当前位置:文档之家› 第八章 恒定电流的磁场_6.

第八章 恒定电流的磁场_6.

恒定电流的磁场汇总

潍坊科技学院教案 课程名称:大学物理(一)授课人:郑海燕

19 电流电流密度 电流就是带电粒子(载流子)的定向运动。 正电荷的运动方向规定为电流的方向。电流还可以分为传导电流和运流电流两种类型。传导电流是指在导线中的电流,其载流子在导体上的每个局部区域都是正负抵消的,是电中性的;而运流电流是指裸露的电荷运动,由于电荷是裸露的,它周围有电场存在。 描述电流的物理量主要有两个:电流强度和电流密度。电流强度描述在一个截面上电流的强弱。电流强度定义为单位时间内通过导体中某一截面的电量。如果在dt时间内通过导体某一横截面S的电量 为dq,则通过该截面的电流强度为 国际单位制中,电流强度单位是安培(A)。1A=1C/s。电流强度是标量,电流强度没有严格方向含义。 电流密度矢量j 电流密度j的方向和大小定义如下:在导体中任意一点,j的方向为该点电流的流向,j的大小等于通过该点垂直于电流方向的单位面积的电流强度(即单位时间内通过单位垂面的电量)。 如下图(a)所示,设想在导体中某点垂直于电流方向取一面积元dS,其法向n取作该点电流的方向。 如果通过该面积元的电流为dI,按定义,该点处电流密度为 在导体中各点的j可以有不同的量值和方向,这就构成了一个矢量场,叫做电流场。象电场分布可以用电场线形象描绘一样,电流场也可用电流线形象描绘。所谓电流线是这样一些曲线,其上任意一点的切线方向就是该点j的方向,通过任一垂直截面的电流线的数目与该点j的大小成正比。 电流密度能精确描述电流场中每一点的电流的大小和方向,其描述能力优于电流强度。通常所说的电流分布实际上是指电流密度j的分布,而电流强弱和方向在严格意义上应指电流密度的大小和方向。 如下图所示(b),一个面积元dS的法线方向与电流方向成角,由于通过dS的电流dI与通过面积 元的电流相等,所以应有 (a) (b) 电流密度的定义 若将面积元dS用矢量dS=dS?n表示,其方向取法线方向,则上式可写成

恒定电流的磁场(二)答案

一. 选择题 [ B ]1. 一个动量为p 的电子,沿图示方向入射并能穿过一个宽 度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1 cos . (B) p eBD 1sin . (C) ep BD 1 sin . (D) ep BD 1cos . [ D ]2. A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则 (A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 2 1 ,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 1 . (D) R A ∶R B =2,T A ∶T B =1. [ C ]3. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是: (A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4. 提示: [ B ]4.如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动. 提示:,B p M m F 1 F 2F 3 1 A 2 A 3 A ⅠⅡⅢ I 1 I 2

恒定电流的磁场(一)答案

一.选择题: [D ]1. 载流的圆形线圈(半径a1)与正方形线圈(边长a2) 通有相同电流I.若两个线圈的中心O1、O2处的磁感强度大小相 同,则半径a1与边长a2之比a1∶a2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 参考答案: 1 12a I B μ =) 135 cos 45 (cos 2 4 4 2 2 ? - ? ? ? = a I B π μ [B]2.有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图)的磁感强度B 的大小为 (A) ) ( 2 b a I + π μ .(B) b b a a I+ π ln 2 μ . (C) b b a b I+ π ln 2 μ .(D) ) 2 ( b a I + π μ . 参考答案: 建立如图坐标,取任意x处宽度为dx的电流元 dI’=Idx/a, b b a a I x b a a Idx x b a dI B a+ = - + = - + =??ln 2 ) ( 2 ) ( 2 '0 π μ π μ π μ [D]3. 如图,两根直导线ab和cd沿半径方向被接到一个截面 处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感 强度B 沿图中闭合路径L的积分?? L l B d (A) I0μ.(B) I0 3 1 μ. (C) 4/ I μ.(D) 3/ 2 I μ. 参考答案: 设优弧长L1,电流I1, 劣弧长L2,电流I2 由U bL1c=U bL2c得I1ρL1/S= I2ρL2/S I1/I2=1/2 有I1=I/3, I2=2I/3 故 3 20I L d B μ = ? ? [ B ] 4. 无限长载流空心圆柱导体的内外半径分别 为a、b,电流在导体截面上均匀分布,则空间各处的B 的 大小与场点到圆柱中心轴线的距离r的关系定性地如图所 示.正确的图是 参考答案: 由环路定理I L d B μ = ? ? 当r

第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。 (1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。 解:(1)如图11-2所示,中心O 点到每一边的距离为13 OP h =,BC 边上的电流产生的磁场在O 处的磁感应 强度的大小为 012(cos cos )4πBC I B d μββ=- 00(cos30cos150)4π/3 4πI I h h μ??= -= 方向垂直于纸面向外。 另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即 0033 4π4πBC I I B B h h === 方向垂直于纸面向外。 (2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式 012(cos cos )4πI B d μββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为 01(cos0cos30)4cos60) I B R μ= ?-? π(0(12πI R μ= 031(cos150cos180)4πcos60 I B B R μ?== ?- ?0(12πI R μ= I B 图11–2 图11–1 (a ) A E (b )

第八章-恒定电流的磁场(二)作业标准答案[2010-严非男-新]

一. 选择题 [ C ]1. (基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是: (A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4. 提示:设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为 321,,B B B ,相邻导线相距为 a ,则 a a I a I l I B l I B l I F a a I a I l I B l I B l I F πμπμπμπμπμπμ0 103022122322203020113112111222 ,47222=??? ??-=-==??? ???+=+= 式中3A.I A,2I 1A,I ,1 ,132121=====m l m l 故8/7/21=F F . [ D ]2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22 210πμ. (B) R r I I 22 210μ. (C) r R I I 22 210πμ. (D) 0. 提示:大圆电流在圆心处的磁感应强度为2R I B 1 01μ= ;小圆电流的磁矩为方向垂直纸面朝内,,222r I p m π=所以,小圆 电流受到的磁力矩为 012=?=B p M m [ B ]3.(自测提高4) 一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1 cos -=α. (B) p eBD 1sin -=α. F 1 F 2F 3 1 A 2 A 3 A ⅠⅡⅢ O r R I 1 I 2

磁感应强度B与磁场强度H的区别和联系

磁感应强度B与磁场强度H的区别和联系 给B和H的关系正名,希望读者耐心看完。设想你暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。有一天,你用电流做实验。你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。进一步,你通过力学(如平行电流线,扭转力矩等)的测量,你发现1.长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同2.距离不同的点,“磁场”强度随着距离成反比。这样,你便想要通过力学测量和电流强度定义一个物理量H,2*pi*r*H=I。对形状稍稍推广,你就得到了安培环路定理的一般积分形式。注意这时候不需要用到真空磁导率μ0,因为你只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。现在,你有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。你心满意足,转移了研究兴趣,开始研究带电粒子的受力。对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,你可以测出粒子受的力。你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。这个公式多了个外加因子,不好看。现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。你开始管这个磁导率叫μ,并且定义μ=B/H。其中H是(通过电流)外来的,B是使得粒子偏转的响应。这样,磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。此外,你发现,粒子处于真空中的时候,这个μ是一个与任何你能想到的物理量都无关的常数,这正是真空磁导率。目前你已经很有成就了:你通过得到了一个外磁场H,并在真空环境下,把这个磁场作用于带q电荷的粒子,你测量粒子受力F= qvⅹB,并且把测量力F和速度v得到的B值与测量电流I得到的H值相除,你便得到了真空磁导率。现在你已经知道了,H与B单位的不同,仅仅是由于你最开始研究力学用的单位,和开始研究电荷、电流的单位的不同,导致的一种单位换算。H从I得来,B从F得来,所以看到的是“施H”与“受B”的关系。(实际过程还要复杂些,因为先研究的是电场的情形,然后导出了磁场下的情况,所以你看到的μ0是个漂亮的严格值,而真空介电常数作为另一种线性响应确是一个长长的实验数字)。既然知道了B与H单位不同只是由于电流和牛顿力学导致的,现在你为了简化,将二者单位化为相同单位:B=H;这样你就得到了电磁学里更常用的高斯单位制。如果需要换算,随时添加磁导率即可。你开始进一步研究了。你已经研究了电流产生磁场的效应,以及单个粒子在磁场中的运动。那么,有着大量粒子的各种材料介质,从铁块,到石墨,到玻璃,它们对于磁场的相应是如何呢?现在你通过电流I,把磁场H加到某种材料当中,你所要研究的粒子,不再活在真空,而在材料里活动,它可以是金属里本身自带的电子,也可以是通过外界射束打入的。这都无妨,只需记住现在你要研究的粒子不再在真空,而在介质里。一个粒子受到的力学上的响应,当然是与这个点的总磁场有关。因此,B的意义就变得丰富了,它代表在该点处的总磁场。为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。我们管产生的额外磁场大小叫做M。与磁导

第13章电磁场与麦克斯韦方程组

第13章 电磁场与麦克斯韦方程组 一、基本要求 1.掌握电磁感应定律和楞次定律; 2.掌握简单情况下动生电动势及感生电动势的求解; 3.了解自感和互感,并会计算自感系数和互感系数。 二、基本内容 (一)本章重点和难点: 重点:计算动生电动势及感生电动势。 难点:法拉第电磁感应定律的理解和应用。 (二)知识网络结构图: ???? ??? ????? ???? ? ???? ????????? ?自感与互感计算方法产生原因动生电动势计算方法产生原因感生电动势感应电动势的分类楞次定律法拉第电磁感应定律感应电动势的计算 (三)容易混淆的概念: 1.动生电动势和感生电动势 动生电动势由导体切割磁场线运动引起,受到洛仑兹力即非静电力的作用。当导体做匀 速直线运动洛仑兹力和静电力平衡,就得到了非静电场强公式B v E k ?=,再由电动势定 义式就可得动生电动势计算公式()l d B v l ??= ?ε;感生电动势产生的原因是感生电场(涡

旋电场),变化的磁场激发感生电场,并引起回路中磁通量发生变化,于是得到感生电动势计算公式dt d N m φε-=。 2.自感和互感 自感现象是指当一个线圈中电流发生变化时,其激发的变化磁场引起线圈自身回路的磁通量发生变化,从而在线圈自身产生感应电动势;互感是指空间存在两个相邻线圈,当一个线圈中的电流发生变化时,在周围空间产生变化磁场,从而在另一线圈中产生感应电动势。 (四)主要内容: 1.法拉第电磁感应定律: dt d i φε- = 或:dt d i ψε-= (Ψ为磁通匝或磁链) 2.楞次定律: 当穿过闭合回路所围面积磁通量发生变化时,回路的感应电流产生的磁通量要抵偿引起电磁感应的磁通量的变化;或回路中感应电流总是要使它建立的磁场反抗任何引起电磁感应的变化。楞次定律可以确定感应电流方向。 3.动生电动势和感生电动势: (1)非静电场和动生电动势 非静电场:B v E k ?= 动生电动势:()l d B v l ??=?ε,(沿从低电势到高电势的方向,B v ?) (2)感生电场和感生电动势 变化磁场在周围空间激发感生电场 感生电动势:dt d N m φε-=(感生电场不是保守场,是涡旋电场) 4.自感与互感: (1)自感:线圈中由于自身电流变化而产生感应电动势。 dt dI L L -=ε (其中I L ψ = 为自感系数,仅与回路形状及周围介质有关,与电流无关。) (2)互感:相邻两线圈,一线圈电流变化引起邻近线圈中产生感应电动势。

第11章稳恒磁场

第十一章 稳恒磁场习题 (一) 教材外习题 一、选择题: 1.如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向 (A )向外转90? (B )向里转90? (C )保持图示位置不动 (D )旋转180? (E )不能确定。 ( ) 2 i 的大小相等,其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零? (A )仅在象限Ⅰ (B )仅在象限Ⅱ (C )仅在象限Ⅰ、Ⅲ (D )仅在象限Ⅰ、Ⅳ (E )仅在象限Ⅱ、Ⅳ ( ) 3.哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O ) ( ) (A ) (B ) (C ) (D ) (E ) 4q 的点电荷。此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为: (A )B 1=B 2 (B )B 1=2B 2 (C )B 1= 2 1B 2 (D )B 1=B 2/4 ( ) x B x x B x B x B q q C

5.电源由长直导线1沿平行bc 边方向经过a 点流入一电阻均匀分布的正三角形线框,再由b 点沿cb 方向流出,经长直导线2返回电源(如图),已知直导线上的电流为I ,三角框的 每一边长为l 。若载流导线1、2和三角框在三角框中心O 点产生的磁感应强度分别用1B 、2B 和3B 表示,则O 点的磁感应强度大小 (A )B =0,因为B 1=B 2, B 3=0 (B )B =0,因为021=+B B ,B 3=0 (C )B ≠0,因为虽然021=+B B ,但B 3≠0。 (D )B ≠0,因为虽然B 3=0,但021≠+B B 。 ( ) 6.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )~(E )哪一条曲线表示B -x 的关系? ( ) (A ) (B ) (C ) (D ) (E ) 7.A 、B A 电子的速率是B 电子速率的两倍。设R A 、R B 分别为A 电子与B 电子的轨道半径;T A 、T B 分别为它们各自的 周期。则: (A )R A ∶R B =2, T A ∶T B =2。 (B )R A ∶R B = 2 1 , T A ∶T B =1。 (C )R A ∶R B =1, T A ∶T B = 2 1 。 (D )R A ∶R B =2, T A ∶T B =1。 8.把轻的正方形线圈用细线挂在截流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动。当正方形线圈通以如图所示的电流时线圈将 (A )不动 c x B B x x B x B x B 电流

第十三章电磁感应与电磁波初步

第十三章电磁感应与电磁波初步 1.磁场磁感线 练习与应用 1. 音箱中的扬声器、电话、磁盘、磁卡等生活中的许多器具都利用了磁体的磁性。请选择一个你最熟悉的器具,简述它是怎样利用磁体的磁性来工作的。 2. 日常生活中,磁的应用给我们带来方便。例如:在柜门上安装“门吸”能方便地把柜门关紧;把螺丝刀做成磁性刀头,可以像手一样抓住需要安装的铁螺钉,还能把掉在狭缝中的铁螺钉取出来。请你关注自己的生活,看看还有哪些地方如果应用磁性可以带来方便。写出你的创意,并画出你设计的示意图。 3. 磁的应用非常广泛,不同的人对磁应用的分类也许有不同的方法。请你对磁的应用分类,并每类举一个例子。 4. 通电直导线附近的小磁针如图13.1-13所示,标出导线中的电流方向。 5. 如图13.1-14,当导线环中沿逆时针方向通过电流时,说出小磁针最后静止时N 极的指向。 6. 通电螺线管内部与管口外相比,哪里的磁场比较强?你是根据什么判断的? 7. 为解释地球的磁性,19 世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。在图13.1-15 中,正确表示安培假设中环形电流方向的是哪一个?请简述理由。

2.磁感应强度磁通量 练习与应用 1. 有人根据B =IlF 提出:磁场中某点的磁感应强度B 与通电导线在磁场中所受的磁场力F 成正比,与电流I 和导线长度l 的乘积成反比。这种说法有什么问题? 2. 在匀强磁场中,一根长0.4 m 的通电导线中的电流为20 A,这条导线与磁场方向垂直时,所受的磁场力为0.015 N,求磁感应强度的大小。 3. 如图13.2-8,匀强磁场的磁感应强度B为0.2 T,方向沿x轴的正方向,且线段MN、DC相等,长度为0.4 m,线段NC、EF、MD、NE、CF相等,长度为0.3 m,通过面积SMNCD、SNEFC、SMEFD的磁通量Φ1、Φ2、Φ3 各是多少? 4. 在磁场中放置一条直导线,导线的方向与磁场方向垂直。先后在导线中通入不同的电流,导线所受的力也不一样。图13.2-9中的图像表现的是导线受力的大小F与通过导线的电流I 的关系。A、B各代表一组F、I 的数据。在甲、乙、丙、丁四幅图中,正确的是哪一幅或哪几幅?说明道理 3.电磁感应现象及应用 练习与应用 1. 图13.3-7 所示的匀强磁场中有一个矩形闭合导线框。在下列几种情况下,线框中是否产生感应电流?(1)保持线框平面始终与磁感线垂直,线框在磁场中上下运动(图13.3-7 甲)。 (2)保持线框平面始终与磁感线垂直,线框在磁场中左右运动(图13.3-7 乙)。 (3)线框绕轴线转动(图13.3-7 丙)。

第8章 恒定电流的磁场》复习题

第8章《恒定电流的磁场》复习题 一 填空题: 1. 一根长直载流导线,通过的电流为2A ,在距离其2mm 处的磁感应强度为 。 (70104-?=πμTm/A ) 2. 一根载流圆弧导线,半径1m ,弧所对圆心角6 π,通过的电流为10A ,在圆心处的磁感应强度为 。(70104-?=πμTm/A )答:6106 -?πT 3. 两平行载流导线,导线上的电流为I ,方向相反,两导线之间的距离a ,则在与两导线同平面且与两导线距离相等的点上的磁感应强度大小为 。答: a I πμ02 4. 两平行载流导线,导线上的电流为I ,方向相反,两导线之间的距离a ,则在与两导线同平面且 与其中一导线距离为b 的、两导线之间的点上的磁感应强度大小为 。 答:) (2200b a I b I -+πμπμ 5.在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感应强度大小 为 。答案:R I 40μ 6. 一磁场的磁感应强度为k c j b i a B ++=,则通过一半径为R ,开口向Z 方向的半球壳,表面的 磁通量大小为 Wb 答案:c R 2π 7. 一根很长的圆形螺线管,沿圆周方向的面电流密度为i ,在线圈内部的磁感应强度为 。答案:i 0μ 8. 半径为R 的闭合球面包围一个条形磁铁的一端,此条形磁铁端部的磁感应强度B ,则通过此球面的磁通量 。答案:0 9. 一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,以匀角速度ω绕轴转动,在圆筒内的磁感应强度大小为 。答案: σωμR 0 10. 一根很长的螺线管,总电阻20欧姆,两端连接在12V 的电源上,线圈半径2cm ,线圈匝数200匝/厘米,在线圈内部距离轴线0.01m 处的磁场强度为 。答案:3 108.4-?π T 11. 一个载流直螺线管,直径0.2m ,长度0.2m ,线圈两端加36V 电压,线圈匝数1000, 线圈电阻100欧姆,在螺线管一端轴线中点上的磁感应强度为 。(70104-?=πμTm/A ) 二 单项选择题: 1. 两条长导线相互平行放置于真空中,如图所示,两条导线的电流为I I I ==21,两条导线到P

第13章.电流和磁场补充题

第13章 电流和磁场补充题 一 选择题 1. 如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度[ E ] (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. 2. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:[ D ] (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . 3. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的 磁感强度为[ D ] (A) R 140πμ. (B) R 1 20πμ. (C) 0. (D) R 1 40μ. 4. 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为[ B ] (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) 5. 若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对 称性,则该磁场分布 [ D ] (A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出. (D) 可以用安培环路定理和磁感强度的叠加原理求出. 6. 磁场由沿空心长圆筒形导体的均匀分布的电流产生, 圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系? [ B ] B x O R (D) B x O R (C) B x O R (E)

恒定电流的磁场(一)答案

第八章 恒定电流的磁场(一) 一. 选择题: [ D ]1. 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 参考答案: 1 012a I B μ= )135cos 45(cos 2 442 02?-??? =a I B πμ [B ]2.有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分 布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度B ? 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ. (C) b b a b I +πln 20μ. (D) )2(0b a I +πμ. 参考答案: 建立如图坐标,取任意x 处宽度为dx 的电流元dI ’=Idx/a, b b a a I x b a a Idx x b a dI B a += -+= -+= ?? ln 2) (2)(2' 00 00πμπμπμ [ D ]3. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感 强度B ? 沿图中闭合路径L 的积分??L l B ??d 等于 (A) I 0μ. (B) I 03 1 μ. I O 1 O 2 a 1 a 2 I I a b P x X O I I a b c d 120°

(C) 4/0I μ. (D) 3/20I μ. 参考答案: 设优弧长L 1,电流I 1, 劣弧长L 2,电流I 2 由U bL1c =U bL2c 得 I 1L 1/S= I 2L 2/S I 1/I 2=1/2 有I 1=I/3, I 2=2I/3 故 3 20I L d B μ=?? ρ? [ B ] 4. 无限长载流空心圆柱导体的内外半径分别 为a 、b ,电流在导体截面上均匀分布,则空间各处的B ? 的 大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 参考答案: 由环路定理 I L d B 0μ=?? ρ ? 当rb r I B πμ20= [ D ]5. 限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有 (A) B i 、B e 均与r 成正比. (B) B i 、B e 均与r 成反比. (C) B i 与r 成反比,B e 与r 成正比. (D) B i 与r 成正比,B e 与r 成反比. 参考答案 当r R 时 r I B πμ20= 二. 填空题 1. 均匀磁场的磁感强度B ?与半径为r 的圆形平面的法线n ? 的夹角为 ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成封闭面如图.则通过S 面的磁通量 = -B r 2 cos ___ 参考答案 利用高斯定理d 0S B S =??v v ?得到。 a O B b r (A) O B b r (C) a O B b r (B) a O B b r (D) a n ? B ?α S

物理学教程第11章恒定磁场

一、简单选择题: 1.下列哪位科学家首先发现了电流对小磁针有力的作用:( D ) (A)麦克斯韦(B)牛顿 (C)库仑(D)奥斯特 2.磁场对运动电荷或载流导线有力的作用,下列说法中不正确的是:( B )(A)磁场对运动粒子的作用不能增大粒子的动能; (B)在磁场方向和电流方向一定的情况下,导体所受安培力的方向与载流子种类有关; (C)在磁场方向和电流方向一定的情况下,霍尔电压的正负与载流子的种类有关; (D)磁场对运动电荷的作用力称做洛仑兹力,它与运动电荷的正负、速率以及速度与磁场的方向有关。 3. 运动电荷之间的相互作用是通过什么来实现的:(B) (A)静电场(B)磁场 (C)引力场(D)库仑力 4.在均匀磁场中,放置一个正方形的载流线圈,使其每边受到的磁力的大小都相同的方法有:(B) (A)无论怎么放都可以(B)使线圈的法线与磁场平行(C)使线圈的法线与磁场垂直(D)(B)和(C)两种方法都可以 5.电流之间的相互作用是通过什么来实现的( B ) (A)静电场(B)磁场 (C)引力场(D)库仑力 6.一平面载流线圈置于均匀磁场中,下列说法正确的是:(D)(A)只有正方形的平面载流线圈,外磁场的合力才为零 (B)只有圆形的平面载流线圈,外磁场的合力才为零 (C)任意形状的平面载流线圈,外磁场的合力和力矩一定为零 (D)任意形状的平面载流线圈,外磁场的合力一定为零,但力矩不一定零 7.下列说法不正确的是:( A ) (A)静止电荷在磁场中受到力的作用 (B)静止电荷在电场中受到力的作用 (C)电流在磁场中受到力的作用 (D)运动电荷在磁场中受到力的作用

8.一根长为L ,载流I 的直导线置于均匀磁场B 中,计算安培力大小的公式是 sin F IBL θ=,这个公式中的θ代表: ( B ) (A )直导线L 和磁场B 的夹角 (B )直导线中电流方向和磁场B 的夹角 (C )直导线L 的法线和磁场B 的夹角 (D )因为是直导线和均匀磁场,则可令090θ= 7.磁感强度的单位是:( D ) (A )韦伯 (B )亨利 (C )牛顿/库伦 (D )特斯拉 8.在静止电子附近放置一条载流直导线,则电子在直导线产生的磁场中的运动状态是( D ) (A )向靠近导线方向运动 (B )向远离导线方向运动 (C )沿导线方向运动 (D )静止 9.下列说法正确的是:( B ) (A )磁场中各点的磁感强度不随时间变化,称为均匀磁场 (B )磁场中各点的磁感强度大小和方向都相同,称为均匀磁场 (C )磁场中各点的磁感强度大小和方向都相同,称为稳恒磁场 (D )稳恒磁场中,各点的磁感强度大小一定都相同 10.洛仑兹力可以:( B ) (A )改变运动带电粒子的速率 (B )改变带电运动粒子的动量 (C )对带电运动粒子作功 (D )增加带电运动粒子的动能 11.下列公式不正确的是:( D ) (A )03 d 4π I l r dB r μ?= (B )02 d 4π r I l e dB r μ?= (C )02 d sin 4π I l dB r μθ = (D )02 d sin 4π I l dB r μθ = 12.关于带电粒子在磁场中的运动,说法正确的是:( C ) (A )带电粒子在磁场中运动的回旋半径与粒子速度无关 (B )带电粒子在磁场中运动的回旋周期与粒子速度有关

第八章 恒定电流的磁场(一)

一. 选择题: [ D ]1. 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 [B ]2.有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分 布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度 B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ. (C) b b a b I +πln 20μ. (D) ) 2(0b a I +πμ. [ D ]3. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处 处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿 图中闭合路径L 的积分??L l B d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. 提示

[ B ] 4. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大? (A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域. (E) 最大不止一个. 提示: 加原理判断 磁场和磁感应强度的叠根据无限长直导线产生 [ C ]5. 在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为 (A) 2202R a a I ?πμ (B) 22202R r a a I -?πμ (C) 2 22 02r R a a I -?πμ (D) )(222220a r R a a I -πμ 二. 填空题 1.在匀强磁场B 中,取一半径为R 的圆,圆面的法线n 与B 成60°角,如图所示,则通过以该圆周为边线的如图所示 的任意曲面S 的磁通量 ==???S m S B d Φ221 R B π- 提示: 2. 一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电 流元l I d ,则该电流元在(a ,0,0)点处的磁感强度的大小为 204a I d l πμ 方向为Z 轴负方向 提示: ⅠⅡ ⅢⅣ a R r O O ′ I 任意曲面

电流系统的磁能与磁场的能量

§5-5 电流系统的磁能与磁场的能量 一、N 个载流线圈系统的磁能 1、元过程: 忽略所有线圈的电阻,各线圈0=i I 时记为零能态,各线圈自感和彼此间的互感分别为ij i M L 和。 当第i 个线圈的电流由0渐增到i I 时,感应电动势为 ∑≠--=i k k ik i i i dt dI M dt dI L ε (1) 电源反抗i ε作功 ∑≠+=-='i k k i ik i i i i i i dI I M dI I L dt I A d ε (2) 对N 个线圈,电源作总元功 ∑∑≠+='N i k k i k i ik N i i i i dI I M dI I L A d , (3) )(.k i ik i k ki k i ik ki ik I I d M dI I M dI I M M M =+∴= (),N N i i i ik i k i i k k i dA L I dI M d I I <'=+∑∑ (4) 2、系统静磁能 定义电源所作总功为系统的静磁能,则 ∑∑≠+='=N i k k i k i ik N i i i m I I M I L A W ,22121 (5) 其中首项是N 个线圈的自感磁能,次项是互感磁能。 讨论: (1)上式中指标i 、k 对称,可见W m 与各线圈电流的建立过程无关。 (2)若令i ii L M =,则形式更简洁: ∑=N k i k i ik m I I M W ,21 (6) (3)设k ik k ki m I M I M ==Φ表示第k 个线圈电流的磁场通过第i 个线圈的磁通,

再令 k N k ik N k ki i I M ∑∑=Φ=Φ表示所有线圈通过第i 个线圈的总磁通,则 ∑Φ=N i i i m I W 21 (7) 二、载流线圈在外磁场中的磁能 1、二载流线圈情形: 总磁能: 21122222112 121I I M I L I L W m ++= (8) 互能: 2122112I I I M W m Φ== (9) (9)式的第三项,已将线圈1看作外磁场源。 2、定义:载流线圈在外磁场中的磁能,定义为该线圈与产生外磁场的线圈之间的互能。 3、均匀外磁场中载流线圈和非均匀外磁场中的小载流线圈的磁能: 2m W I =?=?B S m B (10) (与电偶极子在外电场中的静电能W =-?p E 相比,差一负号,为什么?) 4、N 个载流线圈在外磁场中的磁能: ()k m k k k S W I =?∑??B r dS (11) 当外场均匀时,上式简化为: m k k W I ??=?=? ??? ∑B S m B (12) 其中m 是N 个线圈的总磁矩。 三、磁场的能量与能量密度 1、螺绕环磁能: 设螺绕环的横截面为S ,体积为V ,环内磁介质的磁导率为μ,线圈匝数为N ,单位长度匝数为n ,则环内nI B 0μμ=, VI n nI NS m 200μμμμ==Φ,所以自感系数V n L 20μμ=。 螺绕环的磁能)(2121212202nI H VBH V I n LI W m ====μμ

第十一章稳恒电流的磁场一作业答案

第十一章 稳恒电流的磁场(一) 一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220? =R I B 电荷转动形成的电流:π ω ωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 () 8 2,,22135cos 45cos 2 44, 2212 000201 02121ππμπμμ=== -?? ? == a a B B a I a I B a I B o o o o 得 由【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ. 解法: b b a a I r dr a I r r dI dB dr a I dI a b b +===== =???+ln 222dI B B B ,B d B ,2P ,)(dr r P 0000πμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

恒定电流和磁场知识点总结

恒定电流 一、电流:电荷的定向移动行成电流。 1、产生电流的条件:(1)自由电荷;(2)电场; 2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向; 注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A (3)常用单位:毫安mA、微安uA; 二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比; 1、定义式:I=U/R; 2、推论:R=U/I; 3、电阻的国际单位时欧姆,用Ω表示; 三、闭合电路:由电源、导线、用电器、电键组成; 1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示; 2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压; 3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻; 4、电源的电动势等于内、外电压之和; E=U内+U外 U外=RI E=(R+r)I 四、闭合电路的欧姆定律: 闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比; 1、数学表达式:I=E/(R+r) 2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义; 3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路; 五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导; 补充: 1.电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。 R=pl/S(电阻的决定式)P只与导体材料性质有关。R与温度有关。 二极管:单向导电性;正极与电源正极相连。 2.串联特点:①总电压等于各部分电压之和。 ②电流处处相等 ③总电阻等于各部分电阻和 ④总功率等于各部分功率和

相关主题
文本预览
相关文档 最新文档