当前位置:文档之家› 煅烧对水泥熟料质量的八大影响

煅烧对水泥熟料质量的八大影响

回转窑煅烧对熟料质量的八大影响

(发布日期:2011-11-15 11:05:17)浏览人数:1837

鼠标双击自动滚屏

研究表明回转窑的煅烧操作热工制度对硅酸盐水泥熟料煅烧质量产生重要影响,优质熟料主要特征是C3S+C2S矿物含量高,碱含量低,矿物晶粒粒径较细小均匀,发育良好,当生料工艺质量参数和粉磨细度、颗粒粒径分布、化学成分、有害成分、率值等保持稳定不变的情况下,回转窑煅烧操作热工制度和煅烧温度、升温速率、峰值温度、保温时间、窑速和冷却速率等就决定了熟料硅酸盐矿物C3S和C2S的含量和活性,熟料中阿里特晶体尺寸发育大小,主要决定于水泥生料的易烧性和窑的煅烧操作热工制度的稳定。因此,以下结合煤质,火焰形状和温度,熟料和煅烧温度,烧成带长度,窑型规格,窑速、升温速率和冷却速率等对熟料煅烧质量的影响作一初步探讨。

一、煤质的影响

一般回转窑煅烧用煤质量要求灰分A≤30%,挥发分V在18%~30%,发热量

QDW≥5000kcal/kg,煤粉细度要求控制在8%~15%,实际上,我国当前由于优质煤炭供应紧张且价格较高,许多厂家实际达不到这一要求,由于煤粉燃烧后灰分全部沉落在烧成带的熟料颗粒表面上,造成熟料颗粒表面富硅化,从而改变熟料表层矿物成分,C3S含量下降,C2S含量上升,从而影响熟料质量,当前相应的对策措施,一是适度调整增加干法窑

尾分解炉用煤量和降低窑头喷煤量,其比例控制在6:4左右,以增加分解炉中煤灰分与灼

烧生料的混合程度,降低窑头煤灰对熟料质量的负面影响;二是采取窑尾分解炉与窑头喂煤质量分别控制,分解炉喂低热值煤,窑头喂高热值煤,可降低劣质煤对窑头熟料质量的不利影响。

二、火焰形状和温度的影响

火焰形状的调节一方面取决于煤粉的热值、灰分、细度和挥发分的大小,另一方面还取决于一次风的风速和风量大小,即窑头燃烧器的规格和性能,调整好窑火焰长度也就是调整好烧成带长度,也即调整控制了熟料在高温烧成带停留时间,火焰形状和长度影响到熟料中C3S矿物的晶粒发育大小和活性。因此,在烧高强优质熟料时,必须调整火焰长度适中,既不拉长火焰使烧成带温度降低,也不缩短火焰使高温部分过于集中,从而烧垮窑皮和耐火砖而不利于窑的安全运转,回转窑内火焰形状粗细必须与窑断面积相适应,要求比较充满近料而不触料,正常形状保持其纵断面为正柳叶形状。

当烧灰分高、热值低的劣质煤时,其一次风风速应适度加大,对于使用多通道喷煤管的窑应增加内、外净风风速和风量,使其火焰形状尽量控制不发散而形成正常火焰。干法窑窑头火焰温度控制,视窑型大小而异,对于2000t/d以下的窑型一般控制在1650~1850℃之间,对于大型窑如5000t/d以上窑型,火焰温度控制在1750~1950℃的较高范围内比较

有利,预分解窑内火焰温度取决于两部分因素:一是煤粉热值、灰分和细度,二是取决于二次风温大小,对于烧劣质煤的厂家提高二次风温尤其重要。对于易烧性差的生料和含碱高的生料,适当提高火焰温度,采用高温烧成有利于熟料质量的提高和碱分的充分挥发可获得低碱熟料。

三、熟料煅烧温度的影响

一般情况下控制熟料煅烧温度在1300~1450~1300℃可确保熟料质量和烧结,对于当前我国相当部分厂家由于采用双高配料(高KH、高SM)生产高强熟料,其生料易烧性变差,相应熟料煅烧温度应适度偏高控制,控制在1300~1500~1300℃左右比较有利。

四、烧成带长度的影响

对于双高(高KH、高SM)熟料配料的厂家,要求控制烧成带长度比正常情况偏长一些,煅烧温度高一些,即"高温长带"煅烧,有利于熟料烧结和熟料质量的提高,一般控制烧成带长度在4.5~5.5Di左右为最好。

五、窑型规格的影响

窑的长径比对熟料煅烧质量有较大影响,如日产2000吨预分解窑的L/D当前趋向于较短一些设计控制,以设计控制在10~11左右的厂家较多,这样有利于熟料质量的提高,主要由于低长径比短窑相应缩短了过渡带的长度,有利于熟料升温速率的提高,也缩短了预分解系统入窑灼热生料的低温陈化时间,有利于熟料C2S和f-CaO及时溶入熟料液相和C3S 的形成和结晶,对优质熟料的形成较为有利。

窑的直径大小也对熟料煅烧质量有一定影响,一般认为大直径窑比小直径窑有利于熟料煅烧质量的提高,一方面是因为大窑在配料时采用高SM、高KH配料,SM控制在2.8~3.2,KH控制在0.88~0.92,而大直径窑窑头喷入燃煤量大,火焰温度高,有的甚至高达2000℃以上,仍然可以将以上双高配料的熟料煅烧充分,质量良好。

六、窑速的影响

对于短小型预分解窑,由于其长度比大型窑短,窑速应偏低控制较好,如:Φ3×48m、Φ4×43m预分解,窑速控制在3.0~3.2转/分。对熟料质量比较有利,主要是因为其窑长较短,为确保熟料在短窑内的高温停留时间,窑速偏低控制较为有利。

七、窑气氛的影响

回转窑内燃煤燃烧过剩空气系数一般要控制在1.10~1.15左右,以窑尾废气中氧浓度控制在2%~3%左右为较好,即保持微氧化气氛操作,若过剩空气系数控制过低,二次风不足,易导致还原气氛产生,窑内出现还原气氛,会产生CO气体,且熟料中Fe2O3成分被CO还原成FeO,影响熟料液相成分和黏度,影响熟料烧结,易产生大量黄心熟料,也浪费热量和燃煤消耗量,从而影响到熟料质量的提高。

八、升温速率和冷却速率的影响

优质熟料形成要求预热器分解炉气固换热效率高,传热快,在窑内过渡带升温阶段要求快速升温,主要操作要求就是要适度提高窑速、加大灼烧生料翻滚频次,缩短过渡带长度,延长烧成带长度,促进熟料的矿物形成和烧结,烧高强优质熟料要求快烧急冷,窑头篦冷机操作要求强化一室、二室高压风风量迅速,强化冷风对高温熟料的冷却效果,这样

煅烧对熟料的影响

回转窑煅烧对熟料煅烧质量的影响 2011-1-16 作者: 研究表明,回转窑的煅烧操纵热工轨 制对硅酸盐水泥熟料煅烧质量产生重 要影响,优质熟料主要特征是C3S+C2S 矿物含量高,碱含量低,矿物晶粒粒径 较细小平均,发育良好,当生料工艺质 量参数和粉磨细度、颗粒粒径分布、化 学成分、有害成分、率值等保持不乱不 变的情况下,回转窑煅烧操纵热工轨制 和煅烧温度、升温速率、峰值温度、保 温时间、窑速和冷却速率等就决定了熟料硅酸盐矿物C3S和C2S的含量和活性,熟料中阿里特晶体尺寸发育大小,主要决定于水泥生料的易烧性和窑的煅烧操纵热工轨制的不乱。因此,以下结合煤质,火焰外形和温度,熟料和煅烧温度,烧成带长度,窑型规格,窑速、升温速率和冷却速率等对熟料煅烧质量的影响作一初步探讨。 一、煤质的影响 一般回转窑煅烧用煤质量要求灰分A≤30%,挥发分V在18%~30%,发烧量 QDW≥5000kcal/kg,煤粉细度要求控制在8%~15%,实际上,我国当前因为优质煤炭供给紧张且价格较高,很多厂家实际达不到这一要求,因为煤粉燃烧后灰分全部沉落在烧成带的熟料颗粒表面上,造成熟料颗粒表面富硅化,从而改变熟料表层矿物成分,C3S含量下降,C2S含量上升,从而影响熟料质量,当前相应的对策措施,一是适度调整增加干法窑尾分解炉用煤量和降低窑头喷煤量,其比例控制在6:4左右,以增加分解炉中煤灰分与灼烧生料的混合程度,降低窑头煤灰对熟料质量的负面影响;二是采取窑尾分解炉与窑头喂煤质量分别控制,分解炉喂低热值煤,窑头喂高热值煤,可降差劲质煤对窑头熟料质量的不利影响。 二、火焰外形和温度的影响 火焰外形的调节一方面取决于煤粉的热值、灰分、细度和挥发分的大小,另一方面还取决于一次风的风速和风量大小,即窑头燃烧器的规格和机能,调整好窑火焰长度也就是调整好烧成带长度,也即调整控制了熟料在高温烧成带停留时间,火焰外形和长度影响到熟料中C3S矿物的晶粒发育大小和活性。因此,在烧高强优质熟料时,必需调整火焰长度适中,既不拉长火焰使烧成带温度降低,也不缩短火焰使高温部门过于集中,从而烧垮窑皮和耐火砖而不利于窑的安全运转,回转窑内火焰外形粗细必需与窑断面积相适应,要求比较布满近料而不触料,正常外形保持其纵断面为正柳叶外形。

煤的岩相分析学在水泥熟料生产中的指导意义

煤的岩相分析学在水泥熟料生产中的指导意义 内蒙古蒙西水泥股份有限公司 韩建业 一、煤的岩相分析学相关内容简述 煤的岩相分析学告诉我们,煤的组成包含有机组分和无机组分,有机组分又包括镜质组、壳质组、惰质组三种组分,其中镜质组含量最大,约占50%---80%。在偏光显微镜下检测镜质组反射率(Rmax或Re)大小,可以相对判定不同的煤种。 Rmax------偏光下镜质组最大反射率 Re-------自然光下镜质组随机反射率 煤的形成年代不同,煤化程度不同,化学成分不同,各组分含量也不同,变质程度不同,燃烧性能也就不一样,燃点也就不同。 下面两个表是不同煤种对应的化学组成变化和燃点的不同范围以及对应的我国境内不同煤种大致形成年代:

同一煤矿的同一层煤形成的条件基本是相同的,它的镜质组反射率一定是一个单峰正态分布的图形,标准偏差基本<0.1。而不同变质程度煤混配在一起时,在镜质组反射率分布图上必然会出现多个峰,偏差也随之增大。但是,变质程度相近的煤混配在一起镜质组反射率也可能只有一个峰,但一般会偏差略增大,但因煤质相近,可视作单一煤层煤。 下面几个镜质组反射率图形就是典型代表: 1、单一煤层煤镜质组反射率图谱:就一个正态分布的单峰

2、具多个凹口混合煤镜质组反射率图谱:四种不同煤质的单一煤层煤混合在一起 3、简单混煤(简单凹口混煤)镜质组反射率图谱:镜质组反射率(煤质)相近的单一煤层煤混合在一起 二、大多数水泥生产企业用煤状况 煤是水泥熟料生产企业的主要原材料, 也是提供水泥熟料生成的的唯一热源, 它通过喷煤管喷入回转窑内燃烧,产生的合理的热力分布, 直接决定了回转窑的产质量, 进而影响到熟料单位能耗,决定了水泥的生产成本。然而,目前水泥生产企业进厂煤控制, 基本 类型:多凹口混煤 自然光下镜质组最小反射率Re :0.3 自然光下镜质组最大反射率Re :1.85 标准偏差:0.445 类型:单一煤层煤 偏光下镜质组最大反射率Rmax :0.68 标准偏差:0.061

生料配料知识

水泥生料配料基本知识 2004.9.28 首先讲个故事:水泥的发明 1.人类在三千多年前就用石灰做建筑材料了。然而发明水泥的历史却只有两百多年。 2.1756年,英国海峡群岛上的一座灯塔突然失火烧毁。政府命令工程师史密顿以最快的速度建好。 3.两周后,石灰石运到了灯塔所在的小岛上。史密顿却见石灰石中混有许多杂质,很不满意,但时间紧迫,只好将就了。 4.没有想到的是,用这种混有杂质石灰石烧出来的石灰,性能却好得出奇,将石头粘结得从来没有过的结实。 5.史密顿想:这石灰石中肯定有名堂。于是,他马上检验了这些石灰,发现其中竟含有20%的粘土。 1 配料计算1.1 配料计算的目的 1.1.1设计水泥厂时,配料计算的目的在于: 1.1.1.1 根据原料资源情况,确定矿山的可用程度和经济合理性,为生产水泥提供必要的原料条件,并尽可能地利用矿山资源; 1.1.1.2 根据已确定的原料特性和水泥品种的要求,决定原料种类、配比和选择合适的生产方法; 1.1.1.3 根据已确定的原料种类、配比及工艺要求,计算全厂的物料平衡,作为全厂工艺设计及主机选型的依据。 1.1.2 生产中通过配料计算,可经济合理的使用矿山资源,确定各种原料的数量比例,以得到成分和乎要 求的水泥熟料,并为窑、磨创造良好的操作条件,保证工厂有较好的经济效益。 1.2熟料配料方案的选择 ●配料方案是用率值表示的。 KH: n(SM): p(IM): ●确定熟料率值时,要充分考虑率值间的相互影响、相互制约的关系。 要考虑水泥的品种、原料的品质与生料的易烧性以及燃料的质量 1.2.1 KH值与n值的选择 N值要与KH值相适应,一般避免以下的倾向:KH高,N值也高; KH低,N值也低; KH低,N值高 1.2.2 IM的选择 选择P也应于KH相适应,一般情况下,KH高,要相应的降低P值。 硅酸盐水泥熟料的化学成分与矿物组成 1.化学成分 1.1 硅酸盐水泥熟料的主要化学成分为氧化钙、二氧化硅、三氧化二铝和三氧化二铁四种矿物,占熟 料化学成分总量的近95%。另外还含有氧化镁、三氧化硫、二氧化钛、五氧化二磷、氧化钾和氧 化钠等。 1.2硅酸盐熟料中四种主要氧化物的波动范围为:CaO:62--67%;SiO2:20-24%; AI2O3:4-7%;Fe2O3:2.5-6%。 硅酸盐水泥熟料的率值及其意义 1.石灰饱和系数、水硬率和石灰系数 石灰饱和系数一般简称为饱和比,它表示水泥熟料中的氧化钙总量减去饱和酸性氧化物所需的氧化钙后,剩下的与二氧化硅化和的氧化钙含量与理论上二氧化硅与氧化钙化合全部生成硅酸三钙所需的氧化

水分的变化对生料产、质量控制的影响及处理方法.

水分对生料的影响 合肥水泥研究设计院杨刚刘恩睿葛骏浩 在生料的质量控制中,常常出现Tc值符合控制指标,而KH值偏离指标较多的情况,其原因与原料成分已发生改变而未及时调整配比,或者原料成分虽未发生变化,但配料时未严格按照配比执行等因素有关。但物料水分变化引起的KH值波动,却往往被忽视。 1、物料水分的变化对配料的影响 水泥各种原料都含有一定的水分,并随季节和气候的变化而波动。水分的变化,即影响生料配比的准确性,同时对粉磨构成影响。 1.1对检验数据的影响 出料生料控制的检验,大多数水泥厂均是带水分测定Tc、Fe2O3。并进行生产控制的,而化学全分析时一般都对样品先烘干再进行检验,这就导致同一试样因水分不同而使Tc值的控制值T与分析值T′间存在差值。分析值T总要高于控制值T′,两者的关系如下: T′ T= ×100 (1) 100-M 式中: T ——分析Tc值(%) T′——控制Tc值(%) M ——生料总水分(%) 从式(1)中可以看出,当某种或几种原燃料水分发生较大变化时,生料的总水分发生变化时,所测定的湿基分析值与干基控制值相差为⊿Tc,此值随生料水分M的增加而增加,并随Tc值的升高而增大,例如: 当T′=70.00,M=1时: T=70.00/(100-1)×100=70.71,⊿Tc=0.71 若生料水分由1%增加至2%,控制值T′不变时,即: T′=70.00,M=2时: 70.00 T= ×100=71.34,⊿Tc=1.34 100-2 可见,即使以相同的Tc值控制生料,但由于原料水分的变化,⊿Tc也随之增大。根据《立窑水泥企业质量管理规程》规定:出磨料Tc允许波动范围为±0.5%。按此计算,当生料总水分偏差达到1%以

高镁石原料对煅烧质量带来的影响与对策措施

高镁石原料对煅烧质量带来的影响与对策措施 水泥熟料主要成分是CaO、SiO2、Al2O3、Fe2O3等四种化合物,次要成分为MgO、R2O、SO3等化合物,其中MgO含量允许达到5%,是次要成分中含量最多的一种。江西永丰南方水泥有限公司是中国建材南方水泥(集团)公司在江西省吉安市永丰县陶唐乡投资新建的一条5000t/d新型干法水泥生产线,于2010年6月28日竣工投产。其石灰石矿山质量(CaO:45~52.80%、MgO:1.00~7.00%、SiO2:0.50~4.00%)差异性波动大,石灰石原料品质主要表现在高镁、高硅、低钙石,通过矿山开采的精细化管理,多点搭配装车进厂等措施,才能满足水泥熟料生产用原料的基本要求。 1水泥原料中的MgO (1)水泥生产中,生料中的MgO主要来源于石灰石中的镁质矿物,这些矿物主要以硅酸镁、白云石、菱镁矿、铁白云石等不同类型存在。 (2)石灰石中MgO的含量对熟料强度有一定的影响,总的趋势是石灰石中MgO含量越高,则熟料强度越低。根据试验研究,镁质矿物中MgCO3的分解温度为660~700℃,白云石Mg(CO3)2的分解温度为800℃,而石灰石中CaCO3分解温度接近900℃。在水泥熟料生产过程中,MgO较CaO先形成。 2 MgO对熟料煅烧的影响 (1)熟料煅烧时,生料中MgO:2.50%~3.00%和熟料矿物结合成固熔体,此类固熔体甚多,例如:CaO?MgO?SiO2、2CaO?MgO?SiO2、2CaO?MgO?2SiO2、3CaO?MgO?2SiO、7CaO?MgO?2Al2O3、3CaO?MgO?2Al2O3、MgO?Al2O3、MgO?Fe2O3以及C3MS2等,此类化合物的稳定温度在1200~1350℃,同时它还可能含有一些微量元素。 (2)在温度超过1400℃以上时,MgO的化合物会分解,且从熔融物中结晶出来。 (3)当熟料中含有少量细小方镁石晶格的MgO时,它能降低熟料液相生成温度,增加液相数量,降低液相粘度,增加液相表面张力,有利于熟料形成和结粒,也有利于C3S 的生成,还能改善熟料色泽。 (4)当熟料中粗大方镁石晶体的MgO超过3.0%时,则易形成方镁石晶体,导致熟料安定性不良。 (5)当氧化镁(MgO)含量过高时,则易生成大块、结圈和结厚窑皮,以及表面呈液相的熟料颗粒,此类熟料易损坏篦冷机篦板。 3 MgO对熟料结粒的影响 (1)影响孰料结粒的因素

新型干法水泥熟料煅烧过程

1 新型干法水泥熟料煅烧工艺过程 1.1 水泥熟料的形成过程 水泥熟料的形成过程,是对合格的水泥生料进行煅烧,使其连续被加热, 经过一系列的物理化学反应,形成熟料,再进行冷却的过程。 生料在加热过程中,依次发生干燥、粘土矿物脱水、碳酸盐分解、固相 反应、熟料烧结及熟料冷却结晶等重要的物理化学反应。这些反应过程的反 应温度、反应速度及反应产物不仅受原料的化学成分和矿物组成的影响,还 受反应时的物理因素诸如生料粒径、均化程度、气固相接触程度等的影响。 1.1.1 干燥 排除生料中自由水分的工艺过程称为干燥。 生料都含有一定量的自由水分,随着温度的升高,物料中的水分被蒸发, 当温度升高到100~150℃时,生料中的自由水分全部被排除,这一过程称为 干燥过程。新型干法水泥生料水分小于1%,在预热器内瞬间完成。 1.1.2 脱水 脱水是指粘土矿物分解放出化合水。 粘土矿物的化合水有两种:一种是以OH 一离子状态存在于晶体结构中, 称为晶体配位水(也称结构水);另一种是以水分子状态吸附于晶层结构间, 称为晶层间水或层间吸附水。所有的粘土都含有配位水;多水高岭土、蒙脱 石还含有层间水;伊利石的层间水因风化程度而异。层间水在100℃左右即 可排除,而配位水则必须高达400~600℃以上才能脱去。 粘土中的主要矿物高岭土发生脱水分解反应如下式所示: Al2O3 2SiO2 2H20 Al203 2SiO2 + 2H2O↑ 高岭土无水铝硅酸盐(偏高岭土) 水蒸气 Al203 2SiO2 Al203 + 2SiO2 高岭土进行脱水分解反应属吸热过程。高岭土在失去化合水的同时,本身 晶体结构遭受破坏,生成了非晶质的无定形偏高岭土(脱水高岭土),由于偏高岭 土中存在着因 OH 一基跑出后留下的空位,故可以把它看成是无定型的SiO2 和 Al2O3,这些无定形物具有较高活性。 1.1.3 碳酸盐分解 生料中的碳酸钙和夹杂的少量碳酸镁在煅烧过程中分解并放出CO2 的过程称 碳酸盐分解。 碳酸镁的分解温度始于402~480℃左右,最高分解温度700℃左右;碳酸钙 在600℃时就有微弱分解发生,但快速分解温度在812~928℃之间变化。MgCO3 在590 ℃、CaCO3 在890℃时的分解反应式如下: MgC03 MgO + CO2↑-(1047~1 214)J/g

三率值对熟料的影响

三率值对熟料的影响公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

水泥率值:硅酸率(硅率,SM),铝酸率(铝率,IM),饱和比(KH或LSF) 硅率(SM):熟料中SiO2含量与Al2O3、Fe2O3之和的比。SM值越高,表示硅酸盐矿物多,铁、铝等熔剂矿物少,对熟料强度有利。但SM值过高时,熟料较难烧成,煅烧时液相量较少,不易挂窑皮;随SM值的降低,液相量增加,对熟料的易烧性和操作有利,但SM值过低,熟料强度低,窑内易结圈,结大块,操作困难。一般控制在左右。 铝率(IM):熟料中Al2O3含量Fe2O3含量之比。反映煅烧过程中液相的性质。IM过大,液相粘度大,不利于A矿的形成,易引起熟料快凝;IM 过低,液相粘度小,对A矿的形成有利,但窑内烧结范围窄,易使窑内结大块,对煅烧不利,不易掌握煅烧操作。一般控制在左右。 饱和比:有两种叫法,一般KH叫饱和比,LSF叫石灰饱和系数。国内用KH的较多(注意,这个不能按英文字母念,KH来自原苏联)。 KH表示熟料中二氧化硅被氧化钙饱和成A矿的程度。KH越大熟料强度越高,越难烧。一般控制在左右。 KH、SM、IM对煅烧的影响在实际生产中KH过高,工艺条件难以满足需要,f-CaO会明显上升,熟料质量反而下降,KH过低,C3S过少熟料质量也会差,SM过高,硅酸盐矿物多,对熟料的强度有利,但意味着熔剂矿物较少,液相量少,将给煅烧造成困难,SM过低,则对熟料温度不利,且熔

剂矿物过多,易结大块炉瘤,结圈等,也不利于煅烧。IM的高低也应视具体情况而定。在C3A+C4AF含量一定时,IM高,意味着C3A量多,C4AF量少,液相粘度增加,C3S形成困难,且熟料的后期强度,抗干缩等影响,相反,IM过低,则C3A量少,C4AF量多,液相粘度降低,这对保护好窑的窑皮不利

粉煤灰细度对混凝土强度的影响(1)

粉煤灰细度对混凝土强度的影响 摘要:我国是一个产煤大国,煤炭作为火力发电主要燃料,其副产物粉煤灰的大量排放对生态环境和人民大众的健康造成了较大的危害。合理地利用粉煤灰不仅能有效解决粉煤灰带来的环境污染,同时能变废为宝,节省自然资源。粉煤灰的一个用途是掺入到混凝土中能代替部分水泥的掺入,节省水泥,同时还能有效增加粉煤灰的强度。本文详细介绍了粉煤灰对混凝土强度的影响。 关键字:粉煤灰;细度;混凝土强度;影响 一、概述 粉煤灰是火电厂排放的主要固体粉状废弃物。不同火电厂出产的粉煤灰成分都不一样,总体来看我国粉煤灰主要成分是SiO2、Al2O3、FeO、Fe2O3、CaO、Ti2O3等氧化物组成。从重量百分比来看主要是SiO2、Al2O3。 表1 粉煤灰的成分 成分SiO2 Al2O3 Fe2O 3 CaO MgO SO3 NA2O K2O 烧失 量 范围34.3-66 .76 14.56- 40.12 1.5- 6.22 0.44- 16.8 0.2-3 .72 0-6 0.1-4 .23 0.02- 2.14 0.63- 29.97 均值50.8 28.1 6.2 3.7 1.2 0.8 1.2 0.6 7.9 二、粗细颗粒粉煤灰性质分析 细颗粒粉煤灰中的活性火山灰玻璃珠成分会与水泥中析出的氢氧化钙反应生成水化硅酸钙和水化氯酸钙等胶凝物质,能有效增加混凝土的塑性和强度;同时火山灰玻璃微小珠成分会在混凝土中起到滚珠作用和解絮作用,从而减少混凝土的水量改善和易性,提高密实性;这些玻璃珠均匀分布在水泥砂浆中,增加了硬化浆体的结构强度,改变了混凝土的均匀性,填充和细化了混凝土浆体的缝隙和孔洞。粉煤灰做为掺加料被加入到混凝土中对混凝土的强度影响与粉煤灰的细

生料配料质量控制系统

QCS水泥生料质量控制系统(7.1版) 防堵料独特的配料控制算法 国家重点新产品 ■ 科技部中小型企业科技创新基金资助项目 ■ 中国水泥协会推荐的实用新技术之一 ■ 历经12年的研发与实践; ■ 具有喂料秤堵料自动补偿功能,克服了堵料带来的配料误差 ■ 显著的应用效果:确保出磨生料率值合格率在80%以上; 一.主要功能 1、具有防堵料功能,在喂料秤堵料时,可自动采取快速补偿喂料量或调整同一原料的其他秤配比或减少其他原料配比等措施,确保生料成分稳定; 2、根据出磨生料成分测定结果(SiO2、Al2O 3、Fe2O3、CaO),自动调整石灰石、硅石、铁粉等原料的比例,保证出磨生料达到所设定的率值指标; 3、可以与多元素分析仪联机,自动获取生料成分并完成生料配比的自动调整; 4、可与DCS系统联机,在线直接修改原料配比;* 5、监视配料秤反馈流量,根据用户设定报警偏差提示报警;** 6、监视磨机运行状况,根据用户需要设定报警提示;**

7、班、天、月、用户指定时间段的多种统计模式,对合格率、平均值、标准偏差、最大值、最小值进行统计,并可以直接打印统计结果; 8、多种调整模式和策略,用户可选,适合各种工艺条件下的生料配料控制; 9、用户可以设定灵敏度和滞后系数,控制更为精确; 10、自动校正配料秤零点漂移,无需频繁校秤; 11、自动跟踪原料成分波动,无需频繁更改或测定原料成分; 12、三组分配料或四组分配料任选,每种组分都可选定多个配料秤;*** 13、饱和比可采用KH或LSF进行控制; 14、用户可根据需要设定各种原料的允许上限和下限,在允许范围内进行调整; 15、可以有多达四种固定掺量的原料配料; 16、分层用户管理,普通用户只能使用,管理员才能更改控制指标、调整策略等参数; *可采用多种方式与DCS系统联机,具体方式需根据实际情况而定; ** 监视配料秤反馈和磨机工况,需DCS系统支持OPC; *** 三组分配料能精确控制两个率值,四组分配料能精确控制三个率值 二.技术指标 ★KH标准偏差≤0.03、SM标准偏差≤0.1、IM标准偏差≤0.1。 ★KH±0.02;SM、IM±0.1合格率达80%以上。

生料成分对熟料煅烧的影响

生料成分对熟料煅烧的影响 一硅酸盐水泥熟料的组成 1. 化学组成及矿物组成 硅酸盐水泥熟料中的主要化学成分是CaO,SiO2,Al2O3,Fe2O3四种氧化物,其总和通常占熟料总量的95%以上。此外还有少量的其他氧化物,如:MgO,SO3,Na2O,K2O,TiO2,P2O5等,它们的总量通常占熟料的5%以下。硅酸盐水泥熟料中各主要氧化物的波动范围一般为:CaO(62%~67%),SiO2(20%~24), Al2O3(4%~7%), Fe2O3(2.5%~6%).硅酸盐水泥熟料中的四种主要矿物: C3S(45%~65%), C2S(15%~32%), C3A(4%~11%),C4AF(10%~18%)。另外,还有少量的游离氧化钙,方镁石,含碱矿物以及玻璃体等。通常,熟料中硅酸三钙和硅酸二钙的含量为75%左右,合称为硅酸盐矿物,它们是熟料中的主要组分,铝酸三钙和铁铝酸四钙含量占22%左右。在煅烧过程中,它们与氧化镁,碱等在1250~1280度开始,会逐渐熔融成液相以促进硅酸三钙的顺利形成,因而把它们称之为溶剂型矿物。硅酸盐矿物和溶剂型矿物在熟料中占总量的95%左右。 2.化学成分与矿物组成间的关系 熟料中的主要矿物均由各主要氧化物经高温煅烧化合而成,熟料矿物组成取决于化学组成,控制合适的熟料化学成分是获得优质水泥熟料的中心环节,根据熟料的化学成分也可以推测出熟料中各种矿物的相对含量高低。 (一)CaO CaO是水泥熟料中的最重要的化学成分,它能与SiO2,Al2O3,Fe2O3经过一系列复杂的反应过程生成C3S, C2S, C3A C4AF等矿物,适量增加熟料氧化钙含量有利于提高硅酸三钙含量。但并不是说氧化钙越高越好,因氧化钙过多易造成反应不完全而增加未化合的氧化钙(即游离氧化钙)的含量,从而影响水泥的安定性如果熟料中氧化钙过低,则生成硅酸三钙太少,硅酸二钙却相应增加。会降低水泥的胶凝性。 (二)SiO2 SiO2主要在高温作用下与CaO化合形成硅酸盐矿物,因此,熟料中的SiO2必须保证一定的量。当熟料中氧化钙含量一定时,SiO2含量高,易造成未饱和的硅酸二钙,硅酸三钙含量相应减少,同时由于SiO2含量高,必然降低Al2O3,Fe2O3的含量,则溶剂型矿物减少,不利于硅酸三钙的形成。相反,当SiO2含量低时,则硅酸盐矿物相应减少,熟料中的溶剂型矿物相应增多。 (三)Al2O3 在熟料中,Al2O3主要是与其他氧化物化合形成含铝相矿物C3A,C4AF。当Fe2O3一定时,增加Al2O3主要是使熟料中的C3A含量提高,相反,则降低C3A含量。 (四)Fe2O3 增加Fe2O3有助于C4AF的提高,但是过高的Fe2O3会使熟料液相量增大,粘度较低,易结大块影响窑的操作。 (五)MgO 熟料煅烧时,氧化镁有一部分与熟料矿物结合成固溶体并溶于玻璃相中,故熟料中含有少量的MgO能降低熟料的烧成温度,增加液相量,降低液相粘度,有利于熟料的形成还能改善水泥色泽。硅酸盐水泥熟料中,其固溶量与溶解于玻璃相中的总MgO含量约为2%左右,多余的MgO呈游离状态,以方镁石存在。因此,MgO含量过高时,影响水泥的安定性,其含量一般不超过5%。 (六)P2O5和TiO2 P2O5含量一般在熟料中极少,一般不超过0.2%。TiO2一般不超过0.3%。当熟料中的P2O5含量在0.1~0.3%时,可提高熟料强度,这可能与P2O5稳定β-C2S有关。但随着其含

煅烧对水泥熟料质量的八大影响

回转窑煅烧对熟料质量的八大影响 (发布日期:2011-11-15 11:05:17)浏览人数:1837 鼠标双击自动滚屏 研究表明回转窑的煅烧操作热工制度对硅酸盐水泥熟料煅烧质量产生重要影响,优质熟料主要特征是C3S+C2S矿物含量高,碱含量低,矿物晶粒粒径较细小均匀,发育良好,当生料工艺质量参数和粉磨细度、颗粒粒径分布、化学成分、有害成分、率值等保持稳定不变的情况下,回转窑煅烧操作热工制度和煅烧温度、升温速率、峰值温度、保温时间、窑速和冷却速率等就决定了熟料硅酸盐矿物C3S和C2S的含量和活性,熟料中阿里特晶体尺寸发育大小,主要决定于水泥生料的易烧性和窑的煅烧操作热工制度的稳定。因此,以下结合煤质,火焰形状和温度,熟料和煅烧温度,烧成带长度,窑型规格,窑速、升温速率和冷却速率等对熟料煅烧质量的影响作一初步探讨。 一、煤质的影响 一般回转窑煅烧用煤质量要求灰分A≤30%,挥发分V在18%~30%,发热量 QDW≥5000kcal/kg,煤粉细度要求控制在8%~15%,实际上,我国当前由于优质煤炭供应紧张且价格较高,许多厂家实际达不到这一要求,由于煤粉燃烧后灰分全部沉落在烧成带的熟料颗粒表面上,造成熟料颗粒表面富硅化,从而改变熟料表层矿物成分,C3S含量下降,C2S含量上升,从而影响熟料质量,当前相应的对策措施,一是适度调整增加干法窑 尾分解炉用煤量和降低窑头喷煤量,其比例控制在6:4左右,以增加分解炉中煤灰分与灼 烧生料的混合程度,降低窑头煤灰对熟料质量的负面影响;二是采取窑尾分解炉与窑头喂煤质量分别控制,分解炉喂低热值煤,窑头喂高热值煤,可降低劣质煤对窑头熟料质量的不利影响。 二、火焰形状和温度的影响 火焰形状的调节一方面取决于煤粉的热值、灰分、细度和挥发分的大小,另一方面还取决于一次风的风速和风量大小,即窑头燃烧器的规格和性能,调整好窑火焰长度也就是调整好烧成带长度,也即调整控制了熟料在高温烧成带停留时间,火焰形状和长度影响到熟料中C3S矿物的晶粒发育大小和活性。因此,在烧高强优质熟料时,必须调整火焰长度适中,既不拉长火焰使烧成带温度降低,也不缩短火焰使高温部分过于集中,从而烧垮窑皮和耐火砖而不利于窑的安全运转,回转窑内火焰形状粗细必须与窑断面积相适应,要求比较充满近料而不触料,正常形状保持其纵断面为正柳叶形状。 当烧灰分高、热值低的劣质煤时,其一次风风速应适度加大,对于使用多通道喷煤管的窑应增加内、外净风风速和风量,使其火焰形状尽量控制不发散而形成正常火焰。干法窑窑头火焰温度控制,视窑型大小而异,对于2000t/d以下的窑型一般控制在1650~1850℃之间,对于大型窑如5000t/d以上窑型,火焰温度控制在1750~1950℃的较高范围内比较 有利,预分解窑内火焰温度取决于两部分因素:一是煤粉热值、灰分和细度,二是取决于二次风温大小,对于烧劣质煤的厂家提高二次风温尤其重要。对于易烧性差的生料和含碱高的生料,适当提高火焰温度,采用高温烧成有利于熟料质量的提高和碱分的充分挥发可获得低碱熟料。

生料质量对煅烧的影响

一、专题——生料质量对窑煅烧及熟料质量的影响。 熟料煅烧是水泥生产的中心环节,能否做到优质、高产、低耗,对一个企业的经济效益和竞争能力,都是一个举足轻重的问题。然而要做到熟料煅烧的优质、高产、低耗,与生产过程控制和窑的工艺管理及操作技术有关外,保证生料的质量就更为重要。生料的质量包括很多内容.主要有:生料的三率值饱和比(KH),硅酸率(SM),铝氧率(IM),生料水份,生料细度,生料的化学成份及有害成份,均匀性等,下面对影响熟料煅烧及质量因素分别进行阐述。 生料的三率值饱和比(KH),硅酸率(SM),铝氧率(IM)对窑煅烧及熟料质量的影响 石灰饱和比:熟料中全部氧化硅生成硅酸钙(C 3S+C 2 S)所需的氧化钙含量与 全部二氧化硅理论上生成硅酸三钙所需的氧化钙含量的比值,表示熟料中氧化硅被氧化钙饱和形成的硅酸三钙程度。 CaO-1.65Al 2O 3 -0.35Fe 2 O 3 KH= 2.80SiO 2 KH过高,熟料煅烧困难,必须延长煅烧时间,否则会出现f-CaO,同时窑的产量低,热耗高。KH过低,熟料煅烧容易,但熟料强度也低。 硅酸率:表示熟料中而SiO2的百分含量与AI2O3和Fe2O3百分含量之比。 SiO2 SM= Al2O3+Fe2O3 硅率随硅酸盐矿物与溶剂矿物之比而增减。如果熟料中硅率过高时,则煅烧时由于液相量显著减少,熟料煅烧困难,特别当氧化钙含量低,硅酸二钙含量高时,熟料易于粉化。硅率过低则熟料中硅酸盐矿物太少而影响水泥强度,且由于液相过多,易出现结大块,结圈等,影响窑的操作。 铝氧率:又称铝率或铝氧率,是表示熟料中氧化铝和氧化铁含量的质量比,也表示熟料熔剂矿物中铝酸三钙与铁铝酸四钙的比例。 Al 2O 3 IM= Fe 2O 3 铝率高,熟料中铝酸三钙多,相应铁铝酸四钙就较少,则液相粘度大,物料难烧。铝率过低,虽然液相粘度较小,液相中质点易于扩散,对硅酸三钙形成有利,但烧结范围变窄,窑内易结大块,不利于窑的操作。 生料的水份和细度对窑煅烧及熟料质量的影响

熟料煅烧质量的影响因素

熟料煅烧质量的影响因素 优质熟料主要特征是C3S+C2S矿物含量高,碱含量低,矿物晶粒粒径较细小均匀,发育良好,当生料工艺质量参数和粉磨细度、颗粒粒径分布、化学成分、有害成分、率值等保持稳定不变的情况下,回转窑煅烧操作热工制度和煅烧温度、升温速率、峰值温度、保温时间、窑速和冷却速率等就决定了熟料硅酸盐矿物C3S和C2S的含量和活性,熟料中阿里特晶体尺寸发育大小,主要决定于水泥生料的易烧性和窑的煅烧操作热工制度的稳定。因此,回转窑的煅烧操作热工制度对硅酸盐水泥熟料煅烧质量产生重要影响,以下结合煤质,火焰形状和温度,熟料和煅烧温度,烧成带长度,窑型规格,窑速、升温速率和冷却速率等对熟料煅烧质量的影响作一初步探讨。 一、煤质的影响 一般回转窑煅烧用煤质量要求灰分A≤30%,挥发分V在18%~30%,发热量QDW≥5000kcal/kg,煤粉细度要求控制在8%~15%,实际上,我国当前由于优质煤炭供应紧张且价格较高,许多厂家实际达不到这一要求,由于煤粉燃烧后灰分全部沉落在烧成带的熟料颗粒表面上,造成熟料颗粒表面富硅化,从而改变熟料表层矿物成分,C3S含量下降,C2S含量上升,从而影响熟料质量,当前相应的对策措施,一是适度调整增加干法窑尾分解炉用煤量和降低窑头喷煤量,其比例控制在6:4左右,以增加分解炉中煤灰分与灼烧生料的混合程度,降低窑头煤灰对熟料质量的负面影响;二是采取窑尾分解炉与窑头喂煤质量分别控制,分解炉喂低热值煤,窑头喂高热值煤,可降低劣质煤对窑头熟料质量的不利影响。 二、火焰形状和温度的影响 火焰形状的调节一方面取决于煤粉的热值、灰分、细度和挥发分的大小,另一方面还取决于一次风的风速和风量大小,即窑头燃烧器的规格和性能,调整好窑火焰长度也就是调整好烧成带长度,也即调整控制了熟料在高温烧成带停留时间,火焰形状和长度影响到熟料中C3S矿物的晶粒发育大小和活性。因此,在烧高强优质熟料时,必须调整火焰长度适中,既不拉长火焰使烧成带温度降低,也不缩短火焰使高温部分过于集中,从而烧垮窑皮和耐火砖而不利于窑的安全运转,回转窑内火焰形状粗细必须与窑断面积相适应,要求比较充满近料而不触料,正常形状保持其纵断面为正柳叶形状。 当烧灰分高、热值低的劣质煤时,其一次风风速应适度加大,对于使用多通道喷煤管的窑应增加内、外净风风速和风量,使其火焰形状尽量控制不发散而形成正常火焰。 干法窑窑头火焰温度控制,视窑型大小而异,对于2000t/d以下的窑型一般控制在1650~1850℃之间,对于大型窑如5000t/d以上窑型,火焰温度控制在1750~1950℃的较高范围内比较有利,预分解窑内火焰温度取决于两部分因素:一是煤粉热值、灰分和细度,二是取决于二次风温大小,对于烧劣质煤的厂家提高二次风温尤其重要。对于易烧性差的生料和含碱高的生料,适当提高火焰温度,采用高温烧成有利于熟料质量的提高和碱分的充分挥发可获得低碱熟料。

镁MgO对水泥熟料煅烧的影响

MgO镁对水泥熟料煅烧的影响 (2011-01-04 00:00:00) Mg镁对水泥熟料煅烧的影响 水泥熟料主要成份是CaO、SiO 2、Al 2 O 3 、Fe 2 O 3 等四种化合物,次要成份为MgO、 R 2O、SO 3 等化合物,而其中MgO含量允许达到5%,是次要成份中含量最多的一 种。通常人们认为MgO影响水泥产品的安定性,规定了限制值,但实际上MgO 在一定程度影响着熟料的煅烧,这种情况往往被忽视。现根据国内外的研究成果及工厂生产实践,讨论MgO对熟料煅烧及其产品性能的影响,供有关技术人员参考。 1、水泥原料中镁MgO 水泥生产中,生料中的MgO主要来源于石灰石中的镁质矿物,这些矿物主要以硅酸镁、白云石、菱镁矿、铁白云石等不同类型存在。当石灰石中MgO以硅酸镁形式存在时,可获得均匀分布和细小(1~5μm)的方镁石晶体,而以白云石或菱镁矿形式存在时,易生成粗大(25~30μm)的方镁石晶体。我院曾对不同年代所形成的石灰石中MgO含量对熟料强度的影响进行了测试,发现石灰石中MgO的含量对熟料强度有一定的影响,总的趋势是石灰石中MgO含量越高,则熟料强度越低。根据试验研究,镁质矿物中MgCO 3 的分解温度为660~700℃, 白云石Mg(CO 3) 2 的分解温度为800℃,而石灰石中CaCO 3 分解温度接近900℃。 在水泥熟料生产过程中,MgO较CaO先形成。 2、Mg镁对熟料煅烧的影响 熟料煅烧时,约有2%的MgO和熟料矿物结合成固熔体,此类固熔体甚多,例如 CaO·MgO·SiO 2、2CaO·MgO·SiO 2 、2CaO·MgO·2SiO 2 、3CaO·MgO·2SiO、 7CaO·MgO·2Al 2O 3 、3CaO·MgO·2Al 2 O 3 、MgO·Al 2 O 3 、MgO·Fe 2 O 3 以及C 3 MS 2 等, 此类化合物的稳定温度在1200~1350℃,同时它还可能含有一些微量元素。在温度超过1400℃以上时,MgO的化合物会分解,且从熔融物中结晶出来。当熟料中含有少量细小方镁石晶格的MgO时,它能降低熟料液相生成温度,增加液相数量,降低液相粘度,增加液相表面张力,有利于熟料形成和结粒,也有利于C 3 S的生成,还能改善熟料色泽。粗大方镁石晶体的MgO超过2%时,则易形成方镁石晶体,导致熟料安定性不良。而当氧化镁含量过高时,则易生成大块、结圈和结厚窑皮,以及表面呈液相的熟料颗粒,此类熟料易损坏篦冷机篦板。 3、Mg镁对熟料结粒的影响 3.1 影响熟料结粒的因素 窑内熟料颗粒是在液相(有些资料称熔体)作用下形成的,液相在晶体外形成毛细管桥。液相毛细管桥起到两个作用:一是使颗粒结合在一起,另一作用是

煤对水泥熟料的影响 (2)

煤对窑的影响 在水泥生产过程中,煤不仅作为燃料,而且成为水泥中的一种成分。并且煤质的好坏直接影响水泥熟料的产量、质量以及企业的综合经济效益。那么,掌握煤对窑影响方面的知识是绝对有必要的。 煤对窑内热工制度、熟料的产和质量影响较大的是:煤的发热量、灰分、挥发分、含水量、煤粉的细度以及碱、氯、硫的含量等。 1、煤的发热量(热值)的影响 煤的发热量的高低直接影响到窑内的热工制度,影响窑内温度的高低,进而影响到C3S的形成,影响熟料的质量。而影响热值的主要因素为灰分,灰分过高,热值低。 热值高的煤,在保证熟料质量和产量生产过程中,煤的使用量势必会减少,进而产生的灰分量的比例会减少,对熟料质量及回转窑的稳定运行影响就小。反之,煤使用量的增多,燃烧过程中产生的灰分的比例增加,势必会影响熟料的质量及回转窑的稳定运行(灰分对熟料质量及回转窑稳定运行的影响,将在煤的灰分中做进一步解释)。 2、煤的挥发分的影响 所谓挥发分即将煤隔绝空气加热到900℃左右,煤中的有机质和一部分矿物质就会分解成气体或者液体逸出,再减去煤中的水分。 当煤的挥发分Var<18%时,着火缓慢,形成黑火头过长,燃烧缓慢,降低火焰温度。 当煤的挥发分Var>18%时,由于挥发分会很快的分解燃烧,形成黑火头过短,物料在高温带停留时间短,对熟料的质量不利。当煤的挥发分过高时,在进行烘干和粉磨时,会有一部分挥发分逸出,不但造成热量的浪费,且易发生爆炸事故,同时,挥发分加高的煤有更大的经济效益,用来生产水泥是不经济的。 3、煤的灰分的影响 灰分是煤在彻底燃烧后剩下的残渣。灰分的高低对煤的热值有着直接的影响。 灰分过高会导致煤的热值低,从而使烧成带的温度上不去,火焰发浑,飞沙料增多,窑况不稳,熟料产、质量下降;并且灰分高,产生灰分沉积及窑内液相量过早出现,引起窑内结圈、结蛋,严重影响窑内通风和大窑的安全稳定运行,进而引起篦冷机堆“雪人”,反过来有更严重地影响窑及预热器系统的稳定运行;再者,灰分过高,煤质差,造成相当部分的煤粉未完全燃烧。未完全燃烧的煤粉进入C5旋风筒内及窑尾二次燃烧形成还原气氛和局部高温,造成下料管和上升烟道的结皮堵塞,导致系统阻力的增大,风机抽风量下降,整个

生料的质量控制概要

生料的质量控制 金顶集团流云 摘要:在实际生产过程中,由于原燃料材料成分的变化、各种物料配比的波动、工艺设备的不完善及分析样品缺乏代表性等因素,生料的化学成分波动较大。因此,要及时分析、研究、调整,恢复到目标值范围内。本文简述生料质量的主要控制项目,分析引起生料成分波动的主要原因,提出调整的方法。 关键词:生料质量;成分波动;控制 生产质量控制是生产质量管理不可缺少的一个重要环节。它的作用是根据设计和工艺技术文件的规定,控制生产过程各工序可能出现的异常和波动,使生产处于可控状态。生产过程的质量控制目的是产品性能质量控制,使产品达到所需性能的满足程度,保证生产出符合设计和规范质量要求的产品。 合理而稳定的生料是保证熟料质量和维持正常煅烧操作的前提。全合格的生料应当包括三个方面的内容:合理而稳定的化学成分;合理的细度;合理的配煤。为了获得合格的生料,必须在对各种原燃材料严格控制的情况下加强对生料生产过程的控制,确保配料方案的实现。笔者认为,生料的质量控制一般分三个方面:生料制备过程中的质量控制、出磨生料质量控制;入窑生料质量控制。 1生料质量的主要控制项目 1.1出磨生料质量控制主要项目 (1)碳酸钙滴定值(或氧化钙) 控制生料中碳酸钙(或氧化钙)的主要目的是为了控制生料的石灰饱和系数。通过对其含量的测定,基本上可以判断出生料中石灰石与其他原料的比例。目前常用的方法有二种:测定生料中的碳酸钙滴定值;测定生料中的氧化钙含量。 出磨生料中碳酸钙合格率要求在60%以上。但实际生产中往往波动较大,有时达不到60%,在这情况下,应该分析原因,立即采取有效措施。在日常工作中,搞好原材料的预均化,控制入磨物料的水分,经常抽查入磨物料的下料量等,都是减小生料成分的波动,提高出磨生料合格率的具体措施。 (2)氧化铁 生产过程中对氧化铁的控制,是为了及时调整铁质原料的加入量,稳定生料成分,达到控制熟料铝率的目的。在配料方案确定后,就应力求做到使生料铝率相对稳定,这样才能稳定窑的热工制度,有利于熟料质量的提高。 (3)生料的细度 水泥熟料矿物的形成,基本上靠固相反应进行。对于生料在物理化学性质、均化程度、煅烧温度和时间等条件相同的前提下,固相反应的速度与生料的细度成正比关系,其比表面积越大,颗粒之间的接触面积越大。同时,生料越细,颗粒的表面自由能越大,越利于反应的进行。从理论上说,生料粉磨得越细,对熟料的煅烧也愈有利。但实际生产中,不恰当地提高粉磨细度,会降低磨机产量,增加能耗。研究表明,生料细度超过一定限度(比表面积大于5000cm2/g)对熟料质量的提高并不明显。从经济指标的角度考虑是不合理的。因此在实际生产中,应确定合理的生料细度控制范围。 所谓合理的生料细度应包括这样两个含义:①一定范围的平均细度;②生料细度的均齐性。也就是要控制生料中粗颗粒含量。有资料表明,当生料细度在

煤粉质量对煅烧的影响

煤粉质量对煅烧的影响 一、生产中经常遇到的问题 1.出磨煤粉水分难以控制,合格率90%,虽然提高出磨温度至65~75℃(原来5 5~65℃,出磨水分就很容易控制在1.0%以下),水分有时仍高达5.0%,烧成带温度低且难以控制,窑况不易稳定,副窑皮忽长忽消,造成熟料中黄块较多。 2.黑火头长,窑内发浑,二次风温比原来(1100±50) ℃低50℃左右,造成煤粉燃烧不好,CO浓度高。 3.结后圈、结球,黄心料增多。 4.窑台时产量降低,标准煤耗大幅上升。 二、原因分析 在煤品种的改变时,虽然煤粉的灰分、挥发分和发热量变化不大,但Mad会有较大差别,有的达到8.0%左右,有时甚至更高,给煅烧带来较大困难。煤粉中保持l.0%~1.5%的水分可以促进燃烧,但过量的水分会阻碍煤粉燃烧。煤粉水分每增加1.0%,火焰温度约降低l0~20℃,煤粉水分对火焰温度的影响比灰分约大一倍。 三、采取措施 1. 加强原煤管理,稳定入磨原煤质量 1)原煤最好能定点供应,矿点越少越好,不能过勤更换。 2)加强进厂原煤的监控力度,严格按照公司下达的指标控制进厂原煤质量,尤其是 内水含量高的。应按产地分批、分堆存放,加强原煤化验,为原煤均化提供合理搭配依据。 3)搭建原煤堆棚,做好防雨措施,降低入磨原煤水分,减轻煤磨负担,为降低出磨 煤粉水分创造条件。 4)加强原煤均化。 2. 加强煤磨操作,降低煤粉细度和水分

当煤粉水分较高时,必须用更低的煤粉细度来弥补高水分对火焰燃烧速度带来的影响。特别是煤粉水分高达8.0%左右时,会对煅烧影响很大,必须将入磨温度适当提高,并适当调小细度控制参数(这两项调整均应保证安全和煤粉正常供给)。 3. 加快煤粉燃烧速度、提高火焰温度 3.1提高并稳定二次风温,兼顾二次风量。 1)篦冷机料层太厚时,冷却风很难吹透料层,严重时会造成返风,高温风量减 少,冷风漏入量相应增大,二次风温难以提高。大多说企业都是满负荷生产,熟料冷却能力不够,篦冷机冷却风机应全开,通过调节篦床速度(二段为一段的l.4倍)来控制窑头罩压力在-10~-30Pa,从而稳定二次风量和二次风温。 2)调整燃烧器位置,热态下将燃烧器调整离窑口200mm处。其一是烧成带前移, 有利于提高二次风温。其二是因为距燃烧器喷口较近的窑断面上(0.3d处,d 为窑的直径)射流区域内,轴向速度峰值与二次风之间的速度差最大,一次风卷吸二次风的能力也最强,有利于提高火焰燃烧速度,缩短黑火头。 3)减少系统漏风,特别是加强窑头、窑尾、窑门、篦冷机和三次风管的密封。 4)C1出口O2在1.8%~3.5%,CO<0.15%,在不塌料的情况下,尽可能关小 系统拉风,减少二次风量,压缩火焰长度,提高二次风温。 5)适当加大窑头喂煤量,提高煅烧温度,从而提高二次风温。 3.2调整燃烧器参数,提高燃烧速度 在煤粉水分较大时,可以保持一次风压不变,但将内风阀门开到100%,根据煤质外风调整在50%~l00%之间,煤风管端部与外风管喷嘴端部平齐,将一次风截面积调至最小,一次风量最小,加大高温二次风的用量,提高煤粉的燃烧速度和烧成带温度。 3.3 改变配料方案,改善生料的易烧性

水泥厂对用煤的要求及检验方法

水泥厂对用煤的要求及检验方法 管庆超 煤是水泥的一个重要的燃料,煤质量的好坏,直接影响着水泥熟料的质量,因此对燃煤检验有着严格的标准和要求。我们目前对燃煤的检验项目有水分、粒度、原煤的灰分、挥发分、全硫量和低位发热量。 1﹑应用基水分的测定 1.1 准确称取已破碎到3mm左右的煤样50g,置于预先烘干恒重的称量瓶中,放入105~110℃的干燥箱中烘干20~30min,取出稍冷,放入干燥器中冷却至室温后称量。 1.2 水分的质量百分数按下式计算: G–G1 Wy=――――×100 G 式中:Wy――――应用基煤水分质量百分数,%; G――――烘干前试样质量,g; G1――――烘干后试样质量,g。 2﹑分析基(空气干燥基)水分的测定 2.1 准确称取粒度为0.2mm的空气干燥基煤样1.0±0.1g(准确至0.0001g),置于已恒量的称量瓶中,将称量瓶放于预先鼓风并加热至105~110℃的烘干箱中,在一直鼓风的条件下烟煤干燥1~1.5h,从烘干箱中取出称量瓶,冷却3~5min后,放入干燥气,冷却后称量。 2.2 进行检查性干燥,每次30min,直到连续两次干燥煤样的质量减少不超

过0.0010g或质量增加时为止。在后一种情况下,采用质量增加前一次的质量为计算依据。水分在2.00%以下时,不必进行检查性干燥。 2.3 分析基水分按下式计算: G1-G2 M ad= ------------×100 G 式中:M ad―――空气干燥基水分的质量百分数,%; G――――称取试样的质量,g; G1―――干燥前试样与称量瓶质量,g; G2―――干燥后试样与称量瓶质量,g. 3﹑灰分的测定 3.1 准确称取分析基煤样1.0000g,于已恒重的灰皿中,均匀摊平,放入高温炉中从低温500℃升至815±10℃后保持50分钟,取出冷却3~5min后,放入干燥器中冷却至室温后称量。 3.2 灰分的质量百分数按下式计算: G1-G2 A ad=------------×100 G 式中:A ad―――灰分的质量百分数,%; G―――试样的质量,g; G1―――灼烧后残渣与灰皿重,g; G2―――空灰皿重,g。

相关主题
文本预览
相关文档 最新文档