当前位置:文档之家› 电站锅炉热力计算方法概述

电站锅炉热力计算方法概述

电站锅炉热力计算方法概述
电站锅炉热力计算方法概述

电站锅炉热力计算方法概述

李振全,张军

东南大学动力工程系,江苏南京(210096)

E-mail:Lizq_js@https://www.doczj.com/doc/aa3421691.html,

摘要:本文简单介绍和比较了原苏联热力计算标准和美国CE标准,指出我国制定锅炉热力计算标准的紧迫性,提出积灰系数ε、热有效系数ψ和利用系数ξ等三个系数的准确理解及其重要性,并介绍了传统的热力计算方法及多种改进方法,指出了目前存在的问题及将来的发展方向。

关键词:锅炉;热力计算;标准;方法

1.引言

电站锅炉是燃煤电站的主要设备之一,它是国民经济生产中重要的能量变换单元。随着中国电力市场的蓬勃发展,电站项目朝着高参数、大容量的方向发展已成为大势所趋,近年来超临界锅炉技术在国内得到迅速发展和应用。近十多年,我国的电力事业取得较大的发展,自行设计生产的火电机组单机出力由建国初期6MW提高到现今300~600 MW和更高的900~1000 MW,参数由4 MPa增加到17.0 MPa和25.0~27.0 MPa的超临界与超超临界。锅炉在锅内、炉内、自控调节和辅机等各方面也都有显著的提高。但也看到,包括引进的国外300-600MW在内的燃煤火电机组,其锅炉的安全可靠的工作和经济运行,至今还有着相当部分的不尽人意,据统计,在近些年全国大机组非计划停运事故中,锅炉方面的事故约占半数以上,主要原因之一是现今采用的锅炉热力计算方法存在不足,其可靠性和经济性很大程度上取决于炉内发生的流动、燃烧和传热等过程,制造厂家和运行部门迫切要求改进(制定)锅炉计算方法。

从传热角度看,锅炉属于连续操作的多介质、大型、复杂串并联换热器。热力计算是锅炉设计工作的核心,是锅炉设计、校核、运行的基本依据,锅炉水动力计算、受压元件强度计算、通风阻力计算、炉墙热力计算、管壁温度计算、制粉系统热力计算、空气动力计算等都要在锅炉热力计算的基础上才能进行,对锅炉的安全和性能有着直接的影响。其目标是求解锅炉系统的稳态平衡热工效果,作为后续的工程分析和计算的依据。为提高锅炉热力计算的准确性,近些年来国内一些单位开展了一些研究工作,这里将对这些工作进行介绍和讨论。

2.锅炉热力计算标准

我国50年来,发电锅炉设计所用的方法普遍采用的是前苏联57(包括两个修正)和73两个联合标准方法[1],原苏联的炉膛热力计算是以相似理论为基础,用波尔兹曼准则导出半

θ′′的准则方程式经验性的炉膛传热基本方程,求出炉膛受热面积或出口烟温。不同版本中

T

?的计算式示于表1

和''

T

表1 炉膛出口烟温的准则方程式和计算式

系数M在两个标准版本中,其形式列于表2.

表2 计算标准中M的表达式

标准版本

1957年标准 1973年标准 M

0.445 A-B(x x ?+Γ)

对于小容量锅炉,计算表明在(x x ?+Γ)=0-0.25范围内,(x x ?+Γ)对''T ?的影响较小,故在57标准中取M=0.445,为定值。随着锅炉容量的增大,为考虑沿炉膛高度方向温度场不等温性对炉内换热的影响,即燃料性质、燃烧器中心的相对标高对炉内换热的影响,73标准中引入M=A-B(x x ?+Γ)。

这一方法应用于较小容量锅炉炉膛热力计算时,其计算的准确性较好,但在应用于高参数、大容量锅炉时,炉膛出口烟温的计算值与实值偏差较大,实测值比计算值要高,这必然给锅炉带来过热器减温水量增大或过热蒸汽超温、炉膛出结渣等一系列问题,尤其对于燃用劣质烟煤、褐煤和无烟煤的锅炉更是如此,致使一些电站锅炉过热器超温爆管、降低了可用率。以炉膛传热为基础制定的原苏联计算标准,它没有充分考虑煤粉品质与燃烧特性、燃烧方法及炉膛结构与形状的影响,依据苏联标准设计的炉膛有时不一定能完全满足燃烧条件,使炉膛高度和燃烬时间发生矛盾。因此,十分有必要开展我国动力煤燃烧特性的研究,因为它能够阐明具体燃煤的燃烧特性和相对比较,并有利于判断和选择炉膛有关的设计参数。“标准方法”中规定,M 值是反映炉内燃烧条件的一个参量,主要取决于燃料种类及燃烧器中心的相对高度。实际上,M 值还与燃料的着火特性、一次风气流的初温、煤粉细度、煤粉浓度、过量空气系数、锅炉负荷及二次风的混合迟早等因素有关。“标准方法”中的沾污系数ξ值若按不同的燃料类型选取是一些常数。实际上,ξ值不仅与煤种有关,而且与煤的结焦性以及一些运行因素有关。

近年来,随着欧美大机组的引进,也引进了一些欧美的计算方法,如美国燃烧公司(CE)、福斯特.惠勒公司(FW)、巴威公司(B&W)的热力计算标准等。美国CE 公司的炉膛分为下部和上部炉膛两部分计算,下部炉膛是根据美国优质烟煤试验为基础而制定初基本曲线,并经其它因素修正得出炉膛尺寸和相应热力参数;上部炉膛分为许多相互关联的小区域按传热理论

和数学模型以及微积分求出上部炉膛各处的受热面和烟温[2]

但是,CE 下炉膛计算方法用在我国时,由于煤质明显劣于美国煤质,且缺乏足够的中国动力用煤的工业试验数据基础,机械地套用美国煤的计算曲线是不科学的,对于有些煤种、特别是结渣性较强的煤种,往往产

生较大的偏差,容易加剧壁面结渣的倾向;CE上炉膛计算方法对屏区用沿高度方向热负荷不均匀系数Y值计算各部吸热量的方法相对于原苏联的方法更加准确。李伟等[3]对原苏联热力计算标准和美国CE锅炉性能设计标准进行了比较。CE标准的计算精度要求较高,但在传热计算中,其传热系数仅为对流放热系数和三原子气体辐射放热系数的简单相加,没有沾污系数、沾污壁温的概念,而实际燃煤锅炉受热面的积灰总是不可避免存在,特别是我国燃煤中灰含量普遍较高;CE标准的漏风值较小,而我国锅炉的实际漏风普遍偏大。因此,我国锅炉按CE标准设计时锅炉热力计算结果与实际运行结果仍会有一定误差。

但这些方法基本为半经验性质,其精确程度往往影响到排烟温度、过热汽温及再热汽温和热空气温度的设计值的准确。各种方法的选用,决定于锅炉制造厂家的历史与经验。并且各种方法总会有一定精确度和误差,其精确程度并非取决于计算方法程序的繁简和理论概念,而主要是看提出的积灰系数ε、热有效系数ψ和利用系数ξ等3个系数(亦有提出一个或两个系数的方法)的准确完整和设计人员掌握的经验。理由是:ε、ψ、ξ是试验数据,由试验研究和最后的工程试验整理而得。如,在计算对流传热时,K=Q/H?t,同时K=f[ε(ψ、ξ)]。其物理概念均以受热面积灰影响传热性能为主(管式空气预热器ξ除外)的综合修正系数。它包含了对算式误差、演算误差和试验测量误差等多方面误差的修正。

积灰系数ε、热有效系数ψ和利用系数ξ的准确程度直接决定了热力计算方法选用的准确性;在各种热力计算方法中提供的ε、ψ、ξ是与其传热计算公式中的Q、H、K、?t等相互对应的,不能与其它热力计算方法相互套用;各种热力计算方法提供的ε、ψ、ξ是有一定应用条件和范围的,即随燃烧煤质不同和灰成分的不同、锅炉负荷和燃煤量的不同、炉膛及对流受热面烟温、壁温、烟速和热负荷的不同、受热面布置与结构的不同等,它们的ε、ψ、ξ是不同的,应该正确的判断和灵活的选用。若选用不当,均导致炉膛出口烟温、对流受热面各段烟温、各受热面吸热量和蒸汽温度、热空气温度等的改变。严重时,会发生炉膛结渣、燃烧性能恶化、金属超温以及排烟热损失过大等异常现象。

3.锅炉热力计算方法

锅炉热力计算分为设计计算和校核计算,设计计算一般是在设计新锅炉时运用的方法,而校核计算是在锅炉结构已定燃料变更时进行的计算。设计计算的任务就是在给定的给水温度和燃料特性的情况下,为了达到额定蒸发量和蒸汽参数以及选定的经济指标,计算、确定锅炉机组的炉膛尺寸及各受热面的结构和尺寸,并确定锅炉的热效率和燃料消耗量、各受热面进出口的烟气温度及工质温度、吸热量以及烟气流速和工质流速等,为选择锅炉辅机和进行上述的其他计算提供原始数据。设计计算是在锅炉的额定负荷下进行的,但为了预计锅炉在其他负荷下的工作特性,以及锅炉在使用非设计燃料时的热力特性,就要进行校核计算。校核计算的目的是为了得到锅炉在非设计工况下运行时的经济指标,为锅炉结构改进、选择辅机和其他各项计算提供相应的数据和资料。

在锅炉热力计算中,首先以燃料完全燃烧得出理论空气量、烟气成分和烟气的焓等,然后考虑燃料的化学不完全燃烧热损失和机械不完全燃烧热损失,在上述烟气焓中查出理论燃烧温度等。计算的结果有两种燃料量,即实际燃料消耗量和不考虑机械不完全燃烧热损失的计算燃料消耗量。整个锅炉的计算中,都以燃料完全燃烧后的产物来计算炉内的辐射传热和对流放热【4】。然而,针对实际上燃料在炉内燃烧属不完全燃烧,李佛金等[5]指出锅炉的热力计算应按不完全燃烧理论进行计算才合理。在燃煤锅炉中,飞灰含碳量有时很高,若用燃料完全燃烧方法进行设计或校核计算则有较大误差。而用不完全燃烧理论来进行锅炉热力计

算,并且在燃烧计算中就考虑了未完全燃烧的物质,使得计算的结果与炉内的烟气成分一致。整个锅炉热力计算都以不完全燃烧来进行,因此烟气成分、烟气的焓、燃烧所需的空气量、锅炉中的传热等都与完全燃烧时的计算结果有差别。但燃料的燃尽度除与燃料本身性质有关外,还取决于燃烧器的布置、热风温度、炉膛形状、炉内空气动力场等多种因素,难以确定,因此实际设计采用这种方法很难实现。

根据锅炉本体中传热的特点,锅炉热力热力计算可主要分为炉膛热力计算和对流受热面热力计算。对流受热面由于以对流换热为主,其传热计算容易进行,而难点在于沾污系数的选取。锅炉炉膛是锅炉设备的主体部分,其内部的过程是异常复杂的,同时进行着流动、混合、燃烧、传热等过程,而且这些过程相互作用、相互影响。炉膛设计的主要任务就是在达到炉膛热功率情况下,如何同时满足燃料完全燃烧和烟气冷却条件要求,即根据机组容量、蒸汽压力与温度、煤质特性等合理选择包括燃烧器在内的炉膛的形状和尺寸,炉膛受热面或管圈型式和布置、重要的炉内与锅内热力参数以及空气动力参数。炉膛由于以辐射换热为主,且温度分布不均匀,准确的传热计算难度大,炉膛传热计算不准确将使得炉膛出口烟温大大偏离设计值,由此而造成的结渣及超温或欠温等问题不仅对机组运行的经济性影响甚大,而且危及锅炉机组的运行安全,原苏联57年和73锅炉热力计算标准的差别也主要表现在炉膛辐射传热计算方法的不同。为此,对炉膛辐射传热的计算一直是研究的方向,也提出了不少计算方法[6],但在我国目前锅炉热力计算中仍主要采用原苏联57或73年标准中辐射传热的计算方法。如何将最新的炉膛辐射传热研究成果结合到锅炉热力计算中是今后锅炉设计应重视的问题。

在原苏联73年标准[1]中实际上给出了两种炉膛热力计算方法:A.M古尔维奇全炉膛计算方法和米多尔分区段计算方法。前者计算过程简单,通常认为适合于100MW以下锅炉,后者则考虑了温度分布沿炉膛高度的不同,适合大容量锅炉,但计算过程复杂。鉴于此,关金峰等[7]提出了对大容量锅炉炉膛换热分为“两大块”进行计算的方案,以减少分区计算的工作量。随着计算机技术的发展,计算工作量已不再是影响分区数量的因素,为此,樊泉桂[8]采用了将燃烧器区分成4个区段的更细的分区计算方法,这些做法对提高锅炉炉膛传热计算精度是有益的。但如前述,锅炉热力计算的准确程度在很大程度上决于积灰系数ε、热有效系数ψ和利用系数ξ的选取,因此深入认识ε、ψ和ξ等变化对锅炉热力计算结果的影响程度是十分必要的,但目前相关的研究工作很少。

在电站锅炉热力计算过程中, 锅炉炉膛出口烟气温度是研究锅炉工况及锅炉热力计算的重要参数,它的计算精确与否直接影响到整个热力计算的精确性。炉膛出口温度过高,则容易造成炉内结渣,过热器或再热器超温以至爆管,严重危及锅炉的安全工作,常常被被迫限制锅炉负荷;炉膛出口温度过低,则减少了锅炉各受热面的吸热量,造成过热蒸汽温度偏低,降低了机组运行的经济性,甚至还可以导致燃烧工况的恶化,对自然循环锅炉还可能造成水循环不稳定,而此时若加大负荷又可能超出锅炉设计的安全裕量。在过去的几十年中,炉膛出口烟气温度的计算方法得到了不断发展,许多前人采用了经验方法。但从锅炉研究工作的发展过程来看,利用简化的理论模型,再加入适当的经验结论所形成的半经验半理论方法[9]更能够正确地反映炉膛内的实际工作情况。另外,魏铁铮等[10]给出了锅炉炉膛出口烟气温度的反向推算方法,它是在已知燃料元素分析成分的条件下,利用一般锅炉数据采集系统提供的工质侧测量数据,从测量准确的排烟温度开始,沿着烟气流动相反的方向,主要利用热平衡关系,反向推出各受热面处的烟气温度,直到炉膛出口烟气温度。

另外,锅炉热力计算的繁琐程度也是锅炉专业工作者所共知的,这一工程计算问题的求

解随锅炉的炉种、结构型式、用户参数(包括容量、燃料等)的变化不尽相同,计算涉及众多的变量、图表、公式、复杂的逻辑和大规模的迭代,过程耗时、耗力,且易产生差错。随着计算机应用的普及,近十几年来多数锅炉厂家及科研人员开始采用计算机程序来实施该计算,使其变得简单化和更加精确化。但由于程序设计人员所能考虑到的情况总是有限的,另外,随着考虑情况的增多,程序的复杂程度也急剧上升,所谓通用化的锅炉计算程序总是相对的,不存在完全通用化的程序,因此十分有必要继续开展计算机技术在锅炉热力计算中应用的研究工作。

4.结论

锅炉热力计算是锅炉设计计算中一个十分重要而又繁琐的环节。目前我国现用的各种热力计算方法都在不同程度上存在着不完善之处,因此非常迫切并很有必要制定符合我国实际情况的热力计算方法,大力开展我国动力煤燃烧特性和ε、ψ和ξ等变化对锅炉热力计算结果影响程度的研究,并努力将最新的炉膛辐射传热研究成果结合到锅炉热力计算中去。另外,大力发展计算机应用技术,努力开发出相对更加完善、通用的锅炉热力计算软件,将更有助于锅炉设计,对电厂热经济性诊断及优化也将起到更加重要的作用。

参考文献

[1]上海工业锅炉研究所编印.锅炉机组热力计算标准方法.2001.12

[2]管明德.哈锅锅炉炉膛若干技术参数及其分析.锅炉制造,1993(1):2-13

[3]李伟,王雅勤.关于电站锅炉几种热力计算标准的研究.现代电力,2001(2):8-13

[4]冯俊凯,沈幼庭.锅炉原理及计算.第二版.北京:科学出版社,1992. 2.

[5]李佛金,陈刚,张志国,丘纪华.以燃料不完全燃烧理论进行锅炉热力计算.华中理工大学学

报.1996(1):1-3

[6]刘林华. 炉膛传热计算方法的发展状况.动力工程,2000,20(1):523-538

[7]关金峰,魏铁铮,王军.锅炉炉膛热力计算方法研究-“两大块”计算方法分析.华北电力学院学

报.1994(12):38-44

[8]樊泉桂,裴丹,史玉林.大容量锅炉分区段计算的改进方法.锅炉技术.2004(7):21-23

[9]周克毅,赵震,曹汉鼎.炉膛出口温度计算方法的分析与比较.动力工程. 1999(10):363-366

[10]魏铁铮,王平川,王建军.锅炉炉膛出口烟气温度的推算.华北电力技术.1999(9):14-16

The Summarization on The Methods of The Power Plant

Boilers Thermal Computation

Li Zhenquan,Zhang Jun

Department of Power Engineering, Southeast University, Nanjing 210096,China

Abstract

In this paper,the author introduces and compares the difference between Soviet Thermal Power Computation Standard and American CE Boiler Performance Design Standard , points out that it’s need to establish the standard of the boiler thermal calculation for our country,and suggests the exact comprehensions and importance of ε、ψ and ξ,then also suggests the methods of the thermal calculation and many betterment methods.Finally it points out the existing problems and the developmental directions.

Keywords: Bolier;Thermal Calculation;Standard;Method

作者简介:李振全(1982-),男,江苏盐城人,硕士研究生,主要从事电厂热力系统诊断及优化和节能方向的研究。

锅炉本体设计热力计算部分

一.题目SHL35-1.6-A 二、锅炉规范 锅炉额定蒸发量 35t/h 额定蒸汽压力 1.6MPa 额定蒸汽温度 204.3℃(饱和温度) 给水温度 105℃ 冷空气温度 30℃ 排污率 5% 给水压力 1.8MPa 三.燃料资料 烟煤(AⅡ) 收到基成份(%) C ar H ar O ar N ar S ar A ar M ar 48.3 3.4 5.6 0.9 3.0 28.8 10.0 干燥无灰基挥发份V daf= 40.0 % 收到基低位发热量Q net,ar= 18920 kJ/kg 收到基成份校核: C ar+H ar+O ar+N ar+S ar+A ar+M ar=48.3+3.4+5.6+0.9+3.0+28.8+10.0=100 根据门捷列夫经验公式:Q net,ar=339C ar+1031H ar-109(O ar-S ar)-25.1M ar =339×48.3+1031×3.4-109×(5.6-3.0)-25.1×10.0 =19344.7kJ/kg 与所给收到基低位发热量误差为: 19344.7-18920=424.7kJ/kg<836.32kJ/kg(在A d=32%>25%下,合理)。 四.锅炉各受热面的漏风系数和过量空气系数 序号受热面名称入口'α漏风Δɑ出口''α 1 炉膛 1.3 0.1 1.4 2 凝渣管 1.4 0 1.4 3 对流管束 1. 4 0.1 1.5 4 省煤器 1. 5 0.1 1.6 5 空气预热器 1. 6 0.1 1.7

(工业锅炉设计计算P134表B3~P135表B4)由于AⅡ是较好烧的煤,因此'' 在1.3~1.5取值1.4。 五.理论空气量及烟气理论容积计算 以下未作说明的m3均指在标准状况0℃,101.325kPa的情况下体积。 序号名称 符 号 单位计算公式结果 1 理论空气 量 V0m3/kg V0=0.0889(C ar +0.375S ar )+0.265H ar -0.0333O ar =0.0889(48.3+0.375×3)+0.265×3.4-0.0333 ×5.6 5.10 8 2 RO2容积V RO2m3/kg V RO2 =0.01866(C ar +0.375S ar ) =0.01866(48.3+0.375×3) 0.92 2 3 N2理论容 积 2 N V m3/kg V0 N2 =0.79V0+0.008N ar =0.79×5.108+0.008×0.9 4.04 3 4 H2O理论 容积 2 O H V m3/kg V0 H2O =0.111H ar +0.0124M ar +0.0161V0 =0.111×3.4+0.0124×10+0.0161×5.108 0.58 4 5 理论烟气 量 y V m3/kg V0 y =V RO2 +V0 N2 +V0 H2O =0.922+4.043+0.584 5.54 9 (工业锅炉设计计算 P187) 六.各受热面烟道中烟气特性计算 序号名称 符 号 单位计算公式炉膛 对流 管束 省煤 器 空气 预热 器 1 平均过 量空气 系数 αav-(α’+α”)/2 1.4 1.45 1.55 1.65 2 实际水 蒸气容 积 V H2O m 3/k g 2 O H V+0.0161(αav-1) V0 0.617 0.621 0.629 0.637 3 实际烟 气量 V y m 3/k g Vg=V RO2 +0 2 N V+V H2O+(αav -1)V0 7.625 7.885 8.404 8.923 4 RO2 容积份 额 r RO2- g RO V V 2 0.120 9 0.116 9 0.109 7 0.103 3 5 H2O 容积份 额 r H2O- g H V V 2 O0.080 9 0.078 8 0.074 9 0.071 4 6 三原子 气体容 积份额 r q-r RO2+r H2O0.201 8 0.195 7 0.184 6 0.174 7

供热燃气热水锅炉选型方案说明

供热燃气热水锅炉选型方案说明 天水成纪房地产开发公司拟对已建(分路口小区),供热采暖系统进行改造,经对小区现场实地勘察,以及和建设方对采暖问题的相关探讨,现将供热设备选型的基本参数及热力数据提供如下: 一.供热采暖的基本参数 1.供热总面积:70000m2 2.采暖形式均为地板辐射式散热 3.现有供热设备为地源热泵机组 4.单独为20000m2(两栋高层),采用燃气热水锅炉供热的可行性方案。 二.采暖热负荷的概算 采用面积热指标法对采暖热负荷进行计算,按下式进行 Q=q i F×10-3 根据《采暖通风与空气调节设计规范》GBJ19及《城市热力网设计规范》CJJ34,按当地最大热指标取值为75W/m2 的理论计算值。公式中: F—建筑面积(m2) Q—建筑物采暖设计热负荷(KW), q i—建筑物采暖面积热负荷(W/ m2) 1.总热功率:5250KW=5.25MW(取值5.6MW) 2.总耗热量:450×104 Kcal (65Kcal/m2.C0)

3.热源条件:燃气工业热水锅炉 4.供热型式;由锅炉房提供热源通过二次换热系统,为小区楼房输送地暖供热。 三.锅炉房水循环量理论计算值(G) ?t/h G=0.86?K?Q C?[ tg?th] 式中 Q————锅炉额定热功率 K————管网散热损失系数,取1.05 C————管网热水的平均比热容,kJ/Kg?0c tg————热水供水温度550C(地暖) th————热水回水温度450C(地暖) 代入数据计算值为:G=337m3/h 11.小区供热形式为地暖系统,属低温大流量辐射供热,供热锅炉房循环水量比传统散热器采暖系统要大,按照小区楼房分布位置及楼层高度参数,通过二次换热系统采取分区供热型式,能够满足小区整体供热质量和效果。 2.供热系统阻力由沿程压力损失,局部压力损失及设备内阻等因素决定,以输送管道规格及配件等数据计算确定。在循环水泵选型时综合考虑。 3.二次换热机组在循环水泵选型时应综合考虑上述流量,管道系统阻力及扬程的设计参数。 四.燃气热水锅炉选型 1.为保证小区采暖质量,综合考虑地暖系统的实际耗热

燃气工业炉的热工过程及热力计算

燃气工业炉的热工过程及热力计算 热工过程是工业炉内一个重要的物理、化学过程。燃气工业炉的热工过程是指炉内燃气燃烧、气体流动及热交换过程的总和。显然,它是直接影响工业炉生产的产品数量、质量及经济指标的关键。燃气工业炉的热工过程的好坏,炉膛部位是核心。因为物料的加热、熔炼及干燥等都主要是在炉膛内完成的,而炉膛热工过程又受炉子砌体各部位热工特性影响。一、炉体的热工特性工业炉炉子砌体的结构与材料,决定砌体的基本热工特性,进而对于工业炉热工状态造成重大影响。(一)不同炉子砌体的热工特性工业炉的炉墙、炉顶、炉底由不同材质的多层材料砌筑而成,而各层材料的导热系数与厚度都不一样,因而温度变化也各有差异。图3—9—6所示炉墙,从内到外分别为粘土砖、绝热层和普通红砖。炉膛内高温焰气的热量通过辐射与对流向炉墙内表面传递;内表面再通过传导,把热量传到外表面;而外表面再通过辐射、对流向周围空间散热。 图3-9-6 炉墙厚度上的温度分布1-普通红砖层;2-绝热层;3-粘土砖层;4-炉膛空间;tin-内壁温度;tout-外壁温度一般砌体的作用是保证炉子空间达到工作温度,炉衬不被破坏,而加绝热层是为了减小损失。从加热经济观点看,砌体蓄热能力差,炉子开停温度升降快,但是炉子砌体墙壁太薄,将导致外表面散热损失增加。因此,应在对炉子进行严格的热工分析后,确定砌体的厚度与材质。一般说,长期运行的大型工业炉,砌休可选厚些,反之选薄些。为了节约能源,越来越多的工业炉采用轻质、热导率小的材料作为砌体的绝热层。表3—9—3给出了采用不同轻质绝热材料及组合时的节能效果。对连续式和间歇式加热炉,不同砌体组合的节能效果均为ⅢⅡⅠ。 表3—9—3 采用轻质耐火材料对砌体散热及蓄热的影响炉子工作特点砌筑类型筑炉材料名称厚度/mm热损失散热量/kJ·(m-2·h-1)蓄热量/kJ·m-2连续式炉Ⅰ粘土砖2326926 轻质粘土砖116Ⅱ粘土砖2325074 轻质粘土砖232Ⅲ耐火纤维毡753720 粘土砖232轻质粘土砖232间歇式炉Ⅰ粘土砖2323184381101轻质粘土砖116Ⅱ粘土砖2322157147698硅藻土砖116Ⅲ耐火纤维毡75160910768矿渣纤维100(二)不同砌体对炉子热工状态的影响图3—9—7表示炉子供热量不同对炉内热状态的影响。当供给一定热量使炉子升温时,起初由于

燃气热水锅炉控制方案要求

燃气热水锅炉控制 方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求 一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和

各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,经过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网经过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据; (2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,经过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平衡等),能够大大地降低管网水泵的能源消耗; (3)异常报警,做到对管网异常及时准确响应; (4)能够监测各个主、支线管网,重要客户的实时用气量、对水、电、气实时采集,以便监管和控制。 二、燃气锅炉供热控制系统硬件部分: 1、PLC是整个控制系统的核心部件,采用西门子系列可编程逻辑控制器; 2、现场数据采集系统由温度传感器、压力传感器、燃气报警器、火焰监视器、水位传感器等组成;

锅炉热力计算参数符号

锅炉热力计算参数符号

D ------- 锅炉的额定蒸发量(t/h)ed T gs------- 给水温度(℃) P gs------- 出口蒸汽压力(绝对压力MPa) t lk---- 冷空气温度(℃) α------- 过量空气系数 ρ----- 排污率(%) h0CO2------ CO2的显焓(1atm,25℃为参考状态)(KJ/mol) h0H20----- H2O的显焓(1atm,25℃为参考状态)(KJ/Nm3) h0O2------ O2的显焓(1atm,25℃为参考状态)(KJ/mol) h0N2------ N2的显焓(1atm,25℃为参考状态)(KJ/mol) H CO2------ 燃烧1Nm3DME生成的CO2的焓(KJ/Nm3) H H20------ 燃烧1Nm3DME生成的H2O的焓(KJ/Nm3) H O2------- 燃烧1Nm3DME生成的O2的焓(KJ/Nm3) H N2------ 燃烧1Nm3DME生成的N2的焓

(KJ/Nm3) I yx-------- 燃烧1Nm3DME生成的烟气焓(KJ/mol) h0f,DME ------ DME生成热kJ/mol C p,DME ----- DME的比热kJ/mol·K Q xr ------ DME的低位发热量KJ/Nm3 V0 - ----- 理论空气量m3/Nm3 V ------ 实际空气量m3/Nm3 V O2------ 实际O2量m3/Nm3 V N2 ----- 实际N2量m3/Nm3 V CO2 -------实际CO2量m3/Nm3 V H2O ----- 实际H2O量m3/Nm3 V r------- 实际烟气量m3/Nm3 r RO2 ------- RO2的容积份额 r H2O ----- H2O的容积份额 r n---------三原子气体容积份额 三、热平衡参数及计算 T lk ------- 冷空气温度℃ C p,B-------冷空气比热KJ/mol·K I0B------冷空气理论热焓(以25℃为参考)

热力管道水力计算表

热力管道水力计算表

————————————————————————————————作者:————————————————————————————————日期: ?

热力管道水力计算表(一) Kd=0.5mm r=958.4kg/m3 DN 25 32 4050 DN 253240 50 70 D w×δ32×25 38×2.545×2.557×3.5D w×δ32×2.538×2.545×2.557×3.573×3.5 G(t/h) W R W R W R WR G(t/h)W RW R W R W R WR 0.20.1 0. 95 1.250.63 34.2 0.4 2 1 1.6 0.2 9 4.2 0.1 8 1. 34 0.22 0.11 1.1 4 1.3 0. 66 37 0. 44 1 2.6 0.3 4.5 1 0.1 9 1.4 4 0. 11 0. 34 0.24 0.1 2 1.3 5 1.35 0.68 39. 9 0.46 13.6 0.3 1 4. 86 0.2 1 .55 0 .1 1 0.37 0.26 0.13 1.59 1.40 0.7 1 42.9 0. 47 1 4 .6 0.3 2 5.2 1 0.2 1 1. 6 7 0.1 2 0.3 9 0.28 0.1 4 1. 82 1.450.73 46 0.49 15 .7 0.33 5.5 9 0.2 1 1.78 0. 12 0.42 0.30 0. 15 2.0 8 1.50 0. 76 49.2 0 .5 1 16.8 0.3 5 5.9 8 0.2 2 1.91 0.1 3 0.4 5 0.320.1 6 2.3 7 1.55 0.7 9 52.6 0.53 17 .9 0.3 6 6 .3 8 0 .23 2.02 0.13 0.48 0.340.17 2.7 1 1.6 0.8 1 56 0.5 4 19.1 0.3 7 6.8 0.2 4 2.14 0. 13 0.5

锅炉供热量计算

新建铁路贵阳至广州客运专线(贵州段)GGTJ-2标段 都匀东制梁场 蒸汽养护锅炉供热量计算 编制: 审核: 审批: 中铁隧道集团有限公司都匀东制梁场 二0一0年十二月

关于梁场蒸汽养护锅炉供热量的计算 1.计算目的 为加快梁场生产速度,加快梁片预制的节奏、缩短施工周期同时保证产品质量以及相关的技术要求,拆模前采用养护罩形式进行蒸汽养护从而需对供热设备进行供热量计算是否满足施工要求。 2、计算依据 箱梁的施工技术要求以及锅炉、蒸养罩、蒸养管道和监测仪器等养护设备的特点。 供热设备—DZL4-1.25-AII型4t燃煤锅炉设计说明书。 3、计算过程 单榀箱梁所用蒸汽量计算如下: W = Q /(I × H) 其中:Q----计算所需总热量(KJ/h) I----在一定压力下蒸汽的含热量(KJ/kg) H----有效利用系数 所需总热量的计算:Q = 3.6×∑ F×K×(Tn – Ta)×ω 其中:F----围护结构的表面积 F = 7.2×5×2+5×34×2+7.2×34=656.8m2 K----围护结构的传热系数,取12.5 Tn取40℃,Ta取6℃,ω取2.6 代入各值得: Q=3.6×656.8×12.5×40×2.6=3073824 KJ/h 在一定压力下蒸汽的含热量(KJ/kg)I取2644 KJ/kg;

有效利用系数H取0.45 所以养护单孔梁需要蒸汽用量: W = Q /(I × H)= 3073824/(2644×0.45)≈2583.5 Kg/h 因制梁场设计生产能力为1孔/天,则需要总蒸汽养护量取1孔/天来考虑即为: W总= 2583.5 Kg/h 即: 梁场配备一台4tDZL4-1.25-AII型锅炉,蒸养时采用蒸养棚罩,蒸养棚罩钢架采用钢结构,满足蒸汽养护要求。

常用热力单位换算表

常用热力单位换算表 一、热量单位换算 1、常用热量单位介绍 A、焦耳(J)、千焦(KJ)、吉焦(GJ),工程计算广为采用,国际单位制。热力计算、热计量、热量化验等实际操作中常见,国家标准及图表、线图查询等规范性技术文件中主要表达的单位。但是,其他导出单位及工程习惯相互交织,使得这种单位在今天热力计算中不 是很方便。 B瓦特(W、千瓦(KW)、兆瓦(MW,工程导出单位,是供热工程常用单位,如热 水锅炉热容量:7MW 14MW 29MW 56MW…等,习惯上常说到的10t、20t、40t、80t...等锅炉,相当于同类容量蒸汽锅炉的设计出力?工程上热水锅炉和换热站热计量仪表、暖通供热设计计算、估算、供热指标等,广泛采用。 C卡(car)、千卡(Kcal)...,已经淘汰的热量单位,但是工程中还在使用,特别是大量的技术书籍,例如煤的标准发热量7000Kcal。 2、基本计算公式 1W= 1KW=860Kca,1Kcal=; 1t 饱和蒸汽==700KW==6万Kcal; 1kg 标煤=7000Kcal=29300KJ===8141W=; 1GJ=1000MJ 1MJ=1000KJ 1KJ=1000J 1Kcal= 1W=(热工当量,不是物理关系,但热力计算常用) 3、常用单位换算

4、制冷机热量换算 1 美国冷吨=3024千卡/ 小时(kcal/h )=千瓦(KW) 1日本冷吨=3320千卡/ 小时(kcal/h )=千瓦(KW) 1冷吨就是使1吨0C的水在24小时内变为0C的冰所需要的制冷量。)1马力(或1匹马功率)=瓦(W =千瓦(KW 1 千卡/ 小时(kcal/h )=瓦(W) 、压力单位换算 1、1 Mpa= 1 000 Kp;a 1Kpa=1000pa 2、1 标准大气压==1 标准大气压 1 标准大气压=1 公斤压力=100Kpa=1bar 1mmHg = = Pa (帕) 1mmH20=10P(a 帕) 1KPa=1000Pa=100mmH2毫米水柱) 1bar=1000mbar 1mbar==100pa

燃气锅炉技术规格-6T燃气热水锅炉

锅炉技术规格书 1 概述 1.1 项目简介 本技术规格书编制的目的是进行锅炉的招标采购(技术交流),经双方谈判同意后将作为合同附件。 本技术规格书阐述了设计、制造、供货、检验、服务验收等的最低要求。供货商应保证提供符合本技术规格书和相关的国际、国内工业标准的优质产品。在合同签字后,需方有权因规范、标准、规程发生变化而提出补充要求。 供方对锅炉(含辅助系统与设备)负有全责,包括分包(或采购)的产品。其分包(或采购)的产品的制造商应事先征得买方的认可。 1.2 释义 买方:指业主或批准的代表 供方(供货商):为本工程供货的制造商 1.3设计条件 1.3.1自然条件 年最热月(7月)平均气温 23.0℃ 年最冷月(1月)平均气温 -18.7℃ 年绝对最高气温 37.4℃ 年绝对最低气温 -36.2℃ 年平均气温 3.8℃ 年平均相对湿度 72% 年平均降雨量 438.1mm 年最大风速 28.5m/s 年平均风速 3.8m/s 夏季主导风向 S 冬季主导风向 NW 积雪厚度 22cm 冰冻深度 230cm 采暖室外计算温度 -26℃ 采暖期平均温度 -9.9℃ 1.3.2炉型 炉型为全自动燃气热水水管锅炉。

1.3.3锅炉运行方式 自然循环 1.3.4燃料条件 本工程以天然气作为设计燃料。 2 供货范围 2.1 锅炉设备 供货方提供全自动燃气热水锅炉的本体及其附件,主要包括: 钢架与护板、炉墙与保温、后烟箱。 平台扶梯和锅炉砌筑所需的各种材料等。 与炉体连接的一次阀门仪表(按锅炉管路系统图供货)。 锅炉附的省煤器与锅炉本体连接的烟风管道和水系统管道及阀门仪表均属锅炉厂供货范围。 3锅炉形式及技术参数和要求 采用双锅筒自然循环,“D”型布置,炉膛采用六面膜式水冷壁。锅炉采用全金属密封,轻型炉墙。并采用可靠的防爆装置,锅炉设置省煤器。 3.1锅炉参数及要求: 1)锅炉型式:燃气热水水管锅炉 2)额定工作压力:1.0MPa 3)额定出/回水温度:95/70℃ 4)排烟温度:<160℃ 5)锅炉设计效率:≥92 % 6)锅炉燃烧方式:微正压 7)锅炉水循环方式:自然循环 8)锅炉抗震烈度:7度 锅炉的设计、制造及检验应符合《热水锅炉安全技术监察规程》的要求。 锅炉应具有现代技术,长期运行出力足、漏风少、热效率高、水阻力小、电耗低,运行费用省。锅炉及所配套的设备应是全新的、质量可靠的、技术先进的、成熟的。 锅炉结构合理先进,能够适应负荷变化,在20%~110%负荷范围内应能平稳运行。锅炉升温速度快,满足运行快速启停的要求,运行操作简便,维护方便,性能稳定 锅炉主要承压部件使用寿命不得低于30年;锅炉炉墙10年内免维修(供方需提供承诺及用户证明原件),整机使用寿命20年,大修周期不低于10年。

工业锅炉原理与设计

一、单选题【本题型共21道题】 1.在锅炉炉膛设计时,保证一定炉膛出口温度避免受热面结焦主要考虑煤种的()。 A.灰熔点 B.热值 C.挥发分 D.水分 正确答案:[A] 2.锅炉性能优劣主要取决于()。 A.燃料的选取 B.锅炉排烟温度 C.锅炉结构布置 D.锅内过程和炉内过程能否良好配合 正确答案:[D] 3.下面()不属于层燃的一般特点。 A.燃烧充分 B.煤种适应性较广 C.结构简单 D.适于间断运行 正确答案:[A] 4.下面不属于按照燃烧方式分类的锅炉为()。 A.层燃锅炉 B.流化床锅炉 C.室燃锅炉 D.火管锅炉 用户答案:[D] 得分:4.80

5.立式烟火管锅炉一般采用的通风方式为()。 A.平衡通风 B.自然通风 C.机械通风 D.正压通风 正确答案:[B] 6.沸腾燃烧的突出优点为()。 A.不易导致磨损 B.结构简单 C.燃烧强度大,适用于劣质煤 D.电耗低 正确答案:[C] 7.煤粉锅炉各部件吸热以辐射换热为主要传热模式的部件为()。 A.炉膛 B.省煤器 C.过热器 D.再热器 正确答案:[A] 8.下面()不属于室燃的一般特点。 A.燃烧迅速 B.煤种适应性较广 C.结构简单 D.低负荷运行的稳定性和经济性较差 正确答案:[C]

9.冷凝锅炉的热效率计算值达到103%,原因为()。 A.不可能 B.采用燃料的高温发热量计算 C.采用燃料的低位发热量计算 D.燃烧充分 正确答案:[D] 10.燃气锅炉燃烧器,相对于扩散型燃烧,预混燃烧的特点为()。 A.火焰温度均匀 B.火焰短 C.低NOx排放 D.以上都是 正确答案:[D] 11.进行水循环计算的主要目的为()。 A.保证受热面可靠冷却 B.保证水动力的稳定性 C.得出各部件的流动阻力 D.以上都是 正确答案:[D] 12.炉膛过冷段水冷壁受热面由于局部热负荷过高容易发生的传热恶化现象称为()。 A.蒸干 B.膜态沸腾 C.汽水共腾 D.汽塞

燃气锅炉供暖系统

燃气锅炉供暖系统 1燃气锅炉供热的某些特点 燃气锅炉供热将有较广泛应用,理由为: 我国能源结构调整,煤炭将主要用于大型电厂发电,中小容量供热锅炉将由燃煤改为燃油、燃气;西气东输、引进液化天然气等,将使广大地区用天然气这种清洁能源成为现实;天然气Nm 3热值约是人工煤气的2倍,而价格将不到2倍,“照付不议”和其它一些政策会陆续出台,平衡天然气产、供、销各部门利益,使消费者利益也得到保障;我国城市化正处于高速发展阶段,将有大量新建与改建房屋采用非集中供热系统,燃气是非集中供热系统最佳能源;市场经济体制建立使开发商、物业管理公司、业主更多考虑小区、自家利益,更注重经济核算,国家与单位补贴将逐步取消;经济发展地区大中城市和小城镇大量兴建的住宅小楼和城郊别墅多为非标建筑等等,这些因素都促使燃气非集中供热应用量不断增大。我国早在解放前的上海、天津等城市少层小洋房里就已应用独立式自然循环热水供暖系统,例如: 上海延安中路昇平街里的原上海纺织同业会所(1965年上海房地局四清工作团团部所在地)三层小楼就装有独立式供暖供热水系统。其特点是简单、可靠,供电中断不会影响供热。但设计时要求精确做水力计算,管径较机械循环系统大,耗金属多,垂直顺流式单组散热器难有效调节。解放后我国集中供热事业有了很大发展,现在随西气东输,除独户式燃气供热会增加外,更多的将是小区式燃气非集中供热,或称为自治式热源供热。 它的特点有: 采用机械循环,要求不间断供电;锅炉燃烧及整个系统控制的自动化程度高,用户端用热量个别调节时整个系统仍能保持较好的水力稳定性;用户数量多,住宅可达100户,可既有住宅、旅馆供暖供热水的生活用热,又有游泳池地板供暖、池水加热、通风空调空气加热、食品机制各种生产工艺用热水等等不同类型用户;供暖系统的热负荷变化与室外气温成线性关系,不同国家设计工况(标准工况)下供回水温度℃,℃,℃,供暖调节最简单方法是定流量质调法,但采用变流量调节法越来越多,散热器装热静力型温控阀可使个性化要

开题报告----锅炉热力计算及初步设计

本科毕业设计(论文)开题报告 题目名称SHL10-1.25/250-AⅢ型锅炉热力计算及初步设计 学生姓名专业班级学号 一、选题的目的和意义: 工业锅炉目前是中国主要的热能动力设备,工业锅炉多于层燃链条炉排锅炉,近年来,中国燃煤电站锅炉行业取得了快速的发展。其一,产量大幅增长,行业产能快速提升。目前,整个行业的产能已经超过8000万千瓦,不仅能满足国内电力工业建设的需要,而且还进入了国际市场。对于目前仍采用的手烧加煤、间歇燃烧方式的小型固定炉排锅炉,必将淘汰,取而代之以新开发的新型锅炉。 然而随着锅炉行业的快速发展,能源匮乏的危机也越发显现出来。在当今世界,能源的发展、能源和环境,是全世界、全人类共同关心的问题,也是我国社会经济发展的重要问题。为了实现能源的可持续发展,一方面必须“开源”,即开发核电、风电等新能源和可再生能源,另一方面还要“节流”,即调整能源结构,大力实施节能减排。而对锅炉的节能设计显得尤为重要。 二、国内外研究现状简述: 随着工业的发展,科学技术水平的不断提高,提高锅炉的效率在对改善劳动环境条件、节约能源、增加生产、提高产品质量、降低生产成本等方面起着越来越大的作用,自六十年代以来,世界各国工业锅炉节能技术发展很快,但我国目前的技术现状与世界先进水平的差距还很大,大部分能源尚未得到充分利用,因此在当前能源供应日趋紧张的总趋势下,采用清洁燃料和洁净燃烧技术的高效、节能、低污染工业锅炉将是产品发展的趋势。 工业锅炉节能改造技术:1.加装燃油锅炉节能器;2.安装冷凝型燃气锅炉节能器;3.采用冷凝式余热回收锅炉技术;4.锅炉尾部采用热管余热回收技术; 5.采用防垢、除垢技术; 6.采用燃料添加剂技术; 7.采用新燃料; 8.采用富氧燃烧技术; 9.采用旋流燃烧锅炉技术;10.采用空气源热泵热水机组替换技术;

锅炉热力计算

锅炉热力计算 ●计算依据 燃煤热值按4500千卡/公斤、醇基燃料热值按6500千卡/公斤、柴油热值按10200千卡/公斤,燃煤价格按750元/吨、醇基燃料按3500元/吨、柴油价格按7500元/吨,煤锅炉的效率按45%、油气锅炉的效率按95%计算: ●4吨燃油蒸汽锅炉 4吨燃油蒸汽锅炉的热功率为248万大卡/小时, * 使用燃煤蒸汽锅炉,使用成本为: 248×104÷4500÷45%=1225公斤/小时×0.75=919元/小时*换装燃醇蒸汽锅炉使用醇基燃料使用成本为: 248×104÷6500÷95%=401公斤/小时×3.5=1404元/小时*换装油气蒸汽锅炉使用柴油作为燃料的使用成本为: 248×104÷10200÷95%=256公斤/小时×7.5=1920元/小时 ●300万大卡导热油锅炉 *使用燃煤导热油锅炉,使用成本为:

300×104÷4500÷45%=1482公斤/小时×0.75=1112元/小时*换装燃醇导热油锅炉使用醇基燃料使用成本为: 300×104÷6500÷95%=486公斤/小时×3.5=1700元/小时*换装油气导热油锅炉使用柴油作为燃料的使用成本为: 300×104÷10200÷95%=310公斤/小时×7.5=2325元/小时 三、综合效益计算 1、设备成本 ●4吨蒸汽锅炉 沿用现有的燃煤锅炉使用醇基燃料,每小时使用成本为: 248×104÷6500÷95%×3.5=1404元/小时 每天按8小时计算,则每天为11232元。 若更换同等功率的燃油燃气蒸汽锅炉约需55万元,每小时使用成本为1920元,每天按8小时计算,则每天为15360元,每天节省燃料费3984元,约130天即可收回设备投入。 ●300万大卡导热油锅炉

热力计算

1.水冷壁、锅炉管束、省煤器、过热器、再热器、凝渣管、空气预热器的作用是什么? 水冷壁:(1)吸收炉膛内火焰的热量,是主要蒸发受热面,将烟气冷却到合适的炉膛出口温度。(2)保护炉墙。(3)悬吊敷设炉墙、防止炉壁结渣。 凝渣管:是蒸发受热面,进一步降低烟气温度,保护烟气下游密集的过热受热面不结渣堵塞。锅炉管束:是蒸发受热面。过热器:是过热受热面。将锅炉的饱和蒸汽进一步加热到所需过热蒸汽的温度。省煤器:(1)降低排烟温度,提高锅炉效率,节省燃料。(2)充当部分加热受热面或蒸发受热面。空气预热器:(1)降低排烟温度提高锅炉效率。(2)改善燃料着火条件和燃烧过程,降低燃烧不完全损失,进一步提高锅炉效率。(3)提高理论燃烧温度,强化炉膛的辐射传热。(4)热空气用作煤粉锅炉制粉系统的干燥剂和输粉介质。 2.水冷壁、省煤器、过热器、空气预热器可分为哪几类?各有什么优缺点? 水冷壁可分为光管水冷壁和膜式水冷壁。光管水冷壁优点:制造、安装简单。缺点:保护炉墙的作用小,炉膛漏风严重。膜式水冷壁:优点:对炉墙的保护好,炉墙的重量、厚度大为减少。炉墙只需要保温材料,不用耐火材料,可采用轻型炉墙。水冷壁的金属耗量增加不多。气密性好,大大减少了炉膛漏风,甚至也可采用微正压燃烧,提高锅炉热效率。蓄热能力小,炉膛燃烧室升温快,冷却亦快,可缩短启动和停炉时间。厂内预先组装好才出厂,可缩短安装周期,保证质量。缺点:制造工艺复杂。不允许两相邻管子的金属温度差超过50度,因要把水冷壁系统制成整体焊接的悬吊框式结构,设计膜式水冷壁时必须保证有足够的膨胀延伸自由,还应保证人孔、检查孔、看火孔以及管子横穿水冷壁等处有绝对的密封性。 省煤器:铸铁式省煤器:优点:耐腐蚀、耐磨损。耐内部氧腐蚀、耐外部酸腐蚀。缺点:承压能力低,铸铁省煤器的强度不高,即承压能力低。不能做成沸腾式,否则易发生水击,损坏省煤器;易积灰,表面粗糙,胁制片间易积灰、堵灰;易渗漏,弯头多,法兰连接,易渗

热力计算汇总表

qwertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyuiop asdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopasdf ghjklzxcvbnmqwertyuiopasdfghjklz xcvbnmqwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopasdf ghjklzxcvbnmqwertyuiopasdfghjklz xcvbnmqwertyuiopasdfghjklzxcvbn mrtyuiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjk WDLZ240/ 热力计算汇总表 ZB D144-6 武汉锅炉集团动力机械制造有限公司 2011年9月19日

说明 1.本计算按照《锅炉机组热力计算标准》(苏联1937年版)进行。 2.计算中有关数据取自SJ D144-13《锅炉几何尺寸计算书》。 目录 一、锅炉规范 二、锅炉燃料 三、热力计算汇总表

燃气锅炉选型计算

燃气锅炉分为蒸汽锅炉和热水锅炉,两种锅炉的用途有区别,蒸汽锅炉主要用在工业生产中,热水锅炉主要用于采暖及生活用水方面。有关锅炉选型,下面分别介绍一下: 燃气蒸汽锅炉选型: 蒸汽锅炉的选型,要先确定锅炉的额定蒸发量,也就是计算出每小时需要的蒸汽量。(额定蒸发量是指在规定的出口压力、温度和效率下,单位时间内连续生产的蒸汽量,也就是指锅炉每小时把水加热成蒸汽的产量。) 蒸汽锅炉应用行业很多,化工、食品、医药、建材、包装等行业都可以用到蒸汽锅炉。 a.医院消毒设备,可以通过查看设备的参数来计算每小时所需要的蒸汽参数; b.工厂工艺用汽的话可以通过工艺流程来计算每小时需要的蒸汽。 注意:计算出蒸汽用量后需要选择额定蒸发量超过计算蒸汽用量20%的锅炉,因为很多因素(如管道损失、锅炉水垢、烟垢)将会使锅炉偏离理想的运行工况或者有时会有增加用汽的情况。 食品厂用10吨超低氮燃气蒸汽锅炉运行现场

燃气热水锅炉选型 热水锅炉有两种用途:采暖和生活用水,下面的选型方案单一,如果您同时需要采暖及洗浴,可以找专业的锅炉厂家去选型。 1、取暖耗热量计算公式:采暖标准:100w/m2 耗热量公式=100x总面积x860/1000 1t水开温40℃所需耗热星计算公式:1T*1000L*40℃=40000kcal 例:比如用户需要每小时5tk,那么所需锅炉功率热值就是 5t*40000Kcal=200000Kcal. 2、适用于各种耗热量损失的计算公式(此如大池等): Q=mc=t=?(这个问号代表水重量,以吨为单位) X1000LX3C=?例: 10t大池每小时按温降3%C计算; 10Tx 1000LX3=0000kcal/h所得每小时损耗热量为3万大卡,后面要把这个损失的热量加回去。 综上所述,1吨燃气热水锅炉可供6000-8000平方米采暖面积,可带60个淋浴头。 河北邯郸2台1.4MW燃气热水锅炉运行现场

燃生物质锅炉结构与热力计算方法

燃生物质锅炉结构设计与热力计算方法 湖南省特种设备检验检测研究院 汪斌 工程师 关键词:生物质锅炉 热力计算 摘要:根据生物质燃料挥发分高,热值低,着火快的特点,设计一种新的锅炉结构,此结构不同于以往的燃煤链条炉排锅炉,针对此新的锅炉结构,给出热力计算方法。为了方便工程应用,简化繁琐的计算过程。本文在吸收现有热力计算标准的核心思想的基础上,根据最基本的传热学理论,将大量的经验公式,图、表、结构系数等化简合并。对于合并后的系数取值,结合半经验公式计算和实际运行效果给出一个参考值。 1. 锅炉的设计目标:排烟处过量空气系数py ,排烟温度py T ,热效率q ,蒸发量D 。以上设计目标在锅炉热力计算时预先给定,作为已知条件使用。 2. 计算的目的:根据以上给定的设计目标,确定锅炉结构各部分的尺寸,比如炉膛尺寸小了,锅炉蒸发量达不到,尺寸大了过量空气系数增加,效率下降。 设计计算过程:先假定一个锅炉结构,如图所示为经过修改后的燃生物质锅炉结构,它分为三部分:1.炉膛;2对流管束;3尾部对流受热面。取消了燃煤锅炉的链条炉排和前后炉拱,用一个不设水冷壁的耐火浇筑燃烧室引燃新加入的燃料。

3. 炉膛传热计算: 炉膛传热计算的内容:根据假定的炉膛尺寸,确定炉膛的出口烟温,和辐射传热量。若出口烟温和传热量不合理,则须修改炉膛尺寸。炉膛容积的大小可以先参考炉膛容积热负荷假定。 炉膛传热计算的理论模型:将火焰看作紧贴水冷壁的一个表面。 则炉膛传热计算可以简化为两个灰体表面之间的辐射传热计算:传热方程 )(6.3Q 440r w a l av cal fur T T B A a -=σ KJ/Kg (1)

工业蒸汽锅炉热力计算中英文对照外文翻译文献

中英文对照翻译 配煤方法对燃煤锅炉中粉尘和氮氧化物排放的影响 亮点:说明了混合方法对粉尘和氮氧化物排放有很大影响。 说明了粉尘主要产生于炉的中间燃烧器。 说明了炉内混合方法可以排放最少量的氮氧化物和粉尘。 摘要:本文介绍了的混合方法对于500 MW切向燃烧煤粉锅炉燃烧特性和氮氧化物排放的影响的数值模拟。在同一个记重标准上模拟混合了60%沥青的煤和混合了40%亚烟煤的煤的炉内和炉外混合。模拟显示了混合方法对粉尘排放有很大影响,但对氮氧化物排放的影响不大。在下层燃烧器中燃烧烟煤和在上层燃烧器中燃烧亚烟煤的炉内混合方法排放的粉尘最少。两种混合方法中的粉尘均主要来自于炉内的中层燃烧器。500 MW燃煤电厂的现场试验表明炉内混合方法相比炉外混合方法可以大大减少氮氧化物和粉尘的排放。 关键字:粉尘氮氧化物煤混合锅炉点火损失 一、说明 近年来,许多国家的燃煤电厂在燃烧混合不同类型的煤种正变得越来越普遍。燃煤电厂利用混合煤有许多优势。煤混合由于许多不同的原因,包括:节约成本,减少SO2的排放,扩大优质煤的供应限制,提高燃料灵活性,控制煤炭的矿物含量,提供更好的燃烧,帮助解决现有问题,等[1]。但是,混合燃烧也可能在锅炉运行中产生意想不到的问题,比如效率、腐蚀、侵蚀,火焰稳定,结渣,污垢,吸附热炉等等。 在发电厂中,不同类型的煤可以在料箱,储煤器,输送带中混合,煤层堆积在一起按照所需的成分给出理想的混合比例。有时,不同煤种堆积在单独的料箱,然后按照预定比例混合再使用填料器从每个料箱中输出。料箱中待掺合煤按照要求的比例添加,不同煤种顺序添加到储煤器中。在输送带

上混合时,两种或更多种不同的煤在移动的皮带输送机上按体积或重量比例混合。不同料箱的煤通过改变它们排出到皮带输送机上的速度进行混合。通过改变单独的进料器的煤炭传递到输送机上的速度从而得到共混物的理想比例,然后在送到到原煤斗[2]。 按照Ikeda和Lee等人的定义,这三个混合方法可归类为炉外混合方法[3-5]。在该方法中,不同类型的煤先被混合在一起后,同时喷入炉内。这种方法在发电厂是很常见的,因为两个或两个以上的煤可方便融入了料箱,储煤器或在上述传送带。这有时被称为线混合或原煤斗混合方法。在炉内混合方法中各煤没有预先混合,而是从单独的燃烧器喷入锅炉。这种方法在电厂不受欢迎,因为在煤仓分开运送和分发两种煤很困难。 关于混合煤的燃烧,排放和粉尘特性已经出现了[4-11]的许多实验室研究及关于中试炉[12-14],和满量程电站锅炉[15-21]的研究。然而,只有少数的研究发现在其中混合方法对于燃烧效率和污染物排放的的影响[3-5]。Ikeda等人通过试点炉三阶段燃烧器(煤燃烧速度:0.3吨/日)调查了粉煤灰炉内混合方法对NO x排放和未燃碳的影响[3]。Lee等人通过沉降炉计算和实验研究了混合方法对NO x和未燃碳的影响[4]和[5]。但是,具有满量程电站锅炉的研究却一直没有找到。 本论文描述了在500兆瓦切向燃煤锅炉中混合方法对燃烧特性和NO x 排放影响的数值研究。在CFD模拟中用60%沥青和40%亚烟煤的以重量为基础的共混物对三例不同的混合方法进行了研究。粉尘和氮氧化物排放是目前的CFD模拟的重点工作,另外对一氧化碳,氧气和在锅炉中的烟气的温度分布也进行了研究。最后,在500兆瓦的燃煤锅炉炉内和外炉混合方法的试验中,分别对粉尘和NO x排放数据评论。 二、模拟 2.1 500 MW四角切圆燃煤锅炉 目前500兆瓦的燃煤锅炉组由一个切向燃煤炉,超临界,一次通过,一次中间再热锅炉,换热器,如过热器(SH),再热器(RH),和燃烧器口组成。安排示于图1。节能器安装在锅炉的后部通道。锅炉的高度为约86.3米,截面宽度和炉的深度均为16.5米[22]。

循环流化床锅炉热力计算

循环流化床锅炉热力计算

循环流化床锅炉热效率计算 我公司75t/h循环流化床锅炉,型号为UG75/3.82-M35,它的热效率计算为: 一、煤种情况: 分析项目单位#1炉 低位发热量KJ/Kg 12127 全水分% 7 挥发份% 11.55 灰份% 57.03 含碳量% 42.97 含硫量% 0.34 二、锅炉运行技术指标 分析项目单位#1炉 统计时间H(2008.10.14—10.20) 120 锅炉蒸发量t 7726 平均蒸发量t/h 64.4 给水温度℃105 主蒸汽压力MPa 3.3 主蒸汽温度℃440 排烟温度℃135 飞灰含碳量% 2.4 炉渣含碳量% 2.4

烟气含氧量% 8 锅炉排污量t/h 1 原煤消耗t/h 20.125 标煤消耗t/h 8.483 吨汽标煤耗t/t 0.132 排渣量t/h 15 放灰量t/h 7 三、锅炉在稳定状态下,相对于1Kg燃煤的热平衡方程式如下: Q r=Q1+Q2+Q3+Q4+Q5+Q6 (KJ/Kg),相应的百分比热平衡方程式为: 100%=q1+q2+q3+q4+q5+q6 (%) 其中 1、Q r是伴随1Kg燃煤输入锅炉的总热量,KJ/Kg。 Q r= Q ar+h rm+h rs+Q wl 式中Q ar--燃煤的低位发热量,KJ/Kg;是输入锅炉中热量的主要来源。Q ar=12127 KJ/KgJ h rm--燃煤的物理显热量,KJ/Kg;燃煤温度一般低于30℃,这一项热量相对较小。 h rs--相对于1Kg燃煤的入炉石灰石的物理显热量,KJ/Kg;这一项热量相对更小。 Q wl--伴随1Kg燃煤输入锅炉的空气在炉外被加热的热量,KJ/Kg;如果一、二次风入口暖风器未投入,这一部分热量也可不计算在内。

循环流化床锅炉热力计算.

循环流化床锅炉热效率计算 我公司75t/h循环流化床锅炉,型号为UG75/3.82-M35,它的热效率计算为:

2、Q1是锅炉的有效利用热量,KJ/Kg;在反平衡热效率计算中,是利用其它热损失来求出它的。 3、Q4是机械不完全燃烧热损失量,KJ/Kg。 Q4= Q cc(M hz C hz+M fh C fh+M dh C dh)/M coal 式中Q cc--灰渣中残余碳的发热量,为622 KJ/Kg。 M hz、M fh、M dh--分别为每小时锅炉冷渣器的排渣量、飞灰量和底灰量,分别为15、7、2t/h。 C hz、C fh、C dh--分别每小时锅炉冷渣器的排渣、飞灰和底灰中残余碳含量占冷渣器的排渣、飞灰和底灰量的质量百分比,按2.4%左右。 M coal--锅炉每小时的入炉煤量,为20.125t/h。 所以Q4= Q cc(M hz C hz+M fh C fh+M dh C dh)/M coal =622(15*2.4+7*2+3.5*2.4)/20.125 =1694 KJ/Kg q4= 100Q4/Q r(%) =100*1694/12127=13.9% 4、Q2是排烟热损失量,KJ/Kg。 Q2=(H py-H lk)(1-q4/100) 式中H py--排烟焓值,由排烟温度θpy (135℃)、排烟处的过量空气系数αpy(αpy =21.0/(21.0 - O2py))=1.24和排烟容积比热容C py=1.33 (KJ/(Nm3℃))计算得出,KJ/Kg。 H py=αpy (V gy C gy+ V H2O C H2O)θpy+I fh 由于I fh比较小可忽略不计 =1.24*( 5.05*1.33+0.615*1.51) *135

相关主题
文本预览
相关文档 最新文档