当前位置:文档之家› 文科圆锥曲线专题练习及答案

文科圆锥曲线专题练习及答案

文科圆锥曲线专题练习及答案
文科圆锥曲线专题练习及答案

文科圆锥曲线

1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32

a

x =上一点,12PF F ?是底角为30的等腰三

角形,则E 的离心率为()

()

A 12()

B 23()

C 34()

D 4

5

【答案】C

【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.

【解析】∵△21F PF 是底角为030的等腰三角形, ∴322

c a =

,∴e =34,

∴0

260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,

2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162

=的准线交于,A B 两点,43AB =;则C 的实轴长为()

()A 2()B 22()C 4()D 8

【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.

【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:2

2

2

x y a -=,将4x =代入等轴双曲线方程解

得y =216a ±-,∵||AB =43,∴2216a -=43,解得a =2,

∴C 的实轴长为4,故选C.

3.已知双曲线1C :22

221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距

离为2,则抛物线2C 的方程为 (A)283x y =

(B)2163x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质

解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)

到直线x y 3=

的距离为2,可知p=8或数形结合,利用直角三角形求解。

4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为

(A )

2211612x y += (B )221128x y += (C )22184x y += (D )22

1124

x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。

【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2

2448a a c c

=?==,所以222

844b a c =-=-=。故选答案C

5.已知1F 、2F 为双曲线22

:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=

(A)

1

4

(B)

3

5

(C)

3

4

(D)

4

5

【命题意图】本试题主要考查了双曲线的定义的运用和性质的运用,以及余弦定理的运用。首先运用定义得到两个焦半径的值,然后结合三角形中的余弦定理求解即可。

【解析】解:由题意可知,2,2

a b c

==∴=,设

12

||2,||

PF x PF x

==,则

12

||||222

PF PF x a

-===,故12

||42,||22

PF PF

==,

12

4

F F=,利用余弦定理可得

222222

1212

12

12

(42)(22)43

cos

24

22242

PF PF F F

F PF

PF PF

+-+-

∠===

???

6. 如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是

A.3

B.2 32

【命题意图】本题主要考查了椭圆和双曲线的方程和性质,通过对两者公交点求解离心率的关系.

【解析】设椭圆的长轴为2a,双曲线的长轴为2a',由M,O,N将椭圆长轴四等分,则222

a a'

=?,即2

a a'

=,又因为双曲线与椭圆有公共焦点,设焦距均为c,则双曲线的离心率为

c

e

a

'=

'

c

e

a

=,2

e a

e a

'

==

'

.

7.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点

(2,)

M y。若点M到该抛物线焦点的距离为3,则||

OM=()

A、22

B、23

C、4

D、25

[解析]设抛物线方程为y2=2px(p>0),则焦点坐标为(0,

2

p

),准线方程为x=

2

p

-,

3

2

)2

2(

2

|

|

2

2,2

2

2

,1

3

2

p

2

2

p

-2

2

2

2

2

2

=

+

=

=

=

=

+

=

+

OM

M

y

p

y

M

M

有:

),根据两点距离公式

解得:

线的距离,即

到焦点的距离等于到准

在抛物线上,

[点评]本题旨在考查抛物线的定义: |MF|=d,(M为抛物线上任意一点,F为抛物线的焦点,d为点M到准线的距离). 8.对于常数m、n,“0

mn>”是“方程221

mx ny

+=的曲线是椭圆”的()

A、充分不必要条件

B、必要不充分条件

C、充分必要条件

D、既不充分也不必要条件

【答案】B.

【解析】方程12

2=+ny mx 的曲线表示椭圆,常数常数n m ,的取值为0,0,,m n m n >??>??≠?所以,由0mn >得不到程

122=+ny mx 的曲线表示椭圆,因而不充分;反过来,根据该曲线表示椭圆,能推出0mn >,【点评】本题主要

考查充分条件和必要条件、充要条件、椭圆的标准方程的理解.根据方程的组成特征,可以知道常数n m ,的取值情况.属于中档题.

9.椭圆22

221(0)x y a b a b

+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则

此椭圆的离心率为A.

14

C.1

2

【解析】本题着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想. 利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,

1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.

故5c e a =

=.

即椭圆的离心率为5

. 【点评】求双曲线的离心率一般是通过已知条件建立有关,a c 的方程,然后化为有关,a c 的齐次式方程,进而转化为只含有离心率e 的方程,从而求解方程即可. 体现考纲中要求掌握椭圆的基本性质.来年需要注意椭圆的长轴,短轴长

及其标准方程的求解等.

10.已知双曲线C :22x a -2

2y b =1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为

A .220x -25y =1 B.25x -220y =1 C.280x -220

y =1 D.220x -280y =1[

【解析】设双曲线C :22x a -2

2y b

=1的半焦距为c ,则210,5c c ==.

C 的渐近线为b y x a =±

,点P (2,1)在C 的渐近线上,12b

a

∴=,即2a b =. 又2

2

2

c a b =+

,a ∴==,∴C 的方程为220x -2

5

y =1.

【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.

11.已知双曲线22x a

-2

5y =1的右焦点为(3,0),则该双曲线的离心率等于 A

B

C 32

D 4

3

分析:本题考查的知识点为圆锥曲线的性质,利用离心率a

c

e =

即可。

解答:根据焦点坐标)0,3(知3=c ,由双曲线的简单几何性质知952

=+a ,所以2=a ,因此2

3

=

e .故选C. 二 、填空题

12.椭圆22

21(5

x y a a +

=为定值,且5)a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ?的周长的最大值是12,则该椭圆的离心率是______。【答案】3

2

[解析]根据椭圆定义知:4a=12, 得a=3 , 又52

2=-c a 3

2,2==∴=∴a c e c

[点评]本题考查对椭圆概念的掌握程度.突出展现高考前的复习要回归课本的新课标理念.

13.)在平面直角坐标系xOy 中,若双曲线22

214

x y m m -=+的离心率为5,则m 的值为 ▲ .【答案】2。

【解析】由22

214x y m m -=+得22==4=4a m b m c m m +++,,。

∴24

==

=5c m m e a m

++,即244=0m m -+,解得=2m 。 14右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.

【解析】建立如图所示的直角坐标系,使拱桥的顶点O 的坐标为(0,0),

设l 与抛物线的交点为A B 、,根据题意,知A (-2,-2),B (2,-2). 设抛物线的解析式为2

ax y =, 则有()2

22-?=-a ,∴2

1

-=a .

∴抛物线的解析式为221x y -= 水位下降1米,则y =-3,此时有6=x 或6-=x .

∴此时水面宽为62米.

15.设P 为直线3b

y x a

=与双曲线22221(0,0)x y a b a b -=>> 左支的交点,1F 是左焦点,1PF 垂直于x 轴,则双曲线

的离心率e =

16.已知双曲线)0,0(1:22221>>=-b a b y a x C 与双曲线1164:

2

22=-y x C 有相同的渐近线,且1C 的右焦点为(5,0)F ,则a =b =

【解析】双曲线的

116422=-y x 渐近线为x y 2±=,而12222=-b y a x 的渐近线为x a b y ±=,所以有2=a b

,a b 2=,又双曲线122

22=-b y a x 的右焦点为)0,5(,所以5=c ,又222b a c +=,即222545a a a =+=,所以

2,1,12===b a a 。

三、解答题 17.已知椭圆

(a>b>0),点P (

,

)在椭圆上。

(I )求椭圆的离心率。

(II )设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足|AQ|=|AO|求直线OQ 的斜率的值。

【解析】(Ⅰ) 点52

,)2

P a 在椭圆上 222222222115365211884

a a

b b e e a b a a ?+=?=?=-=?=

(Ⅱ) 设(cos ,sin )(02)Q a b θθθπ≤<;则(,0)A a

222222

(1cos )sin 1

3cos 16cos 50cos 3

AQ AO a b a θθθθθ=?-+=?-+=?=

直线OQ 的斜率sin 5cos OQ b k a θ

θ

=

=±18..在平面直角坐标系xOy 中,已知椭圆1C :22

221x y a b

+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上.

(1)求椭圆1C 的方程;

(2)设直线l 同时与椭圆1C 和抛物线2C :2

4y x =相切,求直线l 的方程.

【答案】

【解析】(1)因为椭圆1C 的左焦点为1(1,0)F -,所以1c =,

点(0,1)P 代入椭圆22221x y a b +=,得21

1b

=,即1b =,

所以2

2

2

2a b c =+=,

所以椭圆1C 的方程为2

212

x y +=. (2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,

2

212

x y y kx m ?+=???=+?

,消去y 并整理得222

(12)4220k x kmx m +++-=, 因为直线l 与椭圆1C 相切,所以2

2

2

2

164(12)(22)0k m k m ?=-+-=,

整理得22

210k m -+=①

24y x y kx m

?=?

=+?,消去y 并整理得222

(24)0k x km x m +-+=。 因为直线l 与抛物线2C 相切,所以2

2

2

(24)40km k m ?=--=,

整理得1km =②

综合①②,解得2k m ?=???=?

或2k m ?=-

???=?

所以直线l

的方程为2y x =

+

2

y x =-。 19.【2102高考文19】(本小题共14分)

已知椭圆C :22x a +2

2y b

=1(a >b >0)的一个顶点为A (2,0

, 直线y=k(x-1)与椭圆C 交与不同的两

点M,N

(Ⅰ)求椭圆C 的方程 (Ⅱ)当△AMN

时,求k 的值 【考点定位】此题难度集中在运算,但是整体题目难度确实不大,从形式到条件的设计都是非常熟悉的,相信平时对曲线的练习程度不错的学生做起来应该是比较容易的。

解:(1

)由题意得2

2222a c

a a

b

c =??

?=

??=+??

解得b =所以椭圆C 的方程为22142x y +=. (2)由22(1)142

y k x x y =-???+

=??得2222

(12)4240k x k x k +-+-=.

设点M,N 的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,2122

24

12k x x k

-=+.

所以由因为点A(2,0)到直线(1y k x =-)

的距离

d =,

所以△AMN 的面积为21||||212k S MN d k =?=+. 由2||123

k k =+1k =±.

20.【2012高考文21】(本小题满分13分) 在直角坐标系xOy 中,已知中心在原点,离心率为12

的椭圆E 的一个焦点为圆C :x 2+y 2

-4x+2=0的圆心.[ (Ⅰ)求椭圆E 的方程

【答案】

【解析】(Ⅰ)由2

2

420x y x +-+=,得2

2

(2)2x y -+=.故圆C的圆心为点

(2,0),从而可设椭圆E的方程为22

221(0),x y a b a b

+=>>其焦距为2c ,由题设知

2221

2,,24,12.2

c c e a c b a c a ==

=∴===-=故椭圆E的方程为: 22

1.1612

x y += 21.【2012高考文20】(本小题满分13分)

已知椭圆2

21:14

x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。 (1)求椭圆2C 的方程;

(2)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程。

【解析】(Ⅰ)由已知可设椭圆2C 的方程为()22

2124

y x a a +=>,

4a =. 故椭圆

2

C 的方程为1

4162

2=+x y .

(Ⅱ)解法一:A B ,两点的坐标分别为()()A A B B x y x y ,,,,

由2AB OA =及(Ⅰ)知,O A B ,,三点共线且点A B ,不在y 轴上, 因此可设直线AB 的方程为kx y =.

将kx y =代入1422=+y x 中,得()44122=+x k ,所以22

414k

x A +=,

将kx y =代入22+1164y x =中,得()22416k x +=,所以2

2

164B x k =+, 又由2AB OA =,得2

2

4A B x x =,即

224116

416k k +=

+.

解得1±=k ,故直线AB 的方程为x y =或x y -=. 解法二:A B , 两点的坐标分别为()()B B A A y x y x ,,,,

由OA AB 2=及(Ⅰ)知,O A B ,,三点共线且点A B ,不在y 轴上, 因此可设直线AB 的方程为kx y =.

将kx y =代入1422=+y x 中,得()44122=+x k ,所以22

414k x A +=, 又由2AB OA =,得2

2

4116k

x B

+=,222

4116k k y B +=, 将22

,B

B

y x 代入14

1622=+x y 中,得141422

=++k k ,即22414k k +=+, 解得1±=k ,故直线AB 的方程为x y =或x y -=

高考文科数学真题大全圆锥曲线老师版

试题解析:(Ⅰ)椭圆C 的标准方程为2 213x y +=.所以3a =,1b =,2c =.所以椭圆C 的 离心率6 3 c e a = = . (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率11 2131 BM y y k -+= =-. 17.(2015年安徽文)设椭圆E 的方程为22 221(0),x y a b a b +=>>点O 为坐标原点,点A 的坐标 为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510 。 (1)求E 的离心率e; (2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。 ∴a b 3 231=5525451511052 222222=?=?=-?=?e a c a c a a b (Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a b a a b b K MN 56 65232213 1==-+=

a b K AB -= ∴1522-=-=?a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线 :340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于 4 5 ,则椭圆E 的离心率的取值范围是( A ) A . 3(0, ]2 B .3(0,]4 C .3[,1)2 D .3[,1)4 1 19.(2015年新课标2文)已知双曲线过点() 4,3,且渐近线方程为1 2 y x =±,则该双曲线的标 准方程为 .2 214 x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2 p x =- ,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程. 21.(2015年陕西文科)如图,椭圆22 22:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为22. (I)求椭圆E 的方程;2 212 x y +=

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

最新圆锥曲线近五年高考题(全国卷)文科

4.已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 2 6 C. 25 D. 1 10.已知抛物线C :x y =2的焦点为F ,()y x A 00,是C 上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 8 20.已知点)2,2(P ,圆C :082 2=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当OM OP =时,求l 的方程及POM ?的面积 2014(新课标全国卷2) (10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A )3 (B )6 (C )12 (D )(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是 (A )[]1,1- (B )1122??-????, (C )?? (D ) ???? 20.设F 1 ,F 2分别是椭圆C :122 22=+b y a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。 (I )若直线MN 的斜率为4 3,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。

4.已知双曲线C :22 22=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =12x ± D .y =±x 8.O 为坐标原点,F 为抛物线C :y 2 =的焦点,P 为C 上一点,若|PF | =,则△POF 的面积为( ). A .2 B . ..4 21.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切, 圆心P 的轨迹为曲线C . (1)求C 的方程; (2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 2013(新课标全国卷2) 5、设椭圆22 22:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=o ,则C 的离心率为( ) (A )6 (B )13 (C )12 (D )3 10、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。若 ||3||AF BF =,则l 的方程为( ) (A )1y x =-或!y x =-+ (B )1)y x =- 或1)y x =- (C )1)y x =- 或1)y x =- (D )1)y x = - 或1)y x =- (20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线 段长为 (Ⅰ)求圆心P 的轨迹方程; (Ⅱ)若P 点到直线y x = 的距离为2 ,求圆P 的方程。

2016年高考文科圆锥曲线大题

1. (新课标I 文数) 在直角坐标系xOy 中,直线l:y t t 0 交y 轴于点M ,交抛物线 (II )除H 以外,直线 MH 与C 是否有其它公共点说明理由 2. (新课标n 文数) 2 2 已知A 是椭圆E — 1的左顶点,斜率为k k >0的直线交E 于A , M 两点, 4 3 点 N 在 E 上, MA NA. (I) 当AM AN 时,求 AMN 的面积 (II) 当 2 AM AN 时,证明:V3 k 2. c :y 2 2px p 0 于点 P , H . OH (I )求- ■; ONI M 关于点P 的对称点为N 连结ON 并延长交C 于点

3.(新课标川文数) 已知抛物线C:y2 2x的焦点为F,平行于x轴的两条直线h, *分别交C于B 两点,交C的准线于P,Q两点? (I)若F在线段AB上, R是PQ的中点,证明ARPFQ ; (n)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程? 4. (2016年北京文数) 2 2 已知椭圆C:笃与1过点A(2,0) , B 0,1)两点? a b (I)求椭圆C的方程及离心率; (II)设P为第三象限内一点且在椭圆C 上,直线PA与y轴交于点M ,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值

2 2 已知椭圆C:笃爲 1 a b 0的长轴长为4,焦距为2三. a b (n )过动点M(0, m) m 0的直线交x 轴与点N ,交C 于点A, P (P 在第一象限), 且M 是线段PN 的中点?过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点 B . k' (i)设直线PM 、QM 的斜率分别为k 、k',证明 为定值. k (ii)求直线AB 的斜率的最小值

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 知识归纳: 名 称 椭圆 双曲线 图 象 x O y x O y 定 义 平面内到两定点21,F F 的距离的和为 常数(大于21F F )的动点的轨迹叫椭圆 即a MF MF 221=+ 当2a ﹥2c 时, 轨迹是椭圆, 当2a =2c 时, 轨迹是一条线段21F F 当2a ﹤2c 时, 轨迹不存在 平面内到两定点21,F F 的距离的差的绝 对值为常数(小于21F F )的动点的轨迹 叫双曲线即122MF MF a -= 当2a ﹤2c 时, 轨迹是双曲线 当2a =2c 时, 轨迹是两条射线 当2a ﹥2c 时, 轨迹不存在 标准方 程 焦点在x 轴上时: 122 22=+b y a x 焦点在y 轴上时:122 22=+b x a y 注:根据分母的大小来判断焦点在哪一坐 标轴上 焦点在x 轴上时:122 22=-b y a x 焦点在y 轴上时:122 22=-b x a y 常 数 c b a ,,的关 系 222b c a +=, 0>>b a , a 最大, b c b c b c ><=,, 222b a c +=, 0>>a c c 最大, 可以b a b a b a ><=,, 渐近线 焦点在x 轴上时: 0x y a b ±= 焦点在y 轴上时:0y x a b ±= 抛物线:

图形 x y O F l x y O F l 方程 )0(22 >=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-, 椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心, 简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围, 对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -, ),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴, 21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

圆锥曲线文科高考习题含答案

已知椭圆=1(a>b>0),点P ( a 5 5 ,)在椭圆上。 (I )求椭圆的离心率。 (II )设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足|AQ|=|AO|求直线OQ 的斜率的值。 22.【2012高考安徽文20】(本小题满分13分) 如图,21,F F 分别是椭圆C :22a x +22 b y =1(0>>b a )的左、右 焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点, 1F ∠A 2F =60°. (Ⅰ)求椭圆C 的离心率; (Ⅱ)已知△A B F 1的面积为403,求a, b 的值.

在平面直角坐标系xOy 中,已知椭圆1C :22 221x y a b +=(0a b >>)的左焦点为1(1,0)F -,且点(0,1) P 在1C 上. (1)求椭圆1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2C :2 4y x =相切,求直线l 的方程. 24.【2102高考北京文19】(本小题共14分) 已知椭圆C :22x a +2 2y b =1(a >b >0)的一个顶点为A (2,0),离心率为2, 直线y=k(x-1)与椭圆C 交与 不同的两点M,N (Ⅰ)求椭圆C 的方程 (Ⅱ)当△AMN 的面积为3 时,求k 的值

如图,椭圆 22 22 :1(0) x y M a b a b +=>>的离心率为 3 ,直线x a =±和y b =±所围成的矩形ABCD的面积 为8. (Ⅰ)求椭圆M的标准方程; (Ⅱ) 设直线:() l y x m m =+∈R与椭圆M有两个不同的交点,, P Q l与矩形ABCD有两个不同的交点,S T. 求|| || PQ ST 的最大值及取得最大值时m的值. 26.【2102高考福建文21】(本小题满分12分) 如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。(1)求抛物线E的方程; (2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明 以PQ为直径的圆恒过y轴上某定点。

高考的文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 名 称 椭圆 双曲线 图 象 x O y x O y 定 义 平面内到两定点 的距离的和为 常数(大于)的动点的轨迹叫椭 圆即 当2﹥2时,轨迹是椭圆, 当2=2时,轨迹是一条线段 当2﹤2时,轨迹不存在 平面内到两定点 的距离的差的绝对值为常数(小于 )的动点的轨 迹叫双曲线即 当2﹤2时,轨迹是双曲线 当2=2时,轨迹是两条射线 当2﹥2时,轨迹不存在 标准 方 程 焦点在轴上时: 焦点在 轴上时: 注:根据分母的大小来判断焦点在哪一坐标轴上 焦点在轴上时: 焦点在 轴上时: 常数 的关 系 , , 最大, , 最大,可以 渐近线 焦点在轴上时: 焦点在 轴上时: 抛物线:

图 形 方 程 焦 点 准 线 (一)椭圆 1. 椭圆的性质:由椭圆方程 (1)范围:,椭圆落在组成的矩形中。 (2)对称性:图象关于y轴对称。图象关于x轴对称。图象关于原点对称。原点叫椭圆的对称中心,简称中心。x轴、y轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:,。加两焦点共有六个特殊点。叫椭圆的长轴,叫椭圆的短轴。长分别为。分别为椭圆的长半轴长和短半 轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。。。 椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例。椭圆变扁,直至成为极限位置线段,此时也可认为是椭圆在时的特例。 2. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这 个点的轨迹叫做椭圆。其中定点叫做焦点,定直线叫做准线,常数就是离心率。 椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 3. 椭圆的准线方程 对于,左准线;右准线 对于,下准线;上准线

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 抛物线:

图形 x y O F l x y O F l 方 程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心, 简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

高考文科试题分类圆锥曲线

07 圆锥曲线 一、选择题 1.(北京3)“双曲线的方程为22 1916 x y -=”是“双曲线的准线方程为95x =±”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 2.(福建12)双曲线22 221x y a b -=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为( B ) A.(1,3) B.(1,3) C.(3,+∞) D. [3,+∞] 3.(宁夏2)双曲线22 1102 x y -=的焦距为( D ) A .32 B .42 C .33 D .43 4.(湖南10).双曲线)0,0(12222 >>=-b a b y a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( C ) A .(1,2] B .[2,)+∞ C .(1,21]+ D .[21,)++∞ 5.(江西7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点 M 总在椭圆内部,则椭圆离心率的取值范围是( C ) A .(0,1) B .1(0,]2 C .2(0, )2 D .2[,1)2 6.(辽宁11)已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为 15,则m =( D ) A .1 B .2 C .3 D .4 7.(全国Ⅱ11)设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( B ) A .221+ B . 231+ C . 21+ D .31+ 8.(上海12)设p 是椭圆22 12516 x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( D )

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 抛物线:

图形 x y O F l x y O F l 方 程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x轴对称。图象关于原点对称。原点叫椭圆的对称中心,简 称中心。x轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

文科高考圆锥曲线和真题

圆锥曲线方程 一、椭圆方程. 1. 椭圆方程的第一定义: ⑴①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: . ii. ii. 中心在原点,焦点在轴上: . ②一般方程:.⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长.③焦点:或 .④焦距:.⑤准线:或.⑥离心 率:. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和 二、双曲线方程. 1. 双曲线的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ)0(12 22 2φφb a b y a x =+ y ) 0(12 22 2φφb a b x a y =+ )0,0(122φφB A By Ax =+),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2 2 2 1,2b a c c F F -==c a x 2 ± =c a y 2 ± =)10(ππe a c e =),(22 2 2a b c a b d -= ),(2a b c

⑴①双曲线标准方程: . 一般方程: . ⑵①i. 焦点在x 轴上: 顶点: 焦点: 准线方程 渐近线方程: 或 ②轴为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率. ④通径 . ⑤参数关系. ⑥焦点半径公式:对于双曲线 方程 (分别为双曲线的左、右焦点或分别为双曲线的上下 焦点) ⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为, 离心率. 三、抛物线方程. 3. 设,抛物线的标准方程、类型及其几何性质: 的一个端点的一条射线 以无轨迹 方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-φπ)0,(1), 0,(12 22 22 22 2φφb a b x a y b a b y a x =- =- )0(122πAC Cy Ax =+)0,(),0,(a a -)0,(),0,(c c -c a x 2 ± =0=±b y a x 02222=-b y a x y x ,a c e =a b 2 2a c e b a c =+=,22212 22 2=- b y a x 21,F F 222a y x ±=-x y ±=2= e 0φp

高考数学练习题---文科圆锥曲线

文科圆锥曲线 一、选择题 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32 a x =上一点,12PF F ?是底角为30o 的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题. 【解析】∵△21F PF 是底角为030的等腰三角形, ∴322c a = ,∴e =34 , ∴0 260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162 =的准线交于,A B 两点,43AB =;则C 的实轴长为( ) ()A 2 ()B 22 ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:2 2 2 x y a -=,将4x =代入等轴双曲线方程解 得y =216a ±-,∵||AB =43,∴2216a -=43,解得a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 283x y = (B) 2163x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2) 到直线x y 3= 的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以222 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=

高三数学文科圆锥曲线大题训练(含答案)

高三数学文科圆锥曲线大题训练(含详细解答) 1.已知椭圆2 2 :416C x y +=. (1)求椭圆C 的离心率; (2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆 221 2 x y += 的位置关系. 1.解:(I)由题意,椭圆C 的标准方程为 22 1164 x y +=, 所以2 2 2 2 2 16,4,12从而a b c a b ===-=, 因此4,a c ==故椭圆C 的离心率2 c e a = =............4分 (II)由22 1, 416 y kx x y =+??+=?得()22148120k x kx ++-=, 由题意可知0?>. ..............5分 设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y , 则1224214M x x k x k +==-+,122 1 214M y y y k +==+......................7分 因为BEF ?是以EF 为底边,B 为顶点的等腰三角形, 所以BM EF ⊥, 因此BM 的斜率1 BM k k =-. ............... ...........................................8分 又点B 的坐标为()0,2-,所以2 221 2 2381440414M BM M y k k k k x k k ++++===- --+,..........10分 即()238104k k k k +-=-≠,亦即21 8 k =, 所以4k =±,....................12分 故EF 的方程为440y -+=. ............... ...........................................13分 又圆221 2x y += 的圆心()0,0O 到直线EF 的距离为32d ==>, 所以直线EF 与圆相离.....................14分 2.已知椭圆的中心在坐标原点O ,长轴长为 离心率e = F 的直线l 交

最新高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。

(2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= -,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ?面积的取值范围是 1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=u u u r u u u r u u u r r ,证明:,,FP FA FB u u u r u u u r u u u r 为 等差数列,并求出该数列的公差。

高二数学(文科)圆锥曲线题型汇总

高二数学(文科)圆锥曲线题型汇总

————————————————————————————————作者:————————————————————————————————日期:

高二数学(文)圆锥曲线复习 1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为 ( ) A .x 2+y 2=l B .x 2-y 2=1 C .y 2 =4x D .x=0 2.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b -=>>和抛物线2 2y px = ()0p >的离心率分别是123,,e e e ,则 ( ) A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥ 3. 已知直线)0(1122 22>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。 (1)若椭圆的离心率为3 3 ,焦距为2,求椭圆的标准方程; (2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]2 2 ,21[∈e 时,求椭圆的长轴长的最大值。

1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为 ( C ) A .x 2+y 2=l B .x 2-y 2=1 C .y 2 =4x D .x=0 2.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b -=>>和抛物线2 2y px = ()0p >的离心率分别是123,,e e e ,则 ( C ) A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥ 3. 已知直线)0(1122 22>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。 (1)若椭圆的离心率为3 3 ,焦距为2,求椭圆的标准方程; (2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]2 2 ,21[∈e 时,求椭圆的长轴长的最大值。 解:(1).2,3,22.3 3,3322=-=====c a b a c a c e 则解得又即Θ .12 32 2=+∴y x 椭圆的标准方程为 …………3分 (2)由,0)1(2)(,1,122222222 22=-?+-?+?? ???+-==+ b a x a x b a y x y b y a x 得消去………4分 由.1,0)1)((4)2(2 2 2 2 2 2 2 2>+>-+--=?b a b b a a a 整理得…………5分 222112212122222 2(1) (,,),(,),,.a a b A x y B x y x x x x a b a b -+==++设则 .1)()1)(1(21212121++-=+-+-=∴x x x x x x y y …………7分 .01)(2,0),(21212121=++-=+∴⊥x x x x y y x x O OB OA 即为坐标原点其中Θ .02.012)1(222222 222222=-+=++-+-∴b a b a b a a b a b a 整理得 …………9分 2 222222211 12,e a e a a c a b -+=-=-=代入上式得Θ, ).11 1(2122e a -+=∴ …………11分 222 12111341[,],1,2,22422431e e e e ∈∴≤≤∴≤-≤∴≤≤-Q 2222 717313,,1,3162 a a b e ∴≤+≤∴≤≤+>-适合条件 由此得.26642≤≤a .6,623 42故长轴长的最大值为≤≤∴a

高考数学试题分类汇编——圆锥曲线选择doc

2010年高考数学试题分类汇编——圆锥曲线 一、选择题 1、(2010湖南文数)5. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是 A. 4 B. 6 C. 8 D. 12 解析:抛物线的准线为:x=-2,点P 到准线距离为4+2=6,所以它到焦点的距离为6。. 2、(2010全国卷2理数)(12)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,过右焦点F 且斜率为 (0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k = (A )1 (B (C (D )2 【答案】B 【命题意图】本试题主要考察椭圆的性质与第二定义. 【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过 B 作BE 垂直于AA 1与E ,由第二定义得, ,由,得, ∴ 即k= ,故选B. 3、(2010陕西文数)9.已知抛物线y 2 =2px (p >0)的准线与圆(x -3)2 +y 2 =16相切,则p 的值为 [C] (A ) 1 2 (B )1 (C )2 (D )4 解析:本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2 =2px (p >0)的准线方程为2 p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2 +y 2 =16相切,所以2,42 3==+ p p 法二:作图可知,抛物线y 2 =2px (p >0)的准线与圆(x -3)2 +y 2 =16相切与点(-1,0) 所以2,12 =-=- p p 4、(2010辽宁文数)(9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一 条渐近线垂直,那么此双曲线的离心率为

相关主题
文本预览
相关文档 最新文档