极限误差和概率度推算出来的公式计算,也可以根据建立在过去抽取满足统计方法要求的样本量所累积下来的经验法则来确定。 关键词:样本容量;抽样调查;抽样误差;极限误差 抽样调查是根据随机原则,从总体中抽取部分实际数据构成样本,同时运用概率估计方法,依据样本信息推断总体数量特征的一种非全面统计调查。根据抽选样本的方法,抽样调查可以分为等概率抽样和非概率抽样两类。等概率抽样又称为随机抽样,是按照概率论和数理统计的原理,从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征做出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。样本是从总体中抽出的部分单位的集合,样本中所包含的单位数被称为样本容量,一般用n表示。确定样本容量是制定抽样调查方案中的一个非常重要的环节。 1.确定样本容量的必要性 1.1样本容量大小影响抽样估计的精确度 抽样估计的精确度是指样本的统计量与其所代表的总体值的接近程度。调查结果相对于总体真实值的精确度与样本容量直接相关。样本容量越大,抽样误差相对就会减少,估计精度就会提高;若样本容量太小,抽样误差就会增大,从而影响抽样估计的精确度。 1.2样本容量大小影响抽样调查的成本和效益 样本量的设计通常受到研究经费及调查时间的限制。根据数理统计规律,样本量增加呈直线递增的情况下(样本量增加一倍,成本也增加一倍),而抽样误差只是样本量相对增长速度的平方根递减。若样本容量过大,调查单位增多,不仅增加人力、财力和物力的耗费,增加调查费用,而且还影响到抽样调查的时效性,从而不能充分发挥抽样调查的优越性。 因此,为节省调查费用,体现出抽样调查的优越性,在确定样本容量时,应在满足抽样调查对估计数据的精确度的前提下,尽量减少调查单位数,确保必要的抽样数目。 2.影响必要样本容量的主要因素 影响样本容量的因素是多方面的,在抽样调查总体、调查费用和调查时间既定的情况下,为确定最佳的样本容量,应首先分析影响样本容量的因素。从理论上说,影响样本容量的因素有以下几个方面: 2.1单位标志变异程度 或成数方差P(1-P)的大小来表示。在其他单位标志变异程度一般用方差2

相关主题
文本预览
相关文档 最新文档