当前位置:文档之家› 热水锅炉水动力计算程序开发_宋帅兵

热水锅炉水动力计算程序开发_宋帅兵

第三章--螺旋桨基础理论及水动力特性

第三章螺旋桨基础理论及水动力特性 关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。在长期的实践过程中,螺旋桨的形状不断改善。自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。 其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。 虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。至于对环流理论的进一步探讨,将在第十二章中再行介绍。 §3-1 理想推进器理论 一、理想推进器的概念和力学模型 推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。显然推进器的作用力与其所形成的水流情况密切有关。因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。为了使问题简单起见,假定: (1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。 (2)水流速度和压力在盘面上均匀分布。 (3)水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器理论。它可用于螺旋桨、明轮、喷水推进器等,差别仅在于推进器区域内的水流断面的取法不同。例如,对于螺旋桨而言,其水流断面为盘面,对于明轮而言,其水流断面为桨板的浸水板面。 设推进器在无限的静止流体中以速度V A前进,为了获得稳定的流动图案,我们应用运动 260

自然循环热水锅炉水动力计算

自然循环热水锅炉水动力计算例题 A1 锅炉规范 额定供热量Q sup:7.0MW 额定工作压力P: 1.0MPa 回水温度t bac.w:70℃ 供水温度t hot.w:115℃ 锅炉为双锅筒、横置式链条炉,回水进入锅筒后分别进入前墙、后墙、两侧墙和对流管束回路中,两侧水冷壁对称布置,前墙和后墙水冷壁在3.2m标高下覆盖有耐火涂料层,如图A -1所示。 图 A-1 锅炉简图 A2 锅炉结构特性计算 A2.1 前墙回路上升管划分为三个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,第Ⅱ区段为未覆盖有耐火涂料层的水冷壁管,第Ⅲ区段为炉顶水冷壁(图 A-2) A2.2 后墙回路上升管划分为二个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,剩下的受热面作为第Ⅱ区段(图A-3)。

A2.3 侧墙水冷壁回路上升管不分段(图A-4) A2.4 对流管束回路不分段,循环高度取为对流管束回路的平均循环高度,并设对 流管束高温区为上升区域(共7排),低温区为下降区(共6排)。对流管束共有347根,相应的上升管区域根数为191根,下降管区域根数为156根(图A-5)。 对流管束总的流通截面积A o 为: A o =347×0.785×0.0442 = 0.5274 m 2 下降管区域流通截面积A dc 为 : A dc =156×0.785×0.0442 = 0.2371 m 2 下降管区域流通截面积与对流管束总的流通截面积比A dc / A o 为: 4500=5274 02371 0=...o dc A A 其值在推荐值(0.44—0.48)的范围内。 图A-2 前墙水冷壁回路 图A-3 后墙水冷壁回路

锅炉耗水量计算

§2 锅炉基本特性的表示 为了区别各类锅炉构造、燃用燃料、燃烧方式、容量大小、参数高低以及运行经济性等特点,经常用到如下参数: 一、锅炉额定出力 锅炉额定出力是指锅炉在额定参数(压力、温度)和保证一定效率下的最大连续出力。对于蒸汽锅炉,叫额定蒸发量,单位为吨/小时;对于热水锅炉,叫额定产热量。单位为MW(老单位为万大卡/小时)。 产热量与蒸发量之间的关系: Q=D(iq-igs)×1000 千焦/小时 式中:D----锅炉蒸发量,吨/小时 iq----蒸汽焓,千焦/公斤 igs----锅炉给水焓,千焦/公斤 对于热水锅炉: Q=G(irs “-irs…)×1000 千焦/小时 式中:G----热水锅炉循环水量,吨/小时 irs “---锅炉出水焓,千焦/公斤 irs …---锅炉进水焓,千焦/公斤 注:1千卡(kcal)=4.1868千焦(KJ) 二、蒸汽(或热水)参数 锅炉产生蒸汽的参数,是指锅炉出口处蒸汽的额定压力(表压)和温度。对生产饱和蒸汽的锅炉来说,一般只标明蒸汽压力;对生产过热蒸汽的锅炉,则需标明压力和过热蒸汽温度;对热水锅炉来说,则需标明出水压力和温度。 工业锅炉的容量、参数,既要满足生产工艺上对蒸汽的要求,又要便于锅炉房的设计,

锅炉配套设备的供应以及锅炉本身的标准化,因而要求有一定的锅炉参数系列。见 GB1921-88《工业蒸汽锅炉参数系列》及GB3166-88《热水锅炉参数系列》GB1921-88《工业蒸汽锅炉参数系列》 额定蒸发量 t/h 额定出口蒸汽压力MPa (表压) 0.4 0.7 1.0 1.25 1.6 2.5 额定出口蒸汽温度℃ 饱和饱和饱和饱和250 350 饱和350 饱和350 400 0.1 ★ 0.2 ★ 0.5 ★★ 1 ★★★ 2 ★★★★ 4 ★★★★★ 6 ★★★★★★★ 8 ★★★★★★★ 10 ★★★★★★★★★ 15 ★★★★★★★★ 20 ★★★★★★★ 35 ★★★★★★ 65 ★★ 本表中的额定蒸发量,对于<6t/h的饱和蒸汽锅炉是20℃给水温度下锅炉额定蒸发量,对

供热燃气热水锅炉选型方案说明

供热燃气热水锅炉选型方案说明 天水成纪房地产开发公司拟对已建(分路口小区),供热采暖系统进行改造,经对小区现场实地勘察,以及和建设方对采暖问题的相关探讨,现将供热设备选型的基本参数及热力数据提供如下: 一.供热采暖的基本参数 1.供热总面积:70000m2 2.采暖形式均为地板辐射式散热 3.现有供热设备为地源热泵机组 4.单独为20000m2(两栋高层),采用燃气热水锅炉供热的可行性方案。 二.采暖热负荷的概算 采用面积热指标法对采暖热负荷进行计算,按下式进行 Q=q i F×10-3 根据《采暖通风与空气调节设计规范》GBJ19及《城市热力网设计规范》CJJ34,按当地最大热指标取值为75W/m2 的理论计算值。公式中: F—建筑面积(m2) Q—建筑物采暖设计热负荷(KW), q i—建筑物采暖面积热负荷(W/ m2) 1.总热功率:5250KW=5.25MW(取值5.6MW) 2.总耗热量:450×104 Kcal (65Kcal/m2.C0)

3.热源条件:燃气工业热水锅炉 4.供热型式;由锅炉房提供热源通过二次换热系统,为小区楼房输送地暖供热。 三.锅炉房水循环量理论计算值(G) ?t/h G=0.86?K?Q C?[ tg?th] 式中 Q————锅炉额定热功率 K————管网散热损失系数,取1.05 C————管网热水的平均比热容,kJ/Kg?0c tg————热水供水温度550C(地暖) th————热水回水温度450C(地暖) 代入数据计算值为:G=337m3/h 11.小区供热形式为地暖系统,属低温大流量辐射供热,供热锅炉房循环水量比传统散热器采暖系统要大,按照小区楼房分布位置及楼层高度参数,通过二次换热系统采取分区供热型式,能够满足小区整体供热质量和效果。 2.供热系统阻力由沿程压力损失,局部压力损失及设备内阻等因素决定,以输送管道规格及配件等数据计算确定。在循环水泵选型时综合考虑。 3.二次换热机组在循环水泵选型时应综合考虑上述流量,管道系统阻力及扬程的设计参数。 四.燃气热水锅炉选型 1.为保证小区采暖质量,综合考虑地暖系统的实际耗热

非线性水动力导数的数值计算与研究

第41卷 第1期2017年2月 武汉理工大学学报(交通科学与工程版) Journal of W uhan U niversity of Technology (T ransportation Science & Engineering) Vol. 41 No. 1 Feb.2016 非线性水动力导数的数值计算与研究& 赵小仨u徐海祥1>2) (高性能船舶技术教育部重点实验室1:1武汉430063)(武汉理工大学交通学院2)武汉430063)摘要:针对船舶的非线性运动难以界定和非线性运动难以预报的问题,以供应船为研究对象,采用 C F D商用软件F L U E N T,结合动网格技术对大振幅平面运动机构试验进行数值模拟,通过对比不 同工况的流场压力云图,分析得出供应船水动力达到非线性的振幅范围.设计供应船非线性运动的试验方案,分别模拟不同频率时的大漂角斜航运动及大振幅的纯纵荡、纯横荡、纯首摇、组合运 动,拟合得到接近零频率的非线性水动力导数. 关键词:非线性水动力;大振幅P M M试验;数值计算;供应船 中图法分类号:U661. 33 doi:10. 3963/j. issn. 2095-3844. 2017. 01. 014 〇引言 船舶操纵性与船舶航行安全紧密相关,是重 要的水动力性能之一.近些年,国际海事组织(in- ternational m aritim e organization, IM O)前后颁布了 A. 751(18)和MSC. 137(76)号决议,针对船 舶操纵性的问题提出了明确的要求,并建议各国 政府机构按要求执行.SIM M A N2008和SIM- M AN 2014 的研讨会,评估T C F D(co m p u tatio n- al fluid dynam ics, C F D)方法预报船舶操纵性的 能力?第 25 届 IT T C(international tow ing tank conference,IT T C)操纵会议对现有的船舶操纵性预报方法做了总结.总之,船舶操纵性能越来越 受到造船界的重视[>3]. 水动力导数对船舶操纵性的预报至关重要.目前,通过平面运动机构试验(planar motion mechanism test,PM M)确定船舶水动力导数是最可靠的方法之一.从SIM M AN2008发布了针 对三个标准船模进行的P M M试验的实验数据以 来,国内外学者开始对C F D模拟P M M试验进行 探究?T u rnock等[4_12]用C F D软件模拟小振幅P M M试验,求取线性水动力导数;Toxopeus 等?^建立非线性水动力模型,模拟大振幅 P M M试验,求取非线性水动力导数. 虽然许多学者对数值模拟P M M试验做了大 量研究工作,但是迄今没有一个定量的标准来判断船模的运动是否达到非线性范畴,相关文章也 较少.评判船舶的运动是否达到非线性,不仅取决 于运动参数,还与船型等因素有关.文中将以供应 船为研究对象[17],通过数值模拟船模不同运动幅 值的P M M试验,分析出供应船水动力达到非线性的运动幅值范围.在此基础上,设计试验工况,计算零频率附近的非线性水动力导数. 1数学模型 研究船舶在大振幅下的操纵运动,用线性水 动力模型很难准确的表达船舶所受到的水动力,为了更准确的描述船舶的运动,须考虑运动状态 的非线性项[18].根据经验,在粘性类流体动力和力矩的泰勒级数展开式中保留至三阶项,对描述 船舶在常速域中的运动已足够精确. 1)流体惯性力(矩 收稿日期:2016-12-14 赵小仨(1989—):女,工学硕士,实验员,主要研究领域为船舶水动力研究 国家自然科学基金项目(61301279, 51479158)、中央高校基本科研业务费专项资金项目(163102006)资助

供热计算

六、城市供热工程规划 (一) 城市热负荷计算 1.计算法 ①采暖热负荷计算 Q=q ? A ? 10-3 (6-11) 式中,Q 为采暖热负荷(MW),q 为采暖热指标(W/m 2,取60?67W/m 2 ),A 为采暖建筑 面积(m 2)。 ②通风热负荷计算 Q T =KQn (6-12) 式中,Q T 为通风热负荷(MW) , K 为加热系数(一般取0.3?0.5), Qn 为采暖热负荷(MW)。 ③生活热水热负荷计算 Qw=Kq w F (6-13) 式中,Qw 为生活热水热负荷(W) ,K 为小时变化系数,q w 为平均热水热负荷指标(W/m 2), F 为总用地面积(m 2 )。当住宅无热水供应、仅向公建供应热水时, q w 取2.5?3W/m 2 ;当住 宅供应洗浴用热水时,q w 取15?20W/m 2 。 ④空调冷负荷计算 Qc= q c A10-3 (6-14) 式中,Qc 为空调冷负荷(MW) ,3为修正系数,q c 为冷负荷指标(一般为70?90W/m 2 ), A 为建筑面积(m 2)。对不同建筑而言,3的值不同,详见表 表6-50城市建筑冷负荷指标 6-6。 注:当建筑面积<5000m 2时,取上限;建筑面积 >10000m 2 时,取下限。 ⑤生产工艺热负荷计算 对规划的工厂可采用设计热负荷资料或根据相同企业的实际热负荷资料进行估算。 该项 热负荷通常应由工艺设计人员提供。 ⑥供热总负荷计算 将上述各类负荷的计算结果相加, 进行适当的校核处理后即得供热总负荷, 但总负荷中 的采暖、通风热负荷与空调冷负荷实际上是同一类负荷, 在相加时应取两者中较大的一个进 行计算。 2.概算指标法

锅炉毕设文献翻译

自然循环热水锅炉水动力回路分析法 摘要:水动力计算都依据《热水锅炉水动力计算方法》,不足的是这种方法不能准确确定每根单管的工质流量,且不能准确确定工作点。为了避免其不确定性,研究得出了一种数值水动力计算方法即水动力回路分析法,简称回路分析法。该方法考虑了各种因素对锅炉本体每根管内工质流量的影响,在其热负荷、结构参数和工质流动阻力系数给定的条件下,可以准确计算出每根单管内的工质流量。在相同的参数条件下,分别用标准法和回路分析法对某单一循环回路的水动力特性进行计算,计算结果验证了水动力回路分析法的正确性。然后分别用标准法和回路分析法对一台自然循环热水锅炉的水动力特性进行计算,结果表明水动力回路分析法更准确并可接受。 关键词:热水锅炉;水动力;回路分析法 引言: 由于自然循环热水锅炉的大容量和对于断电保护、给水质量以及运行水平的低要求,它已经在中国广泛应用[1]。然而,在上升管和下降管中工质的密度差过小可能会导致自然循环有效压力较低,如果结构不合理,将会产生爆管。因此,在自然循环热水锅炉设计中,如何确定流动工质的安全速度和避免爆管导致受热面过冷沸腾是非常重要的。 在中国早期,有很多研究者致力于关于自然循环热水锅炉水动力计算的研究,一些人提出了对于几个简单循环回路和某些复杂循环回路的水动力计算方法,但是大多数方法只适用于简单回路。西安交通大学的朱教授提出了一种应用计算机流体力学分析的方法,他将流动工质的特点和使用一种两端参考作为主动解决方法的直流循环原则做了比较。这种方法的优势在于解决过程的方便性,但是对于复杂循环的解决过程非常复杂[2]。自从上世纪七十年代,对于管流分布热力学模型的研究显著增多[3-8]。 目前,水动力计算方法使用“热水锅炉水动力计算法”[9](以下简称一般方法),它提供了保证循环安全的一般方法。该方法采用图解的方式确定介质的工作点,这是非常准确和高效的。在解决整个问题时用到一些假设。 本文的目的是提供一种新的水动力数值计算方法,简称水动力回路分析法,即回路分析法。本文的研究内容主要包括基本模型、基本原理、基本

常用热力单位换算表

常用热力单位换算表 一、热量单位换算 1、常用热量单位介绍 A、焦耳(J)、千焦(KJ)、吉焦(GJ),工程计算广为采用,国际单位制。热力计算、热计量、热量化验等实际操作中常见,国家标准及图表、线图查询等规范性技术文件中主要表达的单位。但是,其他导出单位及工程习惯相互交织,使得这种单位在今天热力计算中不是很方便。 B、瓦特(W)、千瓦(KW)、兆瓦(MW),工程导出单位,是供热工程常用单位,如热水锅炉热容量:7MW、14MW、29MW、56MW...等,习惯上常说到的10t、20t、40t、80t...等锅炉,相当于同类容量蒸汽锅炉的设计出力.工程上热水锅炉和换热站热计量仪表、暖通供热设计计算、估算、供热指标等,广泛采用。 C、卡(car)、千卡(Kcal)...,已经淘汰的热量单位,但是工程中还在使用,特别是大量的技术书籍,例如煤的标准发热量7000Kcal。 2、基本计算公式 1W=0.86Kcal,1KW=860Kcal,1Kcal=1.163W; 1t饱和蒸汽=0.7MW=700KW=2.5GJ=60万Kcal; 1kg标煤=7000Kcal=29300KJ=29.3MJ=0.0293GJ=8141W=8.141KW; 1GJ=1000MJ;1MJ=1000KJ;1KJ=1000J 1Kcal=4.1868KJ 1W=3.6J(热工当量,不是物理关系,但热力计算常用)

4、制冷机热量换算 1美国冷吨=3024千卡/小时(kcal/h)=3.517千瓦(KW) 1日本冷吨=3320千卡/小时(kcal/h)=3.861千瓦(KW) 1冷吨就是使1吨0℃的水在24小时内变为0℃的冰所需要的制冷量。) 1马力(或1匹马功率)=735.5瓦(W)=0.7355千瓦(KW) 1千卡/小时(kcal/h)=1.163瓦(W) 二、压力单位换算 1、1Mpa=1000Kpa;1Kpa=1000pa 2、1标准大气压=0.1Mp=1标准大气压 1标准大气压=1公斤压力=100Kpa=1bar 1mmHg = 13.6mmH20 = 133.32 Pa(帕) 1mmH20=10Pa(帕) 1KPa=1000Pa=100mmH20(毫米水柱) 1bar=1000mbar 1mbar=0.1kpa=100pa

锅炉英文术语

锅炉boiler 锅炉机组boiler unit 固定式锅炉stationary boiler 蒸汽锅炉steam boiler 电站锅炉power station boiler 工业锅炉industrial boiler 生活锅炉domestic boiler 热水锅炉hot water boiler 船用锅炉marine boiler 快装锅炉package boiler 组装锅炉shop-assembled boiler 散装锅炉field-assembled boiler 常压热水锅炉atmospheric pressure hot water boiler 低压锅炉low pressure boiler 中压锅炉medium pressure boiler 高压锅炉high pressure boiler 超高压锅炉superhigh pressure boiler 亚临界压力锅炉subcritical pressure boiler 超临界压力锅炉supercritical pressure boiler 超超临界锅炉ultra supercritical boiler 自然循环锅炉natural circulation boiler 强制循环锅炉forced circulation boiler 直流锅炉once-through boiler 复合循环锅炉combined circulation boiler 低循环倍率锅炉low circulation boiler 火管锅炉fire tube boiler 水管锅炉water tube boiler 固体燃料锅炉solid-fuel fired boiler 液体燃料锅炉liquid-fuel fired boiler 气体燃料锅炉gas-fuel fired boiler 余热锅炉exhaust heat boiler 余热锅炉(HRSG) 电热锅炉electric boiler 锅壳式锅炉shell boiler 水火管锅壳式锅炉water-fire tube shell boiler 卧式内燃锅炉horizontal internal-combustion boiler 错列布置管束staggered bank 顺列布置管束in-line bank 对流烟道convection pass 并联烟道parallel gas passes 风道air duct 炉膛(燃烧室)furnace

水动力计算

本计算按《热水锅炉水动力计算方法》进行 本锅炉只对省煤器及其给水管道(水泵后)进行水动力计算 1.省煤器的阻力计算△H 1 1.1由径d n =50mm=0.05m,每道管强度l 1=1m,共21根,全长l=21m 。180°弯 头20个 1.2省煤器管子水流速W fw =0.304m/s(热力计算提供) 1.3 管内水平温度t av =79.5℃(热力计算担供) 1.4雷诺数 R e =ρW fw μ n d =41.6×103 式中ρ水密度,查表972.3kg/m 3 μ水动力粘度系数355×10-6Pa ?s d n 为0.05m 1.5沿程摩擦阻力系数λ(按4000<R e <350 d n /k=2187.5×103) λ= 2 71.341? ?? ? ? R d L n g =0.022 式中R 管子粗糙度若d n 取mm,K 值为0.08mm. 1.6 180°弯头向阻力系数每个ζ 10 =2.2 ζ1=ζ 10 ZO=44 集箱进出口局部阻力系数ζ2=2×(1.1+0.7)=3.6 1.7水在省煤器管内流动阻力 △H 1=(ρζζλ?++Z w d l fw n 2 21)2=2553.7 Pa 2.进水管及其附属管件阀门的阻力△H 2

进水管中的阀门止回阀(ζ v1 =2)2个,截止阀或闸阀(ζ v2 =0.25)3个。 管长按L=10m, λ取0.022 (d n =50mm=0.05m) △H 2=(ρζζλ?++Z w Z d l fw V V n 2 21)3=411.1 Pa 3.水泵至锅筒入水口的总阻力△H △H=K (△H 1+△H 2)=3557.8 P a =0.036 MPa K 流量系数取1.2 4.选用给水泵 型号 DG6-25×6 (配Y13ZS2-2 电机N=7.5KW ) Q=3.75 m 3/h H=145~153m(1.42~15Mpa) 介质(水)动力计算书(汇总表)

锅炉供热量计算

新建铁路贵阳至广州客运专线(贵州段)GGTJ-2标段 都匀东制梁场 蒸汽养护锅炉供热量计算 编制: 审核: 审批: 中铁隧道集团有限公司都匀东制梁场 二0一0年十二月

关于梁场蒸汽养护锅炉供热量的计算 1.计算目的 为加快梁场生产速度,加快梁片预制的节奏、缩短施工周期同时保证产品质量以及相关的技术要求,拆模前采用养护罩形式进行蒸汽养护从而需对供热设备进行供热量计算是否满足施工要求。 2、计算依据 箱梁的施工技术要求以及锅炉、蒸养罩、蒸养管道和监测仪器等养护设备的特点。 供热设备—DZL4-1.25-AII型4t燃煤锅炉设计说明书。 3、计算过程 单榀箱梁所用蒸汽量计算如下: W = Q /(I × H) 其中:Q----计算所需总热量(KJ/h) I----在一定压力下蒸汽的含热量(KJ/kg) H----有效利用系数 所需总热量的计算:Q = 3.6×∑ F×K×(Tn – Ta)×ω 其中:F----围护结构的表面积 F = 7.2×5×2+5×34×2+7.2×34=656.8m2 K----围护结构的传热系数,取12.5 Tn取40℃,Ta取6℃,ω取2.6 代入各值得: Q=3.6×656.8×12.5×40×2.6=3073824 KJ/h 在一定压力下蒸汽的含热量(KJ/kg)I取2644 KJ/kg;

有效利用系数H取0.45 所以养护单孔梁需要蒸汽用量: W = Q /(I × H)= 3073824/(2644×0.45)≈2583.5 Kg/h 因制梁场设计生产能力为1孔/天,则需要总蒸汽养护量取1孔/天来考虑即为: W总= 2583.5 Kg/h 即: 梁场配备一台4tDZL4-1.25-AII型锅炉,蒸养时采用蒸养棚罩,蒸养棚罩钢架采用钢结构,满足蒸汽养护要求。

锅炉原理复试题.doc

填空20 1. 煤的工业分析成分:水分、挥发份、固定碳和灰 2. 影响制粉系统和磨煤机选择的是煤的性和性 3. 式空气预热器比式空气预热器低温腐蚀轻 4. 电站锅炉的燃烧方式:层燃烧、煤粉燃烧、流化床燃烧。 5. 灰熔融性的三个温度:变形温度、软化温度、流动温度。 6. 直流锅炉的启动系统分为: 式、式 7. 什么是直流锅炉水动力静态不稳、动态不稳(算名词解释吧) 8. (名词解释)可用率: 连续运行小时数: 简答80 1. 煤粉完全燃烧的条件:10 2. 影响锅炉效率的因素,如何提高锅炉经济性15 3. 直流射流偏斜的原因,对燃烧的影响15 4. 过热气温调节方法,原理15 5. 直流锅炉特点:汽水系统中不设置锅筒,工质一次性地通过省煤器、水冷器、过热器。 6. 影响蒸汽品质的因素,净化措施15 1、过量空气系数 2、碳、水分、挥发分对煤燃烧的影响 3、煤分细度 4、煤的化学分析 5、烟气侧热平衡方程,分析影响因素 1过量空气系数 2高低位发热 3汽水系统咽气系统的叙述 4热偏差 5理论空气实际空气 锅炉原理复试笔试(保定)(一共11道简答题) 1 煤的化学分析,以及煤中水分和灰分对燃烧的影响 2 什么是煤粉细度,以及均匀性指数对锅炉运行的影响 3 什么叫过量空气系数,当过量空气系数增大是炉膛出口烟气温度如何变化 4 烟气侧对流热平衡方程,以及强化对流的措施 5 气液两相流的流型有哪些,以及哪种流型对管壁运行不造成危害,哪种流型对管壁运行有危害 6 什么叫自然循环 7 什么叫热偏差,以及减少热偏差的结构措施 8 蒸汽带盐对锅炉运行的影响 面试问题 一开始老师问3门专业基础课的内容,估计是因为同学们都忘的差不多了,后来就直接提问考的专业基础课和专业课了,都是基础的东西,基本概念,比如热力学第二定律,兰贝特定律,基尔霍夫定律,烟气中具有辐射能力的物质哪个辐射能力最强等等,也不排除老师给你出即兴发挥的题,比如老师问了我如何测得一个木板的导热系数.

基于CFD的三体船水动力性能计算

基于CFD的三体船水动力性能计算 近年来,随着人们对海洋资源开发的日益迫切以及国际间领海争议的日益激烈,人们对海上运输工具——船舶提出了更高的要求。高性能船舶也越来越备受关注。 与此同时,由于计算机技术的飞速发展,计算流体力学(Computational Fluid Dynamics, CFD)发展迅速。CFD由于其设计周期短、成本低、精度高等优点,近年来已逐渐成为科研人员设计新船型的主要方法。 本文基于CFD分析软件STAR-CCM+对不同构型的三体船进行了静水阻力、静水航态、波浪总阻力、零航速横摇等水动力性能的计算研究。首先,本文对不同构型的三体船进行了0.130<Fr<0.805范围内静水阻力和静水航态的数值计算。 针对不同构型的三体船,对比分析了其试验数据和数值模拟的结果,并给出了相对误差。当三体船周边出现喷溅现象时,相对误差较大;当三体船的体积傅汝德数Fr▽较高时,其航态与排水航行状态相比发生了明显的变化。 当计算工况的体积傅汝德数Fr▽较高时,应该放开三体船相应的自由度。随后,本文对不同构型的三体船进行了遭遇频率4.0rad/s<ωe<15.7rad/s 范围内波浪总阻力的数值计算。 相同航速的情况下,在某个遭遇频率范围内三体船的波浪总阻力相对较大,低于或高于这个频率范围的波浪总阻力大致相等。波浪总阻力成分的分析结果表明:造成不同构型的波浪总阻力曲线差异的主要原因是不同构型三体船间的“压阻力”曲线的变化情况不一致;遭遇频率较大或者较小时,各阻力成分(“摩擦阻力”和“压阻力”)的变化幅值均较小,即各阻力成分的数值相对稳定。

最后,本文对不同构型的三体船进行了2.5rad/s<ωe<5.6rad/s范围内零航速横摇运动的数值计算研究。数值计算结果表明:当遭遇频率频率较小时,随着遭遇频率的减小横摇运动响应因子RAO趋于某一个常数。 当遭遇频率较大时,随着遭遇频率的增大,横摇运动响应因子RAO先增大后减小;随着遭遇频率的增大,三体船的横摇运动响应因子RAO与三体船的横向受力有相同的趋势,而且其曲线对应的峰值点和拐点相同。

关于电站锅炉几种热力计算标准的研究

第18卷第1期现 代 电 力 Vo l.18 N o.1 2001年2月 M ODER N EL ECT R IC PO WER Feb .2001 文章编号:1007-2322(2001)01-0008-07 关于电站锅炉几种热力计算标准的研究 李 伟 王雅勤 (华北电力大学(北京)动能工程系,北京 102206) 摘 要:简要分析了原苏联1957年热力计算标准、1973年热力计算标准和美国CE 锅炉性能设计标准的区别,依据三种标准编制了计算程序,对HG -410/100-9型、HG-670/140-9型和DG-1025/177-2型锅炉分别进行计算,通过对计算结果的比较,初步总结了三种标准对锅炉不同容量的适用性,该项研究对锅炉工程技术人员有一定的参考价值。 关键词:锅炉;热力计算;计算标准;比较;适用性分类号:T K223.21 文献标识码:A 收稿日期:2000-12-20 作者简介:李伟,1977年生,女,硕士,主要从事世界各国电站锅炉热力计算方法的研究;王雅勤,1938年生,女,教授,主要从事锅炉整体CA D 系统的开发与应用。 锅炉热力计算是锅炉整体计算的核心。锅炉水动力计算、受压元件强度计算、通风阻力计算、炉墙热力计算、管壁温度计算、制粉系统热力计算、空气动力计算都要在锅炉热力计算的基础上才能进行。在锅炉设计、运行、技术改造的各个阶段,也都要用到热力计算的数据。然而,我国目前尚没有自己的电站锅炉行业的热力计算标准,锅炉的设计和校核计算大多采用原苏联的标准,其中包括1957年标准和1973年标准。近年来,引进了一些国外的标准,如哈尔滨锅炉厂引进CE 技术、北京锅炉厂引进巴威公司的技术等。 由于时间及技术背景的差异,这些标准的热力计算方法不尽相同,尤其是美国CE 标准和苏联标准的差别较大。作者根据苏联1957年标准、1973年标准及美国CE 标准编制了计算程序,对H G-410/100-9型、HG-670/140-9型、DG-1025/177-2型锅炉分别进行计算,通过对计算结果的比较,初步总结了这三种标准对不同的锅炉容量的适用性,这对于锅炉工程技术人员选用标准有一定的参考价值。 1 前苏联1957年与1973年标准的区别 1.1 炉内传热计算 (1)炉膛出口烟温

热水锅炉参数设计

热水锅炉参数系列 GB 3166-88 本标准适用于生活用、工业用固定式热水锅炉。 1.热水锅炉的基本参数应符舍下表的规定。 ━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━│额定出口/进口水温度℃ 额定热功率MW├────────┬─────┬─────┬─────┬───│ 95/70 │ 115/70 │ 130/70 │ 150/90 │180/110 ├────────┴─────┴─────┴─────┴─── │允许工作压力MPa(表压) ──────┼──┬──┬──┬──┬──┬──┬──┬──┬──┬───│0.4 │0.7 │1.0 │0.7 │1.0 │1.0 │1.25│1.25│1.6 │2.5 0.1 │△│││││││││ 0.2 │△│││││││││ 0.35 │△│△││││││││ 0.7 │△│△││△││││││ 1.4 │△│△││△││││││ 2.8 │△│△│△│△│△│△│△│△││ 4.2 ││△│△│△│△│△│△│△││ 7.0 ││△│△│△│△│△│△│△││ 10.5 │││││△││△│△││ 14.0 │││││△││△│△│△│ 29.0 │││││││△│△│△│△ 46.0 │││││││││△│△ 58.0 │││││││││△│△ 116.0 │││││││││△│△ ━━━━━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━━ 附加说明 本标准由中华人民共和国机械工业部提出。 本标准由上海工业锅炉研究所归口和负责起草。 本标准主要起草人田辉鑫 自本标准实施之日起,原国家标准GB3166-82《热水锅炉参数系列》作废。 GB3166-88《热水锅炉参数系列》编制说明 1. GB3166-82《热水锅炉参数系列》是我们工业锅炉行业的基础标准之一,涉及面广,为贯彻国发(1984)28号文《国务院关于在我国统一实行法定计量单位的命令》要求。采用法定计量单位制,故需修定本标准。本标准的修定是按机械工业部1986年标准制、修订计划中86460111项目要求进行的。修订时,根据原标准几年来执行的情况,在原标准的基础上,作了适当的调整和补充。 2. 根据 GB3100—82《国际单位制及其应用》的规定,压力单位应用帕[斯卡],单位符号为Pa,或帕的十进倍数,本标准中采用兆帕(MPa),即 lMPa=106Pa,这样1MPa=10.197kgf /cm2。因为锅炉压力参数要在锅炉铭牌中表示,为使锅炉铭牌不致出现过多的小数,本标准中的压力参数等级定为0.4;0.7;1.0;1.25,1.6;2.5六档,相当于4.079;7.138;10.197; 12.746;16.315;25.493 kgf/cm2,与《工业蒸汽锅炉参数系列》一致。除1.25 MPa压力级比原标准中13 kgf/cm2降低2%以外,其余都比原标准中相应的压力等级提高2%。当该标准实施后,锅炉的强度计算应按此压力参数进行计算。 3. 将原标准中的额定供热量改为额定热功率,单位用 MW表示,不用供热量单位MJ/h

锅炉用水计算

锅炉用水计算 (1)锅炉房用水的组成 通常来说,锅炉房用水主要分为生产用水、生活用水及煤加湿水三类,其中生产用水以循环水为主,主要为锅炉热力网循环系统补水、引风机轴承冷却补水、脱硫除尘用水、离子交换器树脂再生用水、定期排污冷却用水和冲渣用水等。 (2)生产用水的核算 ①锅炉热力网循环系统补水 锅炉分为蒸汽锅炉和热水锅炉两种。 蒸汽锅炉的热力网补水很好理解。如:1t/h的蒸汽锅炉,就是1t/h的水产生1t/h的蒸汽,所以用水量很容易计算。环评中,我认为可以忽略“锅炉排污量并扣除凝结水量”这部分水量,直接用产汽量来估算。 这里主要说一下热水锅炉的循环系统补水计算方法。 要知道补水量,先要知道循环用水的量。热水锅炉循环水量计算公式采用《工业锅炉房设计手册》中的经验公式 循环水量=1000×0.86kcal/MW×吸热量(MW)/一次网温度差(℃) 热水锅炉补水率较低,通常为1%~2%,主要为热力网损失。根据循环水量和补水率,可以核算出补水量。 ②引风机轴承冷却补水 引风机轴承在运转过程中会发热,因此需要冷却水进行冷却。在有循环水箱时,引风机轴承冷却补水量可按0.5m3/h·箱核算。 如果是抛煤机炉,抛煤机及炉排轴的冷却补水量也可按每台锅炉0.5m3/h计算。 ③脱硫除尘用水 如锅炉房采用的是湿法脱硫,则涉及脱硫除尘用水,此部分用水分为两部分:配制碱液用水和脱硫装置补水。脱硫装置的补水比较复杂,实际

工作中,猫姐使用类比法比较多。《烟气脱硫脱硝技术手册》中有很多案例,大家可以根据项目的实际脱硫法与案例进行类比,从而得出用水量。 在此,猫姐举一个例子:某集中供热锅炉房,使用石灰—石膏湿法脱硫工艺,设计脱硫效率85%,脱硫剂石灰用量4t/h。 手册中的“南宁化工集团公司石灰—石膏湿法烟气脱硫工程”运行试验结果如下: 根据案例中的石灰和用水实测消耗量,类比出本项目的脱硫除尘用水量,见下表1。 表1 南宁化工集团公司与本项目脱硫除尘用水量类比分析表 序号项目南宁化工集团公司本项目 1 脱硫除尘法石灰—石膏法石灰—石膏法 2 除尘效率91%~91.7% ≥98% 3 脱硫效率76.6%~87.2% ≥85% 4 石灰消耗量 1.4t/h 4t/h 5 脱硫除尘用水消 耗量 3.1m3/h 9m3/h ④离子交换器树脂再生用水

开题报告----锅炉热力计算及初步设计

本科毕业设计(论文)开题报告 题目名称SHL10-1.25/250-AⅢ型锅炉热力计算及初步设计 学生姓名专业班级学号 一、选题的目的和意义: 工业锅炉目前是中国主要的热能动力设备,工业锅炉多于层燃链条炉排锅炉,近年来,中国燃煤电站锅炉行业取得了快速的发展。其一,产量大幅增长,行业产能快速提升。目前,整个行业的产能已经超过8000万千瓦,不仅能满足国内电力工业建设的需要,而且还进入了国际市场。对于目前仍采用的手烧加煤、间歇燃烧方式的小型固定炉排锅炉,必将淘汰,取而代之以新开发的新型锅炉。 然而随着锅炉行业的快速发展,能源匮乏的危机也越发显现出来。在当今世界,能源的发展、能源和环境,是全世界、全人类共同关心的问题,也是我国社会经济发展的重要问题。为了实现能源的可持续发展,一方面必须“开源”,即开发核电、风电等新能源和可再生能源,另一方面还要“节流”,即调整能源结构,大力实施节能减排。而对锅炉的节能设计显得尤为重要。 二、国内外研究现状简述: 随着工业的发展,科学技术水平的不断提高,提高锅炉的效率在对改善劳动环境条件、节约能源、增加生产、提高产品质量、降低生产成本等方面起着越来越大的作用,自六十年代以来,世界各国工业锅炉节能技术发展很快,但我国目前的技术现状与世界先进水平的差距还很大,大部分能源尚未得到充分利用,因此在当前能源供应日趋紧张的总趋势下,采用清洁燃料和洁净燃烧技术的高效、节能、低污染工业锅炉将是产品发展的趋势。 工业锅炉节能改造技术:1.加装燃油锅炉节能器;2.安装冷凝型燃气锅炉节能器;3.采用冷凝式余热回收锅炉技术;4.锅炉尾部采用热管余热回收技术; 5.采用防垢、除垢技术; 6.采用燃料添加剂技术; 7.采用新燃料; 8.采用富氧燃烧技术; 9.采用旋流燃烧锅炉技术;10.采用空气源热泵热水机组替换技术;

热水采暖(供热)热源、管道参数计算一例

热水采暖(供热)热源、管道参数计算一例 在小型热水锅炉供热工程建设中,一般可能会没有正规的设计文件和图纸,常会遇到如何确定热源、热网的各参数的困难,即锅炉热功率,循环水泵流量、扬程,一、二级网管径,大小的确定,下面用一个热水锅炉供热的实例予以说明。供所需者参考。 一、基础条件 1、供热面积:400000 (m2 ); 2、室内采暖温度:18 ℃ 3、供水温度:一级网115 ℃,二级70 ℃; 4、回水温度:一级网70 ℃,二级50 ℃; 5、热源、一级网、换热站分布如图: 二、热负荷计算 正规的热负荷计算是,依据当地的气象资料、室内采暖温度、建筑物维护结构等条件,计算出建筑物的总耗热损失,确定出采暖总热负荷。这样计算比较麻烦,比较简捷的是参考当地的经验数据和已经计算过的结构条件相同的建筑物的单位面积热负荷,如在黑龙江某城市,对于多层砖混结构的楼房,室内采暖温度18℃,可选择单位面积热负荷为65W/m2。则总热负荷为: Q’= q ’● F/1000 (kw); 式中:Q’——采暖总热负荷(kw); q ’——采暖面积热负荷(采暖热指标)(w/ m2); F ——采暖面积(建筑面积)(m2 ); 总热负荷: Q’总= 65X400000/1000 = 26000(kw); A、B、C区热负荷: Q’A = 65X120000/1000 = 7800(kw);

Q’B = 65X180000/1000 = 11700(kw); Q’B = 65X100000/1000 = 6500(kw); 三、确定热水锅炉的额定热功率及台数 26000/1000=26.0 (MW) 26.0/0.7=37.14 (t/h) 依据上述计算,选择两台额定热功率14MW(20t/h)的热水锅炉。条件允许可增加一台14MW(20t/h)的备用锅炉。 四、一级网水力计算 1、计算循环水量 式中:G Q’——采暖总热负荷(kw); t h’——供水温度(℃ ); t g’——供水温度(℃ ); 总循环水量: (以下是按各区的供热面积计算,如果考虑未来发展情况,也可已按三台锅炉计算, B区循环水量: 2计算各管段管径(以1—2管段为例) 计算原则:规范中规定,外网管道经济“比摩阻”(每米管道的沿程阻力)为40——80pa/m时,比较经济合理。以下是在最大经济比摩阻=80pa时计算出的最小管径, 式中:d ——管道内径(m); K ——管道内表面粗糙度(m );取K=0.5mm

电站锅炉热力计算方法概述

电站锅炉热力计算方法概述 李振全,张军 东南大学动力工程系,江苏南京(210096) E-mail:Lizq_js@https://www.doczj.com/doc/6a18885561.html, 摘要:本文简单介绍和比较了原苏联热力计算标准和美国CE标准,指出我国制定锅炉热力计算标准的紧迫性,提出积灰系数ε、热有效系数ψ和利用系数ξ等三个系数的准确理解及其重要性,并介绍了传统的热力计算方法及多种改进方法,指出了目前存在的问题及将来的发展方向。 关键词:锅炉;热力计算;标准;方法 1.引言 电站锅炉是燃煤电站的主要设备之一,它是国民经济生产中重要的能量变换单元。随着中国电力市场的蓬勃发展,电站项目朝着高参数、大容量的方向发展已成为大势所趋,近年来超临界锅炉技术在国内得到迅速发展和应用。近十多年,我国的电力事业取得较大的发展,自行设计生产的火电机组单机出力由建国初期6MW提高到现今300~600 MW和更高的900~1000 MW,参数由4 MPa增加到17.0 MPa和25.0~27.0 MPa的超临界与超超临界。锅炉在锅内、炉内、自控调节和辅机等各方面也都有显著的提高。但也看到,包括引进的国外300-600MW在内的燃煤火电机组,其锅炉的安全可靠的工作和经济运行,至今还有着相当部分的不尽人意,据统计,在近些年全国大机组非计划停运事故中,锅炉方面的事故约占半数以上,主要原因之一是现今采用的锅炉热力计算方法存在不足,其可靠性和经济性很大程度上取决于炉内发生的流动、燃烧和传热等过程,制造厂家和运行部门迫切要求改进(制定)锅炉计算方法。 从传热角度看,锅炉属于连续操作的多介质、大型、复杂串并联换热器。热力计算是锅炉设计工作的核心,是锅炉设计、校核、运行的基本依据,锅炉水动力计算、受压元件强度计算、通风阻力计算、炉墙热力计算、管壁温度计算、制粉系统热力计算、空气动力计算等都要在锅炉热力计算的基础上才能进行,对锅炉的安全和性能有着直接的影响。其目标是求解锅炉系统的稳态平衡热工效果,作为后续的工程分析和计算的依据。为提高锅炉热力计算的准确性,近些年来国内一些单位开展了一些研究工作,这里将对这些工作进行介绍和讨论。 2.锅炉热力计算标准 我国50年来,发电锅炉设计所用的方法普遍采用的是前苏联57(包括两个修正)和73两个联合标准方法[1],原苏联的炉膛热力计算是以相似理论为基础,用波尔兹曼准则导出半 θ′′的准则方程式经验性的炉膛传热基本方程,求出炉膛受热面积或出口烟温。不同版本中 T ?的计算式示于表1 和'' T

相关主题
文本预览
相关文档 最新文档